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Basics of machine learning for
chemistry and materials science



Why ML in chemistry and materials science?

* It we agree molecular simulation is usetul:

= Then: let's see where ML can help

Slide from Prof. Smit’s lecture on Jan 6

Exact= in the limit of
infinitely long simulations
the error bars can be made
infinitely small

We assume the
interactions between
the particles are known!

The idea for a given intermolecular potential “exactly”
compute the thermodynamic and transport properties
of the system

Diffusion
If one could envision an Pressure coefficient
experimental system of Heat capacity Viscosity
these N particles that Heat of adsorption
interact with the Structure
potential.
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Why ML in chemistry and materials science?

+ It we agree molecular simulation is useful:

= Then: let's see where ML can help

v — oy Hours

Molecular RES&EE
Seconds Simulation

ML
Potentials

Force Fleld / Molecular
S1mu1at1on

H‘P M

System Properties

Hours

Hours

Seconds




Why ML in chemistry and materials science?

+ ML enables us to do new things too!

= We have access to enormous amount of data

¢ C (¢

www.ccdc.cam.ac.uk

Latest Blog

Everybody wants to be a millionaire.

Find out more about how exciting the CCDC's journey to one million
published structures has been

World-leading experts in structural chemistry data, software and knowledge for materials and life science research and application

Big data leads the way for structural chemistry

The Cambridge Structural Database reaches 1,000,000 structures. Find out more here.

Daily CSD Total

ofjafl7fjofl+]lo]




Why ML in chemistry and materials science?

* ML enables us to do new things too!

Oxidation states —> metal centres of MOFs

Cu(l) macrocyclus Cu(ll) paddiewheel

o L oo g - o9 - »

Current approaches
e Empirical assignment
e Theoretical models —> bond valence approach
e Quantum calculations/spectroscopy

Jablonka, et al. submitted (2020) 10



Why ML in chemistry and materials science?

+ ML enables us to do new things too!

Oxidation states —> metal centres of MOFs

Cu(l) macrocyclus Cu(ll) paddiewheel

o L oo g - o9 - »

B CSD entries
BMOF entries
+“m’-’#‘ﬁ§
Current approaches  fae| T
e Empirical assignment |
e Theoretical models —> bond valence approach | =™ | “H 111
. 0 ...l.l.l.l.l.l_l.l.lll Ii ,,,,,
e Quantum calculations/spectroscopy TR NI RN L

Moghadam et al. Chemistry of Materials (2018) 11
Jablonka, et al. submitted (2020)



Why ML in chemistry and materials science?

+ ML enables us to do new things too!

Oxidation states —> metal centres of MOFs

Se. Bk FOW

Y EN,, max{EN;},
min{EN;,},5{EN,},
max ¢{EN;}, min 6{EN;}

Jablonka, et al. submitted (2020) a0



Why ML in chemistry and materials science?

+ ML enables us to do new things too!

Current approaches

e Theoretical models

Cu(l) macrocyclus Cu(ll) paddiewheel

—> bond valence approach ] )

d and f block (29627 sites) p block (1905 sites)

-DEDEE - EERR
aR 0 [100] 2 | 1| 0 NN BB
¥ o [0 [ss] 2 [ o [
-aooan - HEEE
- REE - EEEE
1 2 3 J ) 1 2 3 4

______

predicted predicted

Jablonka, et al. submitted (2020) 13



Why ML in chemistry and materials science?

+ ML enables us to do new things too!

Current approaches

e Theoretical models
—> bond valence approach squere

Q7 co-planar CN=4

K trigonal

co-planar CN=3

oxIMACHINE ...

Jablonka, et al. submitted (2020) 14



The “fourth paradigm™ of science

1600 1950 2000
Empiral Science Theoretical Computational Data Driven
(15t Paradigm) Science Science Science
(2"9 paradigm) (3" Paradigm) (4t" Paradigm)
& = g
H|y) = Ey)
Experimental Development of Simulation of Machine Learning
Observation Theories and complex
Generalizations phenomena, High
troughput
computational
screenings

“It is not that machines are going to replace chemists. It’s that the chemists

who use machines will replace those that do not.”
- Derek Lowe, In the pipeline, Science Mag.

“Al is good at automatic tasks, rather than jobs.”
- Andrew Ng, Google Brain and Stanford

15



Unsupervised
Learning

Machine
Learning

Reinforcement
Learning
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Weather
Forecast

Market
Prediction

Regression

Generative Dimensionality
Models Reduction

Unsupervised Supervised Image
: . classification
Learning Learning

Classification

Machine
Learning

Clustering

Fraud
Detection

%)

Unlabelled data . Labeled data



Data
Visualisation

N Generative Dimensionality

k‘ v Models Reduction

—
-
Facek

Unsupervised
N Learning
Diversity

Analysis

Clustering

Market
Prediction

Feature
Engineering

Machine

Learning

Outlier
detection

Unlabelled data

22
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Weather
Forecast

Market
Prediction

Data

Photo2Emoj
! Visualisation

Regression
FaceApp
Generative Dimensionality

Models Reduction

Feature
Engineering

Supervised Image

Unsupervised
classification

o Learning Learning
Diversity

Analysis
Classification

Machine
Learning

Clustering

Fraud
Detection

Outlier
detection

Real Time Reinforcement
Games

Decisions Learning

Control

23



| .ecture structure

* Supervised machine learning workflow
» Model interpretation

* Feature selection

* Dimensionality reduction

»  Applications

24



Supervised
Learning

Classification Regression

* Featurisation

+ Model training

Supervised learning | pamropimision

» Linear and kernel models

2.



