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Data as the 4th pillar of science

3A. Agrawal and A. Choudhary APL Mater. 4 053208 (2016); https://www.bigmax.mpg.de 

https://www.bigmax.mpg.de
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Potential energy surface

Can we build a more accurate PES?

Can we easily build an accurate PES?

Can we make the numerical integration 
faster and/or more efficient?

…

Interpolation of a high-dimensional function
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Sparse data infer smooth function

Rupp, International Journal of Quantum Chemistry 115 (2015)
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Figure 1: Sketch illustrating the idea of QM/ML models for prediction of molecular prop-
erties. Results of computationally demanding QM calculations (“ground truth”, black line)
are approximated by interpolating (ML, dashed line) between reference calculations (training
data, dots).

(changes in chemical space20,21). This redundancy can be exploited by doing only some of
the QM calculations and interpolating between them to obtain approximate solutions for
the remaining systems.⇤ The usefulness of this approach depends on the error incurred due
to the approximation and the computational cost of obtaining it.

1.3 Related work

Interpolation of ab initio potential energy surfaces (PES) has a long history, dating back
maybe as far as the middle of the last century, when computers were first used for QM. The
topic is related to, among other subjects, parametrization of force fields, with the major
di↵erence being the used functional form, and, cheminformatics, in particular quantitative
structure-activity/property relationships (QSAR/QSPR),13 where outcomes of experimental
measurements are interpolated, with the main di↵erence being the large uncertainties in the
reference values fitted to.

In the early 1990s, artificial neural networks (ANN) started being used for interpolation
of PES of single systems, and have since developed into powerful tools for large-scale molec-
ular dynamics simulations.27–30 A variety of other approaches, including Shepherd interpo-
lation31–33, cubic splines34, moving least-squares35,36, and symbolic regression37, were used
as well. Predating the introduction and formalization of the kernel learning framework,38,39

concepts like regularization were used early on, e.g., by H. Rabitz40–42. Interpolation be-
tween QM results for di↵erent systems, e.g., molecular property estimates, started roughly
a decade later with usage of ANN to predict correlation energies43 and bond dissociation
enthalpies44. Later, other methods such as support vector machines were used as well.45,46

The last years have witnessed publication of and application to large datasets47–50, the in-

⇤An alternative to ML for exploiting such alchemical changes 22,23 is to use gradient information, e.g., in
the form of Taylor series expansions in chemical space.24–26
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Regression:  

prediction of f : ℝd → ℝ
based on noisy data points

D = (X, y) = {xn, yn}N
n=1

yn = f(xn) + ε

What is f ?
x

y



Kernel methods are vintage
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Kernel

Deep learning

- needs a representation 
- linear algebra 
- can be efficient with small 

data
{

{- learns the representation 
- complex mathematical 

structure 
- data hungry



Learning from experience

9
Lecture 7 – Support Vector Machines and Kernel Methods

Visualization of SVs

� Problem: z-Space is infinite (unknown)
� How can the Support Vectors (from existing points) be visualized?

� Solution: non-zero alphas have been the identified support vectors

� Support vectors exist in Z – space (just transformed original data points)

� Example: million-D means a million-D vector for 

� But number of support vector is very low,  expected Eout is related to #SVs

(solution of quadratic programming optimization will be a set of alphas we can visualize)

[7] Visualization of high-dimensional space

(generalization behaviour despite million-D & snake-like overfitting)

(snake seems like overfitting,
fitting to well, cf. Lecture 2) � Counting the number of support 

vectors remains to be a good indicator 
for generalization behaviour even
when performing non-linear 
transforms and kernel methods that
can lead to infinite-D spaces

(rule of thumb)

64 / 72

Inductive (based on examples)

source: xkcd
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Bayes’ formula

p( f, f* |y) =
p(y | f ) p( f, f*)

p(y)

likelihood
prior

posterior
normalization
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(a) Prior distribution. 15 samples (thin lines)
drawn from a Gaussian process with zero
mean and Gaussian covariance function with
unit length scale.
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(b) Posterior distribution with mean function
(thick line). 15 samples (thin lines) drawn
from the posterior distribution after condi-
tioning on three training data (red crosses).

Figure 6: Idea of Gaussian process regression. Starting from the prior distribution (a), one
conditions on the training data. Mean and variance of the posterior distribution (b) are used
as predictor and confidence estimate. Shaded regions denote two standard deviations.

are determined via Eq. 17, given a training set. This leaves the choice of kernel k and
regularization hyperparameter �, plus any hyperparameters of the kernel, with the optimal
choice depending on the dataset. A general guiding principle is Occam’s razor,⇤ which for
our purposes states that among models with equal performance, the simplest one should be
preferred. Many approaches to model selection are in use;94 here, the focus is on performance
estimation as selection criterion. As a specific example, given similar performance, for the
models presented in this tutorial one should prefer (i) the linear kernel over the Gaussian and
the Laplacian kernel, (ii) the Gaussian over the Laplacian kernel, (iii) higher regularization
strengths, and (iv) larger length scales, the reason for (ii)–(iv) being smoothness of the
estimator.

Estimating model performance. Ideally, we would like to know the error of our model on
new data—predicting those is its purpose, after all. In statistical learning theory,19,95,96 this
is measured by the risk of the model f ,

R(f) =

Z
L
�
y, f(x)

�
dP (x, y) = EP

⇥
L(y, f(x))

⇤
(20)

where P is the joint distribution of inputs and labels, and L : Y ⇥ Y ! R is a loss function
measuring the error of a prediction. Eq. 20 is the expected error of f . Unfortunately, P
is usually not known, and R has to be estimated from a finite set of training data as the
empirical risk

Rn(f) =
1

n

nX

i=1

L
�
yi, f(xi)

�
. (21)

⇤ Attributed to William of Ockham (early 14th century), but already known to Aristotle and Ptolemy
in classical antiquity.

