1 TPS in a simple 2D potential

1.1 Introduction

This exercise lets you explore state and trajectory space for a single particle in a two di-
mensional potential. For this tutorial it is an educational and computationally tractable
problem that exhibits some of the problems encountered in higher dimensional systems.

You are expected to write a working code in C (or any other language) that can perform
straightforward stochastic dynamics and perform path sampling. We can provide you with
a velocity Verlet routine to integrate the Langevin equation (see appendix), a graphics
package to plot trajectories and with some other basic routines. If necessary there is a
complete working program you can use as an example.

1.2 Potential surface

Consider the potential energy surface as a function of variables  and y:
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where 3 = 1/kpT is the reciprocal temperature, kp the Boltzmann constant, and T the
temperature. A contour plot of the potential is given in figure 1. The potential surface
shows two minima at 5V(0.96,0.06) = —0.98 and 5V (—0.98,0.06) = —0.97 and one saddle
point at SV (—1.96,196) = 0. The surface shows the characteristics of the bistable potential
mentioned in the first day’s lectures. That is, considering z is the only important order
parameter and integrating out all the other degrees of freedom (in this case only y) the
maximum of the free energy curve is NOT located at the saddle point of the surface.
Further, to go over the barrier a particle first has to move in the opposite direction.

1. Calculate the free energy

BF(z) = —ln/dy e AV(@y)

and establish the barrier maximum. Conclusion?
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Figure 1: Bistable 2D potential separated by high barrier



1.3
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1.4

Exploring surface using straightforward dynamics
Write a program that performs straightforward Langevin dynamics (see appendix).

Run the program and look at trajectories at different temperatures (say 7' = 0.1 to
T =1). You can use the following input parameters:

At = 0.25
v = 25
m = 1
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(ZTinit, Yinit
Try also a few other initial coordinates or Az, 8 and 4.

Write the trajectories to a file and look at them using a plot program, and calculate
mean and variance of order parameters (x,y).

Write down an expression for the stable region characteristic function h4(z,y) and
hp(z,y) for § = 8. This means that most (say 99%) of the equilibrium distribution
is captured by these function. (make sure you use both variables in the expression).

Path sampling

. Write a program the performs path sampling of full Langevin trajectories.

Tips: put whole path in memory, not only configuration at time ¢. Use both shooting
and shifting, backward and forward (four different routines).

The first slice should be confined to the initial state A (choose one) and last slice
should be confined to the final region B.

The initial path can be constructed by
x = 2x7/L-1
y = 0
with 7 the time slice index
Run the program interactively using the same parameters as before and using the h4 g
from the previous exercise The path length (number of time slices) should be about
L = 100, 8 = 8. Look how the trajectories relax to equilibrium using the graphics

module. Measure the shooting and shifting acceptance ratios, are they reasonable
(= £0.5)? Play around with different settings of 3, v etc.

Try different definitions of the stable regions e.g.

1 if 2 < —0.5
ha(zo) = { 0 ifz>—0.5

1 ifz> 0.5
hp (z0) = { 0 if £ <0.5

What happens?



4. Change the number of time slices to 50 or even 10 while keeping everything else
constant. Any difference?

1.5 Sufficient path length

1. Measure the time correlation function

Cantt) = Sy = < o) > ®

where H(z) = 1 if the path visits the final region B at least once. (Note that you will
have to change the shooting and shifting acceptance criteria in the program so that
the last slice is able to move out of B again after it has visited it.

2. Plot cap and éap =< izB (t) >ap. Does it reach a plateau? If not, double the number
of time slices and repeat path sampling.

1.6 Rate constant

The rate constant for the transition can be calculated from the linear part of time correlation

function
(ha(zo)hp(zt))
(ha)

C(t) can be obtained from path sampling by

C(t) =

~ kA_)Bt fOI' Tmol <t < Trxn- (3)
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where P(\,t) is the probability to find slice z; at an order parameter A

_ Jdzo p(z0)ha(z0)d [N — A(z4)]
PO0 = J dzo p(zo)ha(zo) ’

where A is an order parameter that defines the final region B.

To determine P (A,t) by umbrella sampling, we first define a sequence of N + 1 overlapping
regions B [i] (windows) such that B [0] = B and the union {J¥ , B [i] of all regions comprises
the whole phase space. The regions B[i] are defined through

(5)
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For 0 < ¢ < N we require region BJi] to overlap with the neighboring regions B[i — 1]
and B[i + 1]. Next, one calculates the distribution of the order parameter A in each of the
windows B[i| separately:

[ dzo p(mo)hA(xo)hB[i] ()0 [A — A(zy)]
[ dzo p(zo)ha(zo)hp(21) '

In words, P(\,t;1) is obtained by path sampling with the final region defined by B[i] and
making a histogram of the A(x;). In practice, one just keeps track of the endpoint zy .
The order parameter A\ has to be chosen carefully. For example, A can be the z coordinate
(although it turns out that this is not a good choice), other possibilities are A = = + y, or
A = arctan(y/z). The latter is the best choice.

P(\t3) = (7)



1. Calculate C(t) by straightforward simulation for a low barrier (eg. 8 = 3), extract
the rate constant.

2. Compute P(), L) using 4-8 windows, and L = 50, § = 8 (other parameters same as
before). Be sure to confine the endpoint to region B, i.e. use hp instead of Hp as
characteristic function.

3. Match the histograms of all windows by multiplying by a constant (or shifting the
logarithm of the histograms by a constant) to obtain P(\, L).

4. Compute C(L) by integrating Eqn(3).

5. Now
(hp(t))an

(hp(L))aB

So it is only necessary to do the umbrella sampling once, as we have (hg(t))ap from
exercise 1.5. In the linear regime 7,01 < t < Tyxn

C(t) = x C(L). (8)

C’(t) = —— X C(L). ® kasp. (9)
Calculate the rate constant.

Appendix

Langevin integration algorithm

In this paper, we consider classical many-body systems evolving according to the Langevin
equation of motion

ro= v,

v = %—’yvﬁ-%. (10)

The positions and velocities of all particles are specified by r and v, respectively. F' is
the intermolecular force derived from the potential V(r), and 7 is a friction constant. The
random force, R, is responsible for the stochastic character of the time evolution. It is a
Gaussian random variable with (R(¢)R(0)) = 2m~vykgTé(t). For a short time increment,
At, the assumption of force which depends linearly on r leads to the integration algorithm

Tr41 = Tr+ c1Atv; + CzAtz ar +0rg,
Vry1 = Covr + (€1 — ¢2) Atar 4+ coAtar i1 + dvg, (11)

where a,; = F(r;)/m and the coefficients ¢y, ¢; and ¢ are given by

_e_,),At‘ _].—CO' _]._Cl

ra= yAt ' = yAt

co (12)



orr and dvg are small random displacements caused by the random force. As derived by
Chandrasekhar the random displacements are distributed according to
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where dxr = {0rR, dvr} and a denotes the different components of the displacement vectors
d0rr and dvg. The variances o, and o, and the correlation coefficient ¢, are given by

-D
w(dzr) = |:27TO'1~03U 1—02]

7= A [z (34678 4 PY) ],
o2 = kBWT (1 - 6727At) ,
CrpOr Oy = ’:2—3 (1 — e_VAt)2. (14)

Applying Eq. (11) iteratively with random numbers drawn from the bivariate distri-
bution (13) leads to a stochastic trajectory of arbitrary length. This procedure is usually
called Brownian dynamics. Each trajectory generated with this algorithm has an associ-
ated probability that depends on the sequence of random displacements used to obtain the
trajectory.