Supervised machine learning

Y
n features
*

) 1

bl bl xbe y
2,1 2,1 2.n 2

X X R ¢ g
xm,l xm,l Ly ym

ML model
I*roperties

y€ER

Features describing
the system

Parameters
w e RP

SUOTIJRAISSCO Ul

26




What is featurisation/a descriptor?

Encoding chemistry into numbers: “chemical space” to descriptor space

n features
——

| ik xl’”ll
—11 x> x>l . K%
¢ 1 xm,l xm,]l xm,n
Feature
, O
()

»
|
Feature 1

Chemical space >  Descriptor Space: n dimension

Feature 2
(&
oy
s
S

Chemical similarity

2.7



What makes a descriptor good?

Encoding chemistry into numbers

n features Good descriptors —> obey physics
| #’1 ) e [nvariant w.r.t. symmetries
X707 X7 L XY * As low dimension as possible
DL S * Cheap to compute

* Non-degenerate
e Transferability across elements

Descriptor Space: n dimension

28



What makes a descriptor good?

Encoding chemistry into numbers

n features
———
1 1,1 xl,l xl,n

X2’1 X2’1 2.n

Descriptor Space: n dimension

Good descriptors:
* Invariant w.r.t. symmetries

H({Z R}) — E\'\4 Translatlon
‘L’ [ & 5

Permutation

Rotation

2

|

H;

29




Ad hoc descriptors or properties:

Based on chemical intuition
In principle, can work but often not generalisable

One hot featurisation

InorganicBB | |  OrganicBB

topology functionality

Computed properties:

e Atom identity

e Maximum positive charge
e Minimum negative charge
* etc.

Borboudakis, et al. npj computational materials (2017) 30
Anderson, et al. Chemistry of materials (2018)




Fragment based descriptors: fingerprints

Binary vectors for molecular similarity
Varying length, e.g., FP2 fingerprint has 1024 bits

Rogers, D.; Hahn, M. “Extended-Connectivity 31
Fingerprints.” J. Chem. Inf. and Model. 50:742-54 (2010)



Connectvity based descriptors: RACs

' Notice we are loosing
ﬂ geometric information |

start scope

T=2, 2 Pi= P, d)
)

Bond distance

sta

4
Autocorrelations  scofe! g

Atomic
properties

)(9Z9 TaSalaa

Janet, Jon Paul, and Heather J. Kulik. The Journal of Physical 30
Chemistry (2017)



Connectvity based descriptors: RACs

start scope

rt pdi
Autocorrelations scpePyq" = Z 2 (P; — P)old; j,d)
i

Examples: ;
|
[N] all N
=88 il
i c
|

D5




Connectvity based descriptors: RACs

start scope

rt pdi
Autocorrelations scpePyq" = Z 2 (P; — P)old; j,d)
i

Examples: ;
|
(V]| al :

R DY PP LAY AL~ G

i | c |

1 H

34



Connectvity based descriptors: RACs

Examples:

il diff _
all *1

[V]

start scope

rt pdi
Autocorrelations scpePyq" = Z 2 (P; — P)old; j,d)
i

1 bond distance /
all / C
2. U= 1100, 1) : G
J

DD




Connectvity based descriptors: RACs

start scope

rt pdi
Autocorrelations scpePyq" = Z 2 (P; — P)old; j,d)
J

l

Examples:

NI all 1 bond distance ) /
diff /
N il = 5" N (3 — 1)3(d; 1) - (-
i c

N al 2 bond distance i
diff
N2 = N (1 = 1)3(d; 12) /0/ w/
i

36




RACs for MOFs, hands on session in the atternoon

molSimplify

start scope

art P = %" N (P, — P)a(d, ;. d) }
j __________ 1

l

start scope

art PPl = NN (P P)8(d; j» d)
i

- @ a

Metal

v.Z, TS, 1, ___Center__ !

https:/ / github.com / hjkgrp / molSimplify

37
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Encoding geometry: Coulomb matrix

Inspired by how quantum mechanics works:

H{ZRHSE o (z. Ry ML g

[ . . .I H = H =
052124 Il =] - = - =
M=y zz C, ’ .-...:
_ l#.] , H = = ..-

k(lrl rjl) ‘ = H H = I.