18

Rasmussen, Advanced lectures on machine learning. Springer, 63-71 (2004)
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f ⇠ GP(m, k)
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random variable: 
value of the 
stochastic function 
at x

mean covariance

f(x)
<latexit sha1_base64="Appt6dOASLoU0puF9XJna1LvMt4=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWMG2hDWWz3bRLdzdhdyOW0L/gxYMiXv1D3vw3btoctPXBwOO9GWbmhQln2rjut1NaW9/Y3CpvV3Z29/YPqodHbR2nilCfxDxW3RBrypmkvmGG026iKBYhp51wcpv7nUeqNIvlg5kmNBB4JFnECDa5FNWfzgfVmttw50CrxCtIDQq0BtWv/jAmqaDSEI617nluYoIMK8MIp7NKP9U0wWSCR7RnqcSC6iCb3zpDZ1YZoihWtqRBc/X3RIaF1lMR2k6BzVgve7n4n9dLTXQdZEwmqaGSLBZFKUcmRvnjaMgUJYZPLcFEMXsrImOsMDE2nooNwVt+eZW0Lxqe2/DuL2vNmyKOMpzAKdTBgytowh20wAcCY3iGV3hzhPPivDsfi9aSU8wcwx84nz9sX43R</latexit><latexit sha1_base64="Appt6dOASLoU0puF9XJna1LvMt4=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWMG2hDWWz3bRLdzdhdyOW0L/gxYMiXv1D3vw3btoctPXBwOO9GWbmhQln2rjut1NaW9/Y3CpvV3Z29/YPqodHbR2nilCfxDxW3RBrypmkvmGG026iKBYhp51wcpv7nUeqNIvlg5kmNBB4JFnECDa5FNWfzgfVmttw50CrxCtIDQq0BtWv/jAmqaDSEI617nluYoIMK8MIp7NKP9U0wWSCR7RnqcSC6iCb3zpDZ1YZoihWtqRBc/X3RIaF1lMR2k6BzVgve7n4n9dLTXQdZEwmqaGSLBZFKUcmRvnjaMgUJYZPLcFEMXsrImOsMDE2nooNwVt+eZW0Lxqe2/DuL2vNmyKOMpzAKdTBgytowh20wAcCY3iGV3hzhPPivDsfi9aSU8wcwx84nz9sX43R</latexit><latexit sha1_base64="Appt6dOASLoU0puF9XJna1LvMt4=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWMG2hDWWz3bRLdzdhdyOW0L/gxYMiXv1D3vw3btoctPXBwOO9GWbmhQln2rjut1NaW9/Y3CpvV3Z29/YPqodHbR2nilCfxDxW3RBrypmkvmGG026iKBYhp51wcpv7nUeqNIvlg5kmNBB4JFnECDa5FNWfzgfVmttw50CrxCtIDQq0BtWv/jAmqaDSEI617nluYoIMK8MIp7NKP9U0wWSCR7RnqcSC6iCb3zpDZ1YZoihWtqRBc/X3RIaF1lMR2k6BzVgve7n4n9dLTXQdZEwmqaGSLBZFKUcmRvnjaMgUJYZPLcFEMXsrImOsMDE2nooNwVt+eZW0Lxqe2/DuL2vNmyKOMpzAKdTBgytowh20wAcCY3iGV3hzhPPivDsfi9aSU8wcwx84nz9sX43R</latexit><latexit sha1_base64="Appt6dOASLoU0puF9XJna1LvMt4=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWMG2hDWWz3bRLdzdhdyOW0L/gxYMiXv1D3vw3btoctPXBwOO9GWbmhQln2rjut1NaW9/Y3CpvV3Z29/YPqodHbR2nilCfxDxW3RBrypmkvmGG026iKBYhp51wcpv7nUeqNIvlg5kmNBB4JFnECDa5FNWfzgfVmttw50CrxCtIDQq0BtWv/jAmqaDSEI617nluYoIMK8MIp7NKP9U0wWSCR7RnqcSC6iCb3zpDZ1YZoihWtqRBc/X3RIaF1lMR2k6BzVgve7n4n9dLTXQdZEwmqaGSLBZFKUcmRvnjaMgUJYZPLcFEMXsrImOsMDE2nooNwVt+eZW0Lxqe2/DuL2vNmyKOMpzAKdTBgytowh20wAcCY3iGV3hzhPPivDsfi9aSU8wcwx84nz9sX43R</latexit>

⌃ij = k(xi, xj)
<latexit sha1_base64="B38NMmyREyUD9XF68oO/vbLsTCw=">AAACAXicbVDLSgMxFM3UV62vUTeCm2ARKkiZEUE3QtGNy4r2Ae0wZNJMmzbJDElGWoa68VfcuFDErX/hzr8xbWeh1QMXDufcy733BDGjSjvOl5VbWFxaXsmvFtbWNza37O2duooSiUkNRyySzQApwqggNU01I81YEsQDRhrB4GriN+6JVDQSd3oUE4+jrqAhxUgbybf32re0y5Gf0v4YXsBBaejT46HfP/LtolN2poB/iZuRIshQ9e3PdifCCSdCY4aUarlOrL0USU0xI+NCO1EkRniAuqRlqECcKC+dfjCGh0bpwDCSpoSGU/XnRIq4UiMemE6OdE/NexPxP6+V6PDcS6mIE00Eni0KEwZ1BCdxwA6VBGs2MgRhSc2tEPeQRFib0AomBHf+5b+kflJ2nbJ7c1qsXGZx5ME+OAAl4IIzUAHXoApqAIMH8ARewKv1aD1bb9b7rDVnZTO74Besj28OApX4</latexit><latexit sha1_base64="B38NMmyREyUD9XF68oO/vbLsTCw=">AAACAXicbVDLSgMxFM3UV62vUTeCm2ARKkiZEUE3QtGNy4r2Ae0wZNJMmzbJDElGWoa68VfcuFDErX/hzr8xbWeh1QMXDufcy733BDGjSjvOl5VbWFxaXsmvFtbWNza37O2duooSiUkNRyySzQApwqggNU01I81YEsQDRhrB4GriN+6JVDQSd3oUE4+jrqAhxUgbybf32re0y5Gf0v4YXsBBaejT46HfP/LtolN2poB/iZuRIshQ9e3PdifCCSdCY4aUarlOrL0USU0xI+NCO1EkRniAuqRlqECcKC+dfjCGh0bpwDCSpoSGU/XnRIq4UiMemE6OdE/NexPxP6+V6PDcS6mIE00Eni0KEwZ1BCdxwA6VBGs2MgRhSc2tEPeQRFib0AomBHf+5b+kflJ2nbJ7c1qsXGZx5ME+OAAl4IIzUAHXoApqAIMH8ARewKv1aD1bb9b7rDVnZTO74Besj28OApX4</latexit><latexit sha1_base64="B38NMmyREyUD9XF68oO/vbLsTCw=">AAACAXicbVDLSgMxFM3UV62vUTeCm2ARKkiZEUE3QtGNy4r2Ae0wZNJMmzbJDElGWoa68VfcuFDErX/hzr8xbWeh1QMXDufcy733BDGjSjvOl5VbWFxaXsmvFtbWNza37O2duooSiUkNRyySzQApwqggNU01I81YEsQDRhrB4GriN+6JVDQSd3oUE4+jrqAhxUgbybf32re0y5Gf0v4YXsBBaejT46HfP/LtolN2poB/iZuRIshQ9e3PdifCCSdCY4aUarlOrL0USU0xI+NCO1EkRniAuqRlqECcKC+dfjCGh0bpwDCSpoSGU/XnRIq4UiMemE6OdE/NexPxP6+V6PDcS6mIE00Eni0KEwZ1BCdxwA6VBGs2MgRhSc2tEPeQRFib0AomBHf+5b+kflJ2nbJ7c1qsXGZx5ME+OAAl4IIzUAHXoApqAIMH8ARewKv1aD1bb9b7rDVnZTO74Besj28OApX4</latexit><latexit sha1_base64="B38NMmyREyUD9XF68oO/vbLsTCw=">AAACAXicbVDLSgMxFM3UV62vUTeCm2ARKkiZEUE3QtGNy4r2Ae0wZNJMmzbJDElGWoa68VfcuFDErX/hzr8xbWeh1QMXDufcy733BDGjSjvOl5VbWFxaXsmvFtbWNza37O2duooSiUkNRyySzQApwqggNU01I81YEsQDRhrB4GriN+6JVDQSd3oUE4+jrqAhxUgbybf32re0y5Gf0v4YXsBBaejT46HfP/LtolN2poB/iZuRIshQ9e3PdifCCSdCY4aUarlOrL0USU0xI+NCO1EkRniAuqRlqECcKC+dfjCGh0bpwDCSpoSGU/XnRIq4UiMemE6OdE/NexPxP6+V6PDcS6mIE00Eni0KEwZ1BCdxwA6VBGs2MgRhSc2tEPeQRFib0AomBHf+5b+kflJ2nbJ7c1qsXGZx5ME+OAAl4IIzUAHXoApqAIMH8ARewKv1aD1bb9b7rDVnZTO74Besj28OApX4</latexit>

µi = m(xi)
<latexit sha1_base64="D0Sep4kp8I3o60t3thmND8Z0x+o=">AAAB9XicbVBNSwMxEJ31s9avqkcvwSLUS9kVQS9C0YvHCvYD2nXJptk2NMkuSVYtS/+HFw+KePW/ePPfmLZ70NYHA4/3ZpiZFyacaeO6387S8srq2npho7i5tb2zW9rbb+o4VYQ2SMxj1Q6xppxJ2jDMcNpOFMUi5LQVDq8nfuuBKs1ieWdGCfUF7ksWMYKNle67Ig0YukSi8hSwk6BUdqvuFGiReDkpQ456UPrq9mKSCioN4Vjrjucmxs+wMoxwOi52U00TTIa4TzuWSiyo9rPp1WN0bJUeimJlSxo0VX9PZFhoPRKh7RTYDPS8NxH/8zqpiS78jMkkNVSS2aIo5cjEaBIB6jFFieEjSzBRzN6KyAArTIwNqmhD8OZfXiTN06rnVr3bs3LtKo+jAIdwBBXw4BxqcAN1aAABBc/wCm/Oo/PivDsfs9YlJ585gD9wPn8AA4WRhw==</latexit><latexit sha1_base64="D0Sep4kp8I3o60t3thmND8Z0x+o=">AAAB9XicbVBNSwMxEJ31s9avqkcvwSLUS9kVQS9C0YvHCvYD2nXJptk2NMkuSVYtS/+HFw+KePW/ePPfmLZ70NYHA4/3ZpiZFyacaeO6387S8srq2npho7i5tb2zW9rbb+o4VYQ2SMxj1Q6xppxJ2jDMcNpOFMUi5LQVDq8nfuuBKs1ieWdGCfUF7ksWMYKNle67Ig0YukSi8hSwk6BUdqvuFGiReDkpQ456UPrq9mKSCioN4Vjrjucmxs+wMoxwOi52U00TTIa4TzuWSiyo9rPp1WN0bJUeimJlSxo0VX9PZFhoPRKh7RTYDPS8NxH/8zqpiS78jMkkNVSS2aIo5cjEaBIB6jFFieEjSzBRzN6KyAArTIwNqmhD8OZfXiTN06rnVr3bs3LtKo+jAIdwBBXw4BxqcAN1aAABBc/wCm/Oo/PivDsfs9YlJ585gD9wPn8AA4WRhw==</latexit><latexit sha1_base64="D0Sep4kp8I3o60t3thmND8Z0x+o=">AAAB9XicbVBNSwMxEJ31s9avqkcvwSLUS9kVQS9C0YvHCvYD2nXJptk2NMkuSVYtS/+HFw+KePW/ePPfmLZ70NYHA4/3ZpiZFyacaeO6387S8srq2npho7i5tb2zW9rbb+o4VYQ2SMxj1Q6xppxJ2jDMcNpOFMUi5LQVDq8nfuuBKs1ieWdGCfUF7ksWMYKNle67Ig0YukSi8hSwk6BUdqvuFGiReDkpQ456UPrq9mKSCioN4Vjrjucmxs+wMoxwOi52U00TTIa4TzuWSiyo9rPp1WN0bJUeimJlSxo0VX9PZFhoPRKh7RTYDPS8NxH/8zqpiS78jMkkNVSS2aIo5cjEaBIB6jFFieEjSzBRzN6KyAArTIwNqmhD8OZfXiTN06rnVr3bs3LtKo+jAIdwBBXw4BxqcAN1aAABBc/wCm/Oo/PivDsfs9YlJ585gD9wPn8AA4WRhw==</latexit><latexit sha1_base64="D0Sep4kp8I3o60t3thmND8Z0x+o=">AAAB9XicbVBNSwMxEJ31s9avqkcvwSLUS9kVQS9C0YvHCvYD2nXJptk2NMkuSVYtS/+HFw+KePW/ePPfmLZ70NYHA4/3ZpiZFyacaeO6387S8srq2npho7i5tb2zW9rbb+o4VYQ2SMxj1Q6xppxJ2jDMcNpOFMUi5LQVDq8nfuuBKs1ieWdGCfUF7ksWMYKNle67Ig0YukSi8hSwk6BUdqvuFGiReDkpQ456UPrq9mKSCioN4Vjrjucmxs+wMoxwOi52U00TTIa4TzuWSiyo9rPp1WN0bJUeimJlSxo0VX9PZFhoPRKh7RTYDPS8NxH/8zqpiS78jMkkNVSS2aIo5cjEaBIB6jFFieEjSzBRzN6KyAArTIwNqmhD8OZfXiTN06rnVr3bs3LtKo+jAIdwBBXw4BxqcAN1aAABBc/wCm/Oo/PivDsfs9YlJ585gD9wPn8AA4WRhw==</latexit>