Similarity is defined as:

The difference in eigenvalues of Ms between two systems

d(x', x') = d(€', e/) = \/Z el — €|
I

Rupp, Matthias, et al. "Fast and accurate modeling of molecular
atomization energies with machine learning." Physical review 38
letters 108.5 (2012): 058301.



And there exist many more!

Bispectrum local environment statistics
SOAP
Behler-Parinello assignment .
symmetry functions of neighbors nearest neighbor based
cutff based
Zernicke ; '
, property-labeled
local materials fragments
RACs
radial distribution function . . .
Materials' descriptors composition statistics
atomic property-labeled radial 1 ‘
distribution function global composition based
-%W*‘ L
' ™ images
distance matrix ‘ ‘
microstructures
(sine)-Coulomb matrix crystal graph
point-clouds coarser calculations
bag.of bonds Ewald matrix
Point-Net TDA

39




Encoding local environments: symmetry functions

Chemical Locality Assumption: decomposing property into local environments

atoms
property(descriptor) = Z modelsi(descriptorl.)

I

omic Symmetry £
Coordinate  Function Atomic Atomic  Short Range

Energy can be decomposed into atomic contributions e Nocars  Me Eneges enery
—> this approach is used to describe PES
—> Scalable to large systems

—> differentiability of descriptors is essential

Natoms,z/ Nelem G
— V - - -
kg = Z ZEﬂ ‘o'-l'o"' Io’
[ 3 . @
v=1 pu=I T ~

-

L [cos (ﬂ'i) + 1
Jeut(ri)) = 1 ’ ¢

*,'Q/', ¢ @ lete.
forry<reyt | ¥ o |® L& [*i

0 for r;, > reut — =
L l] . .’."s".'..-“-_.‘“ . .
2 2 (% - '
G? = Y exp |-y = 12| £y Nl PR PO
J %

Behler, Jorg, and Michele Parrinello. "Generalized neural-network
representation of high-dimensional potential-energy surfaces." Physical review 40
letters 98.14 (2007): 146401.



Complexity and richness

Symmetry

functions
3D structure

Coulomb
matrix

Connectivity-based =~ RACs

Higher Learning Capability

Fragment-based Fingerprints

Ad hoc
descriptors

41



Summary of featurisation

“ The aim is to map chemical space to numbers, such that:
# Chemical similarity is preserved
“ Physics obeyed
* Many kinds of representation exist
* Global vs. Local
* Richness and complexity

# Should choose representation based on the application

42



Collect data: features and labels

IProperties

yeR

Features describing Energy,
the system Gas uptake,
X,Y
n features For m
A 1 >
bl byl y systems
)C2’1 X2’1 N x2,n y2 X%,y

xml o ml o yman y

S

|

h<

|
SUOIJLAIISqO Ui

43



Training the model (finding parameters w)

Features describing

the system
n features
- =
. =
xbbo bbb 5
S,
2.1 2.1 2.n )
X7 X7 ce.e X7 ¢
=
o
xml o yml o mn >

IProperties

yeR

Energy,
Gas uptake,

For m

> systems

xX*,y

X, Y

4




Training the model (finding parameters w )

X, Y

45




Training the model (finding parameters w )

46



Training the model: data partitioning — keep some data for evaluation

Partition data

47



T'raining the model: data partitioning

Partition data

The train-test split is not trivial!

Only for model

Working capacity (mmol CO,/g)

evaluation!

Test set

that the model has never seen

® o O .2
°® o °®
y @

® o

(]
)
Q o o
é o
.c,—cq [ )
=

X Boyd et al. Nature 2019
~300,000 hypothetical MOFs
Search for ~9,000 top performing

Note: the aim is to eventually use the model on the sysf Y

. 4.5

.. & ®

° ‘.‘.... ° 4.0
. : 35

S S ] . 30g

‘: Eo

25 %

L

o' -

.‘-0- " T 202

o

S

60 80 100 120 140 160
Selectivity CO/N,

48




Training the model (finding parameters w)

® 9 ®9
[} o [}
Yy °
[}
. 1 o
)
Q ®
e y
©
—
3 X
=
trrain
& Y l
b
=
—
£ .
X frain | JNMT, model > prediction y Loss

A

—

Minimise Loss

—

Update w [

49



Linear regression

trrain

: l

Xﬁ’ ami_ ML > prediction - Loss

/7~ Minimise

Loss

Update w [«

A very simple case of 1 dimensional feature:
Yur(xF) = x*w =[1 x*] WO]

Wi

Matrix form: - -

1 x! W,
Yy (X) =Xw =1 : 5 [WJ

Loss function: & = |9y — ylI5 = [IXw —ylI3

New system: 3,,,(x*) = x*w"

LLoss

woP!

e o (O

Optimisation steps

50




Nonlinear regression

trrain

Y

Xtmin BN

Matrix form:

Yy (X) = Xw =

ML P> predictiony = Loss
7y
/7~ Minimise
Loss
Update w [«

1

1

xl

(™ L™

Loss function: £ = |93 — ylI5 = [1Xw — y|I3

Vg () = x*w = [1 x* (x*)2

xH? L.(xhHP

(x*)P|

Adding nonlinear terms: polynomial order p[

LLoss

Optimisation steps

51




Bias —variance tradeoff

® - Bias -e- Variance

® Train set Error

) @ Test set

e lest Error

X

Model complexity

D2



Bias —variance tradeoff

® Train set Error

) @ Test set

X

How to include this in the model?