Rasmussen, Advanced lectures on machine learning. Springer, 63-71 (2004)
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f ⇠ GP(m, k)
<latexit sha1_base64="Doab9rHmtdx101r/HIygjLjGtcs=">AAACA3icbVBNS8NAEJ3Ur1q/ot70sliEClISEfRY9KDHCvYDmlI22027dDcJuxuhhIIX/4oXD4p49U9489+4aXPQ1gcDj/dmmJnnx5wp7TjfVmFpeWV1rbhe2tjc2t6xd/eaKkokoQ0S8Ui2fawoZyFtaKY5bceSYuFz2vJH15nfeqBSsSi81+OYdgUehCxgBGsj9eyDAHmKCeQJrIcE8/SmPkEVcYpGJz277FSdKdAicXNShhz1nv3l9SOSCBpqwrFSHdeJdTfFUjPC6aTkJYrGmIzwgHYMDbGgqptOf5igY6P0URBJU6FGU/X3RIqFUmPhm87sVDXvZeJ/XifRwWU3ZWGcaBqS2aIg4UhHKAsE9ZmkRPOxIZhIZm5FZIglJtrEVjIhuPMvL5LmWdV1qu7debl2lcdRhEM4ggq4cAE1uIU6NIDAIzzDK7xZT9aL9W59zFoLVj6zD39gff4A08qWVA==</latexit><latexit sha1_base64="Doab9rHmtdx101r/HIygjLjGtcs=">AAACA3icbVBNS8NAEJ3Ur1q/ot70sliEClISEfRY9KDHCvYDmlI22027dDcJuxuhhIIX/4oXD4p49U9489+4aXPQ1gcDj/dmmJnnx5wp7TjfVmFpeWV1rbhe2tjc2t6xd/eaKkokoQ0S8Ui2fawoZyFtaKY5bceSYuFz2vJH15nfeqBSsSi81+OYdgUehCxgBGsj9eyDAHmKCeQJrIcE8/SmPkEVcYpGJz277FSdKdAicXNShhz1nv3l9SOSCBpqwrFSHdeJdTfFUjPC6aTkJYrGmIzwgHYMDbGgqptOf5igY6P0URBJU6FGU/X3RIqFUmPhm87sVDXvZeJ/XifRwWU3ZWGcaBqS2aIg4UhHKAsE9ZmkRPOxIZhIZm5FZIglJtrEVjIhuPMvL5LmWdV1qu7debl2lcdRhEM4ggq4cAE1uIU6NIDAIzzDK7xZT9aL9W59zFoLVj6zD39gff4A08qWVA==</latexit><latexit sha1_base64="Doab9rHmtdx101r/HIygjLjGtcs=">AAACA3icbVBNS8NAEJ3Ur1q/ot70sliEClISEfRY9KDHCvYDmlI22027dDcJuxuhhIIX/4oXD4p49U9489+4aXPQ1gcDj/dmmJnnx5wp7TjfVmFpeWV1rbhe2tjc2t6xd/eaKkokoQ0S8Ui2fawoZyFtaKY5bceSYuFz2vJH15nfeqBSsSi81+OYdgUehCxgBGsj9eyDAHmKCeQJrIcE8/SmPkEVcYpGJz277FSdKdAicXNShhz1nv3l9SOSCBpqwrFSHdeJdTfFUjPC6aTkJYrGmIzwgHYMDbGgqptOf5igY6P0URBJU6FGU/X3RIqFUmPhm87sVDXvZeJ/XifRwWU3ZWGcaBqS2aIg4UhHKAsE9ZmkRPOxIZhIZm5FZIglJtrEVjIhuPMvL5LmWdV1qu7debl2lcdRhEM4ggq4cAE1uIU6NIDAIzzDK7xZT9aL9W59zFoLVj6zD39gff4A08qWVA==</latexit><latexit sha1_base64="Doab9rHmtdx101r/HIygjLjGtcs=">AAACA3icbVBNS8NAEJ3Ur1q/ot70sliEClISEfRY9KDHCvYDmlI22027dDcJuxuhhIIX/4oXD4p49U9489+4aXPQ1gcDj/dmmJnnx5wp7TjfVmFpeWV1rbhe2tjc2t6xd/eaKkokoQ0S8Ui2fawoZyFtaKY5bceSYuFz2vJH15nfeqBSsSi81+OYdgUehCxgBGsj9eyDAHmKCeQJrIcE8/SmPkEVcYpGJz277FSdKdAicXNShhz1nv3l9SOSCBpqwrFSHdeJdTfFUjPC6aTkJYrGmIzwgHYMDbGgqptOf5igY6P0URBJU6FGU/X3RIqFUmPhm87sVDXvZeJ/XifRwWU3ZWGcaBqS2aIg4UhHKAsE9ZmkRPOxIZhIZm5FZIglJtrEVjIhuPMvL5LmWdV1qu7debl2lcdRhEM4ggq4cAE1uIU6NIDAIzzDK7xZT9aL9W59zFoLVj6zD39gff4A08qWVA==</latexit>

random variable: 
value of the 
stochastic function 
at x

mean covariance

f(x)
<latexit sha1_base64="Appt6dOASLoU0puF9XJna1LvMt4=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWMG2hDWWz3bRLdzdhdyOW0L/gxYMiXv1D3vw3btoctPXBwOO9GWbmhQln2rjut1NaW9/Y3CpvV3Z29/YPqodHbR2nilCfxDxW3RBrypmkvmGG026iKBYhp51wcpv7nUeqNIvlg5kmNBB4JFnECDa5FNWfzgfVmttw50CrxCtIDQq0BtWv/jAmqaDSEI617nluYoIMK8MIp7NKP9U0wWSCR7RnqcSC6iCb3zpDZ1YZoihWtqRBc/X3RIaF1lMR2k6BzVgve7n4n9dLTXQdZEwmqaGSLBZFKUcmRvnjaMgUJYZPLcFEMXsrImOsMDE2nooNwVt+eZW0Lxqe2/DuL2vNmyKOMpzAKdTBgytowh20wAcCY3iGV3hzhPPivDsfi9aSU8wcwx84nz9sX43R</latexit><latexit sha1_base64="Appt6dOASLoU0puF9XJna1LvMt4=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWMG2hDWWz3bRLdzdhdyOW0L/gxYMiXv1D3vw3btoctPXBwOO9GWbmhQln2rjut1NaW9/Y3CpvV3Z29/YPqodHbR2nilCfxDxW3RBrypmkvmGG026iKBYhp51wcpv7nUeqNIvlg5kmNBB4JFnECDa5FNWfzgfVmttw50CrxCtIDQq0BtWv/jAmqaDSEI617nluYoIMK8MIp7NKP9U0wWSCR7RnqcSC6iCb3zpDZ1YZoihWtqRBc/X3RIaF1lMR2k6BzVgve7n4n9dLTXQdZEwmqaGSLBZFKUcmRvnjaMgUJYZPLcFEMXsrImOsMDE2nooNwVt+eZW0Lxqe2/DuL2vNmyKOMpzAKdTBgytowh20wAcCY3iGV3hzhPPivDsfi9aSU8wcwx84nz9sX43R</latexit><latexit sha1_base64="Appt6dOASLoU0puF9XJna1LvMt4=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWMG2hDWWz3bRLdzdhdyOW0L/gxYMiXv1D3vw3btoctPXBwOO9GWbmhQln2rjut1NaW9/Y3CpvV3Z29/YPqodHbR2nilCfxDxW3RBrypmkvmGG026iKBYhp51wcpv7nUeqNIvlg5kmNBB4JFnECDa5FNWfzgfVmttw50CrxCtIDQq0BtWv/jAmqaDSEI617nluYoIMK8MIp7NKP9U0wWSCR7RnqcSC6iCb3zpDZ1YZoihWtqRBc/X3RIaF1lMR2k6BzVgve7n4n9dLTXQdZEwmqaGSLBZFKUcmRvnjaMgUJYZPLcFEMXsrImOsMDE2nooNwVt+eZW0Lxqe2/DuL2vNmyKOMpzAKdTBgytowh20wAcCY3iGV3hzhPPivDsfi9aSU8wcwx84nz9sX43R</latexit><latexit sha1_base64="Appt6dOASLoU0puF9XJna1LvMt4=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWMG2hDWWz3bRLdzdhdyOW0L/gxYMiXv1D3vw3btoctPXBwOO9GWbmhQln2rjut1NaW9/Y3CpvV3Z29/YPqodHbR2nilCfxDxW3RBrypmkvmGG026iKBYhp51wcpv7nUeqNIvlg5kmNBB4JFnECDa5FNWfzgfVmttw50CrxCtIDQq0BtWv/jAmqaDSEI617nluYoIMK8MIp7NKP9U0wWSCR7RnqcSC6iCb3zpDZ1YZoihWtqRBc/X3RIaF1lMR2k6BzVgve7n4n9dLTXQdZEwmqaGSLBZFKUcmRvnjaMgUJYZPLcFEMXsrImOsMDE2nooNwVt+eZW0Lxqe2/DuL2vNmyKOMpzAKdTBgytowh20wAcCY3iGV3hzhPPivDsfi9aSU8wcwx84nz9sX43R</latexit>

⌃ij = k(xi, xj)
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Another important ingredient of scientific reasoning,
consistent with the laws of physics, is that in-depth analysis
and deep understanding of models can result in substantial
model improvements. Some of such advances have already
been made within QML over the last couple of years. For
example, details of the following aspects have been found to
strongly impact the efficiency of ML models of relevant
molecular properties, as measured by learning curve off-set
and slope (See Figure 2).
* In terms of molecular representation it is important to

retain uniqueness.[92] Failure to account for unique M
results in numerical noise (two molecules with non-
degenerate properties can no longer be distinguished by
the machine) causing learning curves to level off at an
error residual related to the data set variance of the target
property�s non-degeneracy. Furthermore, the off-set of
learning-curves of electronic ground-state properties can
be lowered by adapting representations which resemble
the potential energy function of the molecule.[22]

* Prior knowledge can be exploited through use of D-ML,
that is, by modeling the difference between a computa-
tionally feasible yet physically meaningful baseline and
a computationally expensive targetline level of theory.[14,97]

* The choice of training molecules can be engineered to
include fewer but more important instances. Using genetic
optimization protocols, this has been demonstrated to
result in learning curves with substantially lower off-sets.[98]

Training set selection based on local atom-similarity
matches in finite dictionaries of atoms in molecules
(“am-ons”) has resulted in even lower off-sets and steeper
slopes.[21]

* Basis-set optimization through kernel engineering and
choice of more sophisticated metric options has enabled
further improvements.[97, 99,100]