- Bias -e- Variance

e lest Error

~——@—

i

K Under—ﬁ/t/;

{ 15-19A0

Model complexity

25




Bias —variance tradeoll: regularisation

- Bias -e- Variance

Test Error
® Train set Error <
) @ Test set

X E O

= ’ <

o @

e T

5 ] B
oo —9 [*—o o

How to include this in the model? .
Model complexity

Regularise the loss function: & = ||3,,; — y||%+/1||w||%

Penalising the terms with large weight

54



Hyperparameters

MI. model

IProperties

yeR

Features describing Parameters Energy,
the system w e RP Gas uptake,

So far, we learned how to:

e Represent chemical systems
e Collect data and split it to train-test sets
e Find model parameters w during training by minimising loss

--> What about the hyperparameters, i.e. the parameters we fix before

training, €8, 4 & = |[5,,, - ylIZ+2 [Iwli3

516)



Hyperparameter optimisation

We want a model that generalise —> low test error

—> but we don’t have access to the test error!

Error

—> we need a way to assess model performance only from train data

—> Cross-validation -~ Bias -e-Variance

o~ lest Error

Train set
R Under—ﬁ/t/.

{ 15-1340

~—@—

pt

Model must not see
this before / while training

Test set

Model complexity
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Hyperparameter optimisation: cross-validation

Split the train set into K folds —> use one fold for testing

Train set

D/



Hyperparameter optimisation: cross-validation

Split the train set into K folds —> use one fold for validation

[ ]

Validation fold

Train set

Training fold

58



Hyperparameter optimisation: cross-validation

Split the train set into K folds —> use one fold for testing

[ ]

Validation fold

Train

Train set

> | Model 1

Training fold

59



Hyperparameter optimisation: cross-validation

Split the train set into K folds —> use one fold for testing

S
8
c :
S Validate
O
s A

; l

5 = -

= £

- o0 Model 1
E
=
] l

Score;

60



Hyperparameter optimisation: cross-validation

For each set of hyper parameters, we determine cross-validation score

AN U s N o N N o N O O

l

| K
CV-5core), = = Z Score, ;
i=1

61



Hyperparameter optimisation: cross-validation

For each set of hyper parameters, we determine cross-validation score
This allows us to compare models

/11 — Model 1|— (:\/—SC()I'€,11 h
/12 — [Model 2 |— (:\/—SC()I'€,12
Choose model
— with the
,13 — | Model 3 , CV—SCOI‘Q% lowest CV-Score
A — |Model 4 |—— CV-Score,,
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Summary of model training

< Split the data at first place to train-test sets, keep some for model
evaluation

& The model must not see test data before/during training

< Optimise loss function to find model parameters w

“Error on train set does not show anything about model
generalisability

“Use cross validation to assign hyperparameters
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Ridge regression:

Linear least squares with L2 regularisation

Wo
yML(x*) — X*W — [1 Xl xd] :

Wa

Matrix form: -

- 1 |w

1 xi X} !

R , Wi

1 xf x| | w,

Loss function: £ = |y, — yII5 + Allwll5 = [|Xw — I3 + Allwll3
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Ridge regression: closed-form and linear kernel

Closed-form solution for ridge regression:

w = argmin = arg min ([[9,;, — yII2 + Alw|l2)
w w

0ZL T -1y T
a—=0=>W=(XX+/1]) Xy
w

also, you can write it as (see exercise notes): w = X' (XX" + Al )y

a:=XX"+1D'y = w=X"a i 2 Tan

xX{ ... x! 0

. ¢
) =xrw = |1 xfF o x| xTa= |1 xF .o xF[[: - :
Xg X' a

L - m

Linear kernel
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Kernel Ridge Regression (KRR):

It'e equivalent to previous solution, except we changed the basis:

P X) =Ka, a = (K+ AN~y

Dy () = Y, K(x*,x) @
What does change of basis mean in linear algebra: i=1

For simplicity, let’s look at a case with 2 variables and 3 training data

A Wl A B
yML(x*) = x*w = [Xik Xik] [WZI = x;kwl +Xf<W2 yML('x*) — 1 Xik lek] XTCl
"1 2 31la0
x; O][w : X X© X
P20y W e N S R
Al 72 Xy X3 X |a,
x1 p 1 >
@ X A o X
O
2
X y
X XA | &,
220 I ’ 3 2 3
e
’E
X X

66




Kernel Ridge Regression (KRR): nonlinearity

f’ML(X) = pX)w

1 1 1\2 N2 1.1
Lox x Og) ()7 xix

m
1 x

B e g

This makes the data that are not linearly
separable in R?, linearly separable in
higher dimensions, still computed
efficiently

K(x*,x) = (%), p(x)) = () x + 1)~

Include nonlinearity, for example a quadratic model:

data projected to R?