In conclusion, some arguments have been made in support
of the inclusion of ML based approaches among the plethora
of methods already developed and used in quantum chemis-
try. QML infers solutions to relevant equations, rather than
solving them numerically. With the advent of increasing
digitalization of experimental settings, and ever more power-
ful computing chips available, these inductive approaches
hold the promise to enable studies of new and relevant
research questions. Interesting developments are foreseeable
when higher level data sets, for example, based on post-
Hartree–Fock, quantum Monte Carlo, or experiments, will
become available. We think it evident that resulting QML
models will enable us to rectify some of the issues which
plague many of the common approximations made within
conventional compute campaigns, such as the choice of
density functionals.[101] System wise, the standardized addition
of ML based components in studies related to gaseous and
ordered and disordered condensed phase, as well as various
properties, is around the corner.[97,102–104] It is therefore the
author�s belief that it is not a stretch to expect transferable,
reliable, and real-time predictions of real molecules and
materials under experimental conditions to become a reality
in a not too distant future. Such QML modeling capabilities
could then assist with experimental design questions required
to resolve many of the outstanding materials and molecular
design challenges, possibly alleviating some of today�s press-
ing problems due to lack of new antibiotics, energy conversion
and storage, water purification, or superior catalysts, to name
a few. Through early and appropriate adaptation of chemistry
education, reliable QML methods could also help to attract
next generation chemists through cost-effective yet more
versatile experimentation throughout the curriculum, using
modern immersive virtual reality equipment. Commercial
interactive scientific and educational QML applications are
also on the horizon, for example, through developments by
ChemAlive SA.[105]
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(a) Prior distribution. 15 samples (thin lines)
drawn from a Gaussian process with zero
mean and Gaussian covariance function with
unit length scale.
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(b) Posterior distribution with mean function
(thick line). 15 samples (thin lines) drawn
from the posterior distribution after condi-
tioning on three training data (red crosses).

Figure 6: Idea of Gaussian process regression. Starting from the prior distribution (a), one
conditions on the training data. Mean and variance of the posterior distribution (b) are used
as predictor and confidence estimate. Shaded regions denote two standard deviations.

are determined via Eq. 17, given a training set. This leaves the choice of kernel k and
regularization hyperparameter �, plus any hyperparameters of the kernel, with the optimal
choice depending on the dataset. A general guiding principle is Occam’s razor,⇤ which for
our purposes states that among models with equal performance, the simplest one should be
preferred. Many approaches to model selection are in use;94 here, the focus is on performance
estimation as selection criterion. As a specific example, given similar performance, for the
models presented in this tutorial one should prefer (i) the linear kernel over the Gaussian and
the Laplacian kernel, (ii) the Gaussian over the Laplacian kernel, (iii) higher regularization
strengths, and (iv) larger length scales, the reason for (ii)–(iv) being smoothness of the
estimator.

Estimating model performance. Ideally, we would like to know the error of our model on
new data—predicting those is its purpose, after all. In statistical learning theory,19,95,96 this
is measured by the risk of the model f ,

R(f) =

Z
L
�
y, f(x)

�
dP (x, y) = EP

⇥
L(y, f(x))

⇤
(20)

where P is the joint distribution of inputs and labels, and L : Y ⇥ Y ! R is a loss function
measuring the error of a prediction. Eq. 20 is the expected error of f . Unfortunately, P
is usually not known, and R has to be estimated from a finite set of training data as the
empirical risk

Rn(f) =
1

n

nX

i=1

L
�
yi, f(xi)

�
. (21)

⇤ Attributed to William of Ockham (early 14th century), but already known to Aristotle and Ptolemy
in classical antiquity.
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1) Define representation and kernel

Kα = U

α = (K + λ𝕀)−1U

2) Train your model:

(K + λI) α = U Regularization: 
“hyperparameter” 
scales noise level

Inverse is ill defined

Optimize weight 
coefficients on 
training set
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α = (K + λ𝕀)−1U

2) Train your model:
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Lecture 7 – Support Vector Machines and Kernel Methods

Visualization of SVs

� Problem: z-Space is infinite (unknown)
� How can the Support Vectors (from existing points) be visualized?

� Solution: non-zero alphas have been the identified support vectors

� Support vectors exist in Z – space (just transformed original data points)

� Example: million-D means a million-D vector for 

� But number of support vector is very low,  expected Eout is related to #SVs

(solution of quadratic programming optimization will be a set of alphas we can visualize)

[7] Visualization of high-dimensional space

(generalization behaviour despite million-D & snake-like overfitting)

(snake seems like overfitting,
fitting to well, cf. Lecture 2) � Counting the number of support 

vectors remains to be a good indicator 
for generalization behaviour even
when performing non-linear 
transforms and kernel methods that
can lead to infinite-D spaces

(rule of thumb)

64 / 72ML training set size is limited 
(kernels!) 

Use physics to reduce the 
interpolation space
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𝒮[x(t)] = ∫
t2

t1

dt L[x(t), ·x(t), t]

Hamilton’s principle: system minimizes action (variational principle)·𝒮[x*(t)] = 0

action

microtrajectory
Lagrangian

stationarity under small perturbations leads to Euler-Lagrange equations

δ𝒮 = ∫
t2

t1

dt L(x* + ε, ·x* + ·ε, t) − L(x*, ·x*, t)

= ∫
t2

t1

dt (ε
∂L
∂x

+ ·ε
∂L
∂x ) = ∫

t2

t1

dt (ε
∂L
∂x

− ε
d
dt

∂L
∂ ·x ) = 0

integration by parts &
ε(t1) = ε(t2) = 0

L = T − V

kinetic energy
potential energy
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𝒮[x(t), y(t), z(t)] = ∫ dt
m
2 ( ·x2 + ·y2 + ·z2) − mgz

Introduce constant translations along    and   :x y

𝒮[x(t) + x0, y(t) + y0, z(t)] = ∫ dt
m
2 ( ·x2 + ·y2 + ·z2) − mgz

= 𝒮[x(t), y(t), z(t)]

(Translational) symmetry leaves the action invariant. 
It leaves the Euler-Lagrange equation unchanged:

∂L
∂x

−
d
dt

∂L
∂ ·x

= 0

∂L
∂x

= 0
∂L
∂ ·x

= m ·x = const . Translational invariance implies 
linear momentum conversation



From symmetries to conserved quantities (cont’d)

21

𝒮[r(t)] = ∫ dt
m
2

·r2 − V(r)

Rotational symmetry

Apply transformation r → r′ 

where r′ (t) = Rr(t) = r(t) + α × r(t)

One can show that 
𝒮[r(t) + α × r(t)] = 𝒮[r(t)]

Conservation of angular momentum

Time translation

Apply transformation r → r′ 

where r′ (t + ϵ) = r(t)

One can show that 
𝒮[r′ (t + ϵ)] = 𝒮[r(t)]

Conservation of energy
(up to a boundary term)

Bañados & Reyes, arXiv:1601.03616v3
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3 examples: 
• Translational symmetry: Linear momentum conservation 
• Rotational symmetry: Angular momentum conservation 
• Time translation: Energy conservation

To every differentiable symmetry generated by local actions there 
corresponds a conserved quantity



Noether’s theorem
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3 examples: 
• Translational symmetry: Linear momentum conservation 
• Rotational symmetry: Angular momentum conservation 
• Time translation: Energy conservation

To every differentiable symmetry generated by local actions there 
corresponds a conserved quantity

Ceriotti, JCP 150 (2019)



2 ways of encoding symmetries:
- Representation
- ML model      f



Encoding symmetries in the 
representation



Translational and rotational symmetries
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Behler-Parrinello Coulomb matrix
input and the output layer are one or more ‘‘hidden layers,’’
each with a certain number of nodes. All nodes in each
layer are connected to the nodes in the adjacent layers by
real-valued weight parameters, which initially are chosen
randomly. For a given set of coordinates the output of the
NN is then given by the expression

 Ei ! f2
a

!
w2

01 "
X3

j!1

w2
j1f

1
a

"
w1

0j "
X2

!!1

w1
!jG

!
i

#$
: (1)

Here, wkij is the weight parameter connecting node j in
layer k with node i in layer k# 1, and wk0j is a bias weight
that is used as an adjustable offset for the activation func-
tions fka. Activation functions are typically nonlinear func-
tions that introduce the capability to fit nonlinear functions
into the NN [5,6]. In the present work the hyperbolic
tangent has been used as an activation function in the
hidden layers, and a linear function for the output layer.
Since the weight parameters initially are chosen randomly,
the output of the NN does not correspond to the correct
total energy, but since the latter is known for a set of points
from DFT calculations, an error function can be con-
structed and minimized to optimize the weight parameters
in an iterative way. The optimized set of weights obtained
can then be used to calculate the potential energy for a new
set of coordinates.

This NN structure has several disadvantages that hinder
its application to high-dimensional PESs. Since all weights
are generally different, the order in which the coordinates
of a configuration are fed into the NN is not arbitrary, and
interchanging the coordinates of two atoms will change the
total energy even if the two atoms are of the same type.
Another limitation related to the fixed structure of the
network is the fact that a NN optimized for a certain
number of degrees of freedom, i.e., number of atoms,
cannot be used to predict energies for a different system
size, since the optimized weights are valid only for a fixed
number of input nodes. Thus, in order to represent PESs
useful for all system sizes, a new NN topology has to be
introduced.

The main idea is to represent the total energy E of the
system as a sum of atomic contributions Ei, an approach
that is typically also used in empirical potentials

 E !
X
i
Ei: (2)

The general structure of this new network topology is
shown schematically in Fig. 2 for a system consisting of
three atoms and all associated degrees of freedom. The
fR"i g represent the Cartesian coordinates " of atom i. In a
first step these coordinates are transformed into a set of
symmetry function values fG!

i g for each atom i. These
symmetry function values describe the energetically rele-
vant local environment of each atom and are subsequently
used as input for the NN. They depend on the positions of
all atoms in the system, as indicated by the dotted arrows.

For each atom in the system there is now a ‘‘standard’’ NN
(cf. Fig. 1), which we call subnet Si and which after the
weight optimization yields the energy contribution Ei to
the total energy E. Summing these energy contributions
then finally yields the total energy of the system. To ensure
the invariance of the total energy with respect to the
interchanging of two atoms the structure of all subnets
and the values of the weight parameters are constrained
to be identical in each Si.

The crucial point is the introduction of a new type of
symmetry function. While other types of symmetry func-
tions have been used before [5], in our approach the
symmetry function values of each atom reflect the local
environment that determines its energy; i.e., two structures
with different energies must yield different sets of symme-
try function values, while identical local environments
must give rise to the same set. Furthermore, the symmetry
function values must be invariant with respect to a rotation
or translation of the system. Finally, the number of sym-
metry functions must be independent of the coordination of
the atom, because the coordination number of an atom can
change in a MD simulation, while the structure of the
subnets must not be changed if the NN is to remain
applicable generally.

Symmetry functions can be constructed from atomic
positions in a way similar to empirical potentials. But
while in the latter case these terms are used to construct
directly the total energy of the system, in the case of the
NN they are used only to describe the structure. The
assignment of the energies to the structures is done in a
second step by the NN.

In order to define the energetically relevant local envi-
ronment we employ a cutoff function fc of the interatomic
distance Rij, which has the form

 fc$Rij% !
8<
:

0:5&
h
cos

%
#Rij
Rc

&
" 1

i
for Rij ' Rc;

0 for Rij > Rc:
(3)

 

FIG. 2. Structure of the neural network as applied in this Letter
to a system containing three atoms. The Cartesian coordinates of
atom i are given by R"i . These are transformed to a set of !
symmetry function values G!

i describing the local geometric
environment of atom i, which depends on the positions of all
atoms in the system as indicated by the dotted arrows. The
symmetry function values of atom i then enter the subnet Si
yielding the energy contribution Ei of atom i to the total energy
of the system E. The structure of the subnets corresponds to the
neural network shown in Fig. 1.
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At interatomic separations larger than the cutoff Rc this
function yields zero value and slope. The cutoff has to be
sufficiently large to include several nearest neighbors, and
in the present Letter a cutoff of 6 Å has been used.

Radial symmetry functions are constructed as a sum of
Gaussians with the parameters ! and Rs,

 G1
i !

Xall

j!i
e"!#Rij"Rs$

2
fc#Rij$: (4)

The summation over all neighbors j ensures the indepen-
dence of the coordination number.

Angular terms are constructed for all triplets of atoms by
summing the cosine values of the angles "ijk ! Rij%Rik

RijRik
centered at atom i, with Rij ! Ri "Rj,
 

G2
i ! 21"# Xall

j;k!i

#1& $ cos"ijk$#

' e"!#R2
ij&R2

ik&R2
jk$fc#Rij$fc#Rik$fc#Rjk$; (5)

with the parameters $ #! &1;"1$, !, and # . The multi-
plication by the three cutoff functions and by the Gaussian
ensures a smooth decay to zero in the case of large inter-
atomic separations. We note that the G%

i in Eqs. (4) and (5)
depend on all atomic positions inside the cutoff radius and
thus represent ‘‘many-body’’ terms. Several functions of
each type with different parameter values are used. The
choice of symmetry functions and their parameters is not
unique nor does it need to be, and many types of functions
can be used, as long as the set of function values is suitable
for describing the environment of an atom.