1.0

0.5 A

—0.5 1

—1.0

data in R3

67




Kernel Ridge Regression (KRR): kernel trick

This allows us to use non-linear kernels efficiently:
YurX) = p(X)w

= (pX) ' pX) + A~ pX)"y
P (%) = Z K(x*,x) &
K(x*,x;) = <¢(X*) P(x;))
In the case of linear kernel:
K(x*, x;) = (x*, x;)

In the case of quadratic kernel:

K(x*,x) = (p(x®), p(x)) = () x + 1)°
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Kernel Ridge Regression (KRR): Gaussian kernel

The Gaussian kernel is very popular in chemistry
K(x*,x) = exp (—7llx* — x]|3)

This kernel provides an intuitive notion of similarity, i.e. distance in feature
space: =

Dur() = Y aK(x*, x')
Linear basis =1 Radial basis
K(x*, x)) = (x*,x;) K(x*,x)) = exp (—7llx* — xI3)
1 1
A ® X 2
Xy | 3 Xy
xl xl

69



Summary

¢ Kernel and linear models

¢ Kernel trick

¢ Similarity and Gaussian kernel

* One should do CV to obtain the hyperparameters of kernel

70



Interpreting the model

We would like to know what drives a phenomena (curiosity)

More practical:
Material design rules

Single metal catalyst:
variation in metal and ligands

AE  =-73 kcal/mol AE_ =37 kcal/mol AE_ =-41 kcal/mol

Importance of variables can help to
understand which factors are important,
e.g., type of atomic properties and global
vs local

Nandy, Aditya, et al. ACS Catalysis 9.9 (2019): 8243-8255. LAl



Interpreting the model (||)

Make better models/representations
example: the case of mechanical properties of MOFs

Simplified
representation

>

Include net in representation

1wl 1 1

[t was shown that the underlying net is the
most important factor for mechanical stability

= 0979

Machine Leaming Bulk Modulus, K (GPa)

T T
0 50 100 150

Simulated Buk Modubus. K (GPa)

Moosavi, et al. ACS Central Science (2018) 7
Moghadam et al. Matter (2019)



Permutation importance

0. Build the model

(1 PR N

. 1 21 52!
1

\1 xm,l xm,l

(1)
xl’"\ y :
x2,n 2
xm,n} \ym)

1. Estimate the model error: £OT1g — L, V)

2. For each feature j=1,..n:
e Generate permuted feature matrix for feature (j):

e Estimate the error for the permuted feature matrix:

N\
S s

yperm _
¢ =

klx

e Estimate the error for the permuted feature matrix

FI, = ePerm/ejorig or PeTM _ O1ig

J

J J

X
X

1,1
2,1

m,1

y = y j\)ML:f(X)ag(y’j}ML)

ejperm _ g(y’ f(xjperm))
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Permutation importance

e What happens if we have correlated features?

Permutation might make unphysical test cases

AE , =-73 kcal/mol AE_ =37 kcal/mol AE__=-41 kcal/mol

Split the importance between the correlated features

S = covalent radii
Z = nuclear charge

74



Summary of model interpretation

Feature importance is a way to interpret the model
e Get chemical insight
e Make better models

Permutation importance is a way to get the value of features in model
predictions but one needs to be cautious to not over-interpret these numbers,
e.g., when the features are correlated
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The Curse of Dimensionality - No Locality in High Dimensions

1 /dimensionality

edgelength = fraction of space

OCCAM'S
R&AZOR

lAanrm ~+lL

f\f\lﬂl\

Now with
onlyone |

blade

Methods that are based on similarity (kNN /KRR) might fail in high dimensional spaces!

unit cube

We want to reduce the dimensionality of our feature matrix!

Domingos, P. A Few Useful Things to Know about Machine
Learning. Communications of the ACM 2012, 55 (10), 78.. 76



Feature Projection and Feature Selection

Reduce dimensionality of feature space by feature selection (compression)

@ O @ @_*2
®

o0 ©®
>
@O ©® M\ 0
FE:‘_"‘

r>0.7
O - @ @

trees
a Univariate filters. b Wrapper methods. ¢ Shrinkage or direct.
Reduce size of feature space by Visualize data and Materials

dimensionality reduction (feature projection) Cartography

Group C: SO T SR L, 3 x
metallic compounds. . g P i
with non-metallic atoms _

Janet, J. P.; Kulik, H. J. J. Phys. Chem. A 2017, 121 (46), Tribello, G. A.; Ceriotti, M.; Parrinello, M. PNAS 2012, 109 (14),
8939-8954. 77 5196-5201.



Feature Selection: Filter Methods

' r<0.7 O
=7, @ * Easy and cheap

@ O
‘ r>0.7 ‘

correlation threshold variance threshold

‘ Interaction effects are not considered

20 :
O high correlation low variance
O low correlation
5 high variance
10
5
0
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Feature Selection: Wrapper Methods

e O * Uses a good surrogate of the real objective
O @
O O .
Expensive
O e @

For example recursive feature addition or elimination

1 2 3 p 1 2 3
/xl 331 .CCl 331 Subset /5[31 :C]_ :Ul
1,2 .3 p , ————
Lo Lo Lg Ly generation :Ij% 513% a:% | subset |
- . > | .
: : | evaluation j
1 2 3 p | R —.
\.T,n :E’n xn .an

full design matrix

.1 .2 .3 -
\z;, % @) )
not fulfilled

| stopping crlterlon
.
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Feature Selection: Just Relax Best Subset Selection

The basic problem: Best subset selection

p
grel%Rin |y — XBHZ subjectto  ||Bllo < k |1B]lo = Z 1{8; # 0}
p j:].

But this is our hard problem (NP hard) ...
... hence we relax the constraint to have a problem that is convex
... the Lasso gives use sparsity as the most feasible approximation to Iy

Ridge (l5) Lasso (/1)
P —— N \ \ \ - ~ S~~~ ~
g B least square solution argming (y — x0)? B least square solution argming (y — x0)?
0- B Ridge constrain region 67 + 03 < t* \/ I
_5 L < .
<
_10 .
_15 .
2 0 2 4 6 8 10 12 14 -2 0 2 4 6 & 10 12 14
91 01

Hastie, T.; Tibshirani, R.; Wainwright, M. Statistical Learning with Sparsity: The Lasso and Generalizations; Monographs on statistics and applied
probability; CRC Press, Taylor & Francis Group: Boca Raton, 2015. 80




Lasso in Practice: Finding New Tolerance Factors For
Perovskites (Developing Causal Models)

A

. (SI) +Lasso
primary features > billions of feature candidates , Subsetof
features
primary features = {r,,rg,n,m,,...} R={+,—, exp,lg,~ !>’ ,\/:” -}
Th+71
t = 4 X =T _ o [, — ra/TB
\/E(TB + rx) rep A A In T'A/T'B
— 40 & per.ovskite — 30- ® perovskite i
O_ 35‘ A nonperovskite B O 4 nonperovskite
3 predicted perovskite ; predicted perovskite

wl 30" predicted nonperovskite || S 25- predicted nonperovskite ||

+ 5.

c £ 201 I

< 20- 3 S _

= 151 =770 E
wn _ — L

= 10 = 10

=
o 5- i 3 o 5- i
3 AR L1 0L 4] O R ALt . £ wnw
7 0.8 09 1.0 1.1 12 1.3 07> 2 & & 10 D
t T
0.825 <t < 1.059 — perovskite r< 4.18 — perovskite
0
74% accuracy 92% accuracy
Ghiringhelli, et al. Phys. Rev. Lett. 2015, 114 (10), 105503. Bartel, C.; et al., M. Sci. Adv. 2019, 5 (2), eaav0693.

Ouyang, R.; et al. Phys. Rev. Materials 2018, 2 (8),083802. 81



Feature Projection: Projecting High-Dimensional Data

Eigenfaces: Principal Component
Analysis on face images to get “basis

One image
is one column

=1

vectors” of face image space

Linear

combination
of basis

vectors
faces
E ll .m ll E .1 many
PCA % 48
. i e
Find basis - Iﬁiaaﬁilaﬁ
vectors Wy \ “\4

JIANROA

TNEISSr S N | T

Navarrete, P.; Ruiz-Del-Solar, J. Int. J. Patt. Recogn. Artif. Intell.
2002, 16 (07), 817-830. 82




Feature Projection: Intuition for PCA

83




Caveats With PCA

Non-linearity Higher variance feature is not more
discriminative

Feature 2

Feature 2

* Data is linearly uncorrelated
e But there is still a non-linear dependence Feature 1

84




Other Members of the Dimensionality Reduction Zoo

Linear Discriminant Analysis
(LDA, Supervised Technique)

bad prolect'a

good projection: separates classes well

« math like for PCA
* maximizing component axes
for class separation

Original

2

t-distributed stochastic neighbor
embedding (#-SNE)

Non-linear

Conditional probabilities that
represent similarities

Sensitive to perplexity (number of
close neighbors)

q,..’
[P

Perplexity: 2 Perplexity: 5 Perplexity: 100
Step: 5,000 Step: 5,000 Step: 5,000

distributions |
"How totIset=SiNEEtfectively» N

lk by.Laurens,
US81an S1m1

\[an der Maaten: https:/ /bit.ly /2RaF]Iw

arity student-t similarity
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Neural Networks: Perceptron ( ‘may eventually be able to learn,
mafke decistons, and transtate languages”)

The Perceptron (Rosenblatt (1957)) : bias
! w
Mark 1 built for image recognition \

W, ‘ hard o
L — thresholding =~

A
; . . . .
" Try to classify which points belong to which
: curve.
ot | | Decision boundary: wix; +wyx2 + b =0
rrisrssssecs DD |
i |
.......... j / 1
e N | //"
' \\ / \ /
: N 7
E \ / \ /
\\ ' /" o < /’Jﬂ
i N e 4 \ ~ /
N
i \ X
| N uE
' EANEREP 4N ST
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Mululayer Perceptron: Representation Learning

w1
transf wt, X output
ransform
representation I ‘ /wz' in tanh(Wx+b):
such that it is w2, * rotate (W)

linearly separable Translate (b)

hidden layer, e.g. tanh * point-wise
application of tanh

0.5 \\ ’
\ 7
P
e 0 pdl
\ )4
X F 4
N /
Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning. The MIT LeCun, Y.; Bengio, Y.; Hinton, G. Nature 2015, 521 (7553), 436-444.

Press: Cambridge, Massachusetts, 2016. 87 http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/


http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Message Passing Neural Networks

Do not use highly engineered
features, like symmetry
function, but directly Z and r.
Transferable across Z

Eq Eq
0y
E2 E E2 E
Es Eg
(D
(c) T=2

Schiitt, K. Learning Representations of Atomistic Systems with
Deep Neural Networks TU Berlin, 2018.

88

Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; Dahl,
G.E.arXiv:1704.01212 [cs] 2017.




Summary of Feature Engineering and Learning

* Curse of Dimensionality . Neural Networks can do
representation learning

1.0 - f — 4 N
S : — d=1
e — d=2
E O 5 . é d= 3 05t
=1 - —— d=10
()

0.0{ ¥ —— d=100 0

0.0 0.5 1.0
fraction of space

Now, (advanced) applications.
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Word Embeddings: Learning on > 1 Million of Abstracts

ferromagnetic—NiFe + I[rMn = antiferromagnetic

single layer NN is trained to predict all
context words for the given target word.

Input layer
(one-hot)

S

OO0 000000

= OO0 00 000O0

0

LiCoO, 0 neurons

LiMn,O,,

500,000
vocabulary words

Hidden layer
(linear)

Output layer Context word
(softmax) probability

e — %:athodes

electrochemical

magnetic

[llj

500,000
neurons

<<

for similar words the context words are

the same

Projection of embeddings onto two
dimensions (t-SNE).

Hovy do | turn off this
@] feat Send

tors

(S W e

QIWIEIRJTIYJUfI JOJP

AISIDIFIGIH]JIK|L

e
e

- Quantum
F g heterostructures

Tshitoyan, V.; et al.. Nature 2019, 571 (7763), 95.

90

Perspective: Isayev, O. Nature 2019, 571 (7763),42-43.




Word Embeddings: Learning on > 1 Million of Abstracts

Embeddings can also be used for predictions.

a b
o [l Known thermoelectrics
Caﬁ;emség:gi?:i}g © [_] Candidate materials o
== First ten predictions * TOP ten predICtlonS even
. BiTe, v 1 000k TIRTTI slightly higher than known
2. MgAgSb v | dverage
somte 4l |l
2
v g i « Better rank correlation with
. - i | .
326.Li,CuSb 2 S 600} 100 R experiments than DFT
/ 5 SR
- wnni |
328. In,Te, v é 4001 i EHI « Training data is important:
Y Z iy AR model trained on all
345. CuzNb,Og 2 200} i -y : :
i Wikipedia articles performs
v " I TR
) | . (1 l worse
Known thermoelectrics 0 10 50 200

? Predictions Computed power factor (UW K2 cm™)

Tshitoyan, V.; et al.. Nature 2019, 571 (7763), 95. 91




GPR for Active Learning of {/(X)

Bayesian version of KRR: Gaussian Process Regression (GPR)

KRR fails if there is no data ... GPR gives uncertainty estimate

... but cannot warn us

—— Lennard-Jones
—— GPR

e training samples

—— Lennard-Jones
—— KRR
e training samples

)
u(r)

prior posterior

posterior likelihood prior

GPR uses data to update a prior
distribution of functions to a posterior
distribution

r r

Rasmussen, C. E. Gaussian Processes in Machine Learning. In Advanced Lectures on Machine Learning: ML Summer Schools 2003, Canberra, Australia,
February 2 - 14, 2003, Tiibingen, Germany, August 4 - 16, 2003, 92



GPR for Active Learning of /(X): Skip 99% of FP Calculations

==

yes | Run first

|

| Energy, forces, |
... from ML

Error larger

than threshold? | principles |

‘simulation |
N\ 3

timestep no  update

L Ll Al ] " - v Ll *;' L L I Bl L) L I Ll Ll T k ,‘i |
3.0\l Max. error on single at&m%o FP calc. — Predicted error ﬂ propagate !}
< f .
= » Retrain FF — Real error ™ e ,
S~
> 20 I
9
o)
= 1.0
0 s A 4 l A 4 A l 4 L A l L A A l L A '
0 0.2 0.4 0.6 0.8 1
on-the-fly simulation time (ps)
Jinnouchi, R.; Lahnsteiner, J.; Karsai, F.; Kresse, G.; Bokdam, M. Implemented in VASP6.0.

Phys. Rev. Lett. 2019, 122 (22), 225701. 93



GPR for Active Learning of J/(X)

Methyl ammonium lead
; | halide perovskites
g - Slow rotational
dynamics
 Entropy driven phase
transition
 Existing force-fields are

not accurate

A6.4
" T~ T T T " W
z (
o 6.3 wb, -
RS
=
© |
- l
9 6.2 | 2
5 o
; &
3 6.1 S
8 A | . \(b’ E .
- s
6.0 .Olrth.o'l | | lTe.t' l CUb
100 150 200 250 300 350 40(
T (K)
Jinnouchi, R.; Lahnsteiner, J.; Karsai, F.; Kresse, G.; Bokdam, M. Implemented in VASP6.0.

Phys. Rev. Lett. 2019, 122 (22), 225701. 94



Boltzmann Generators: A New Approach for Sampling of
Microstates in One Shot (Statistically Independent)

Molecular Simulations: U(X) given, need approach to sample P(X)

F (X)J\JL\

Hidden Iayers

'o' vw
V.\ A\‘ "’A‘)"

' \‘..('M):
{ i

4\ ’f/A\

gl

<

— kT 1g(P(X)) Invertible neural — kT 1g(P(Z))

network does the
Landscapes are often rugged, invertible mapping ... this is why we bias some

hard to sample simulations to have low
energy states close to each
other (flat sampling)

Noé, F.; Olsson, S.; Kohler, J.; Wu, H. Science 2019, 365 (6457), Perspective: Tuckerman, M. E. Science 2019, 365 (6457),

95 082-983.



21 Days to Drug Candidate: Using Reinforcement Learning to

Expedite Drug Discovery

DDR1 GENTRL

DDR1 (Target %
for fibrosis)
N Targett . GENERATIVE
QMIAESE TENSORIAL
Model that REINFORCEMENT
takeS LEARNING
synthetic
feasibility,
novelty, and
biological
.o . AV a. Insilico
activity into » /49 Medicine
account A insilico.com

DEEP LEARNING ENABLES RAPID IDENTIFICATION OF POTENT DDR1 KINASE INHIBITORS

Rapid
Synthesis

in vitro
assays

0000
CEPODD

L d i 11 1]
2RBDOD

eR2QQ806
ceedd

"

Metabolic
stability

!

Fibrosis

!

Selectivity

|

in vivo Pre-Clinical
assays Trials

Mouse
Pharmakinetics
PK assays

nature
biotechnology

paper accepted

Good PK
Properties
Confirmed

Traditional hit-lead generation: 2-3 years
GENTRL approach: <2 months

Zhavoronkov, A .; et al. Nat Biotechnol 2019, 37 (9), 1038-1040.
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21 Days to Drug Candidate: Using Reinforcement Learning to
Expedite Drug Discovery

(a) (b)

SMILES input ©

cleeccecl

@lelel0l®
OO0

ENCODER
Neural Network

CONTINUOUS 5
MOLECULAR :
REPRESENTATION | |
(Latent Space) | E i E
‘-< PROPERTY i - E
PREDICTION : |
DECODER '

Neural Network

SMILES output ©

clcecect

Most Probable Decoding
argmax p(*z)

Gomez-Bombarelli, R.; et al.. ACS Cent. Sci. 2018, 4 (2), 268-276. 97




Challenges for the Field

Benchmarks, Reproducibility and Incorporation of long-range
Comparability interactions
MNIST CIFARIO ImageNet g | protein [N water  — GuRivaw(TS))
© 12 - — Gjn(R)[MBD]
FGS 0996 0911 0.881 S
JSMA 0.995  0.966 - =,
Deepfool || 0.996  0.960 0.908 2
CarliniL2 | 0989 0929 0.907 g 4
BIM 0.994  0.907 0.820 e
g ° —IS 0 é 1'0 1‘5 2'0 2'5 3'0

distance from protein water interface [A]

Causal Inference

Co RELAT IoN wi acandifors cem

—

The future gm— E 'j‘\—f

depends on some

graduate student who

is deeply suspicious of
everything I have
said.

Q [007% 0F PEORLE
© Wi W’T Bl’.!ﬂl“u
© DIE

Pearl, J. Theoretical Impediments to Machine Learning With Seven Stohr, M..; Tkatchenko, A.Sci. Adv. 2019, 5 (12), eaax0024.
Sparks from the Causal Revolution. arXiv:1801.04016 [cs, stat] 2018. 98



For the Exercise Session

Instructions on

https:/ / github.com /kjappelbaum / ml_molsim2020

As soon as you come to the room

download and install

CONDA
mini &~ N D
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