To demonstrate the capability of the method we calcu-
lated the PES of bulk silicon using DFT in the local density
approximation (LDA). The system used for the optimiza-
tion of the NN parameters contains 64 atoms yielding 64
atomic environments per calculation. The calculations
were carried out employing the plane-wave pseudo-
potential method as implemented in PWSCF [7]. A cutoff
of 20 Ry was applied in combination with an ultrasoft
pseudopotential [8]. A mesh of 3' 3' 3 k points was
used. To improve the convergence of the metallic phases a
Fermi smearing of 0.1 eV was employed.

Since the functional form of the NN has no physical
motivation, the construction of an optimized NN requires
special care. The structures used to train the NN [9] were
initially taken from crystal structures including high-
pressure phases [10] and MD simulations at different pres-
sures and temperatures. Starting from this data set a series
of fits was generated employing different NN topologies,
i.e., numbers of hidden layers and nodes per hidden layer.
The best fits can then be used to optimize the NN in a self-
consistent way by performing MD, hybrid Monte Carlo
[11,12], and metadynamics [13,14] runs based on these fits
and subsequently recalculating several hundred represen-
tative structures with DFT. If the root mean square error

(RMSE) is larger than the error of the fit, the DFT calcu-
lations are added to the training set and new fits deter-
mined, which are used to generate more structures, and so
forth.

In total about 9000 DFT energies were calculated, 8200
of which were used for optimizing the NN and 800 as an
independent test set to investigate the predictive capability
of the NN for structures not included in the optimization
set. The RMSE of the optimization set is typically 4–
5 meV per atom, the RMSE of the test set 5–6 meV. For
the NN atomic forces we found a RMSE of about
0:2 eV= !A with respect to DFT. The subnet employed con-
sists typically of 2 hidden layers, each of which has about
40 nodes. In total 48 symmetry functions, i.e., input nodes,
with different values of !, Rs, and # have been used
resulting in a few thousand fitting parameters for the NN.

As a first test of the NN potential we calculated the
energy vs volume curves for the different crystal structures
of silicon [10]. It is well known that empirical potentials
are not able to describe the correct energetic sequence of
the various phases [15] while DFT is in good agreement
with the experimental data [10]. The NN potential accu-
rately reproduces the curves and the transition pressures of
DFT. To test the ability of the NN potential to describe also
disordered structures we calculated the radial distribution
function (RDF) of a silicon melt at 3000 K. The result is
shown in Fig. 3 and compared to other potentials of varying
form and complexity [15–17]. The MD simulations were
run for 20 ps (8 ps in the case of DFT [18]). The RDF
obtained from the NN is very close to the DFT data, while
there are significant deviations for the empirical potentials.
The origin of the small difference between DFT and the
NN is probably due to the fact that in the ab initio MD only
the " point has been used to sample the Brillouin zone,
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FIG. 3 (color online). Radial distribution function (RDF) of a
silicon melt at 3000 K as obtained using a cubic 64 atom cell
(a ! 20:526 bohr). The curves shown were obtained from the
Bazant [17,19], the Lenosky [15,19], the Tersoff [16,20], a
neural network (NN) potential, and from density-functional
theory (DFT) [18].
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Rupp, Tkatchenko, Müller, von Lilienfeld, Phys Rev Lett, 108 (2012)

Next, the resulting electrostatic interactions are combined with
a classical many-body dispersion (MBD)24 in order to validate
the model by estimating intermolecular energies of nearly 1,000
molecular dimers as well as the cohesive binding energy of the
benzene crystal. We find that the machine learning model
retains an accuracy similar to the same model parametrized
from individual quantum-chemical calculations.

2. METHODS
The following describes the ML model, the baseline property
used in the Δ-learning procedure, the data set, and the
description of the reference MTPs.
2.1. Machine Learning Model. We rely on supervised

learning to construct a kernel-ridge regression which general-
izes the linear-ridge regression model (i.e., linear regression
with regularizer λ) by mapping the input space x into a higher
dimensional “feature space”, ϕ(x), thereby casting the problem
in a linear way.16,25 The strength of the method comes from
avoiding the actual determination of ϕ thanks to the so-called
kernel trick:26 Since the ML algorithm only requires the inner
product between data vectors in feature space, one can apply a
kernel function k(x,x′) to compute dot products within input
space, thereby leaving the feature space entirely implicit. As a
result, the problem is reformulated from a v-dimensional input
space (i.e., the dimensionality of each data vector) into an n-
dimensional space spanned by the number of samples in the
training set. This characteristic implies that the larger n is, the
better the prediction ought to bethus the denomination of a
supervised learning method.
Here, we build on the Δ-ML approach,27 which estimates the

difference between the desired property and an inexpensive
baseline model that accounts for the most relevant physics.
More specifically, a refined target property p(x) is predicted
from baseline property pVor (see section 2.3) plus the ML-
model Δ

= + Δp x p x x p( ) ( ) ( , )Vor Vor
(1)

where x corresponds to the representation vectoror
descriptorof the input sample (e.g., query molecule). Δ
corresponds to the standard kernel-ridge regression model of
the difference between baseline and target property constructed
for n training samples,

∑ αΔ = + ′
=

x p k x x k p p( , ) [ ( , ) ( , )]
i

n

i i i
Vor

1

Vor Vor

(2)

where αi is the weight given to training molecule i. These
weights are determined by best reproducing the reference
property pref(x) for each sample in the training set according to
the closed-form solution α λ= + ′ + −−OK K p p( ) ( )1 ref Vor ,
where pref − pVor is the vector of training properties, i.e., the
difference between reference and baseline, and K and K′ are the
two kernel matrices. Note that, in eq 2, we have included
representation and baseline property in the kernel, each having
a different width in their respective kernel functions.
ML maps an input representation vector x into a scalar value

of similarity. Thus, before applying ML to predict atomic
MTPs, the information contained in the three-dimensional
structure of a molecule must be encoded in a vector of
numbers, i.e., its representation or descriptor. Ideally, this
information should reflect symmetries of molecular structures
with respect to rotations, translations, reflections, and atom

index permutations, etc. Here, we rely on the Coulomb-matrix
descriptor,28
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where i and j are index atoms in the molecule, Zi is atom i’s
atomic number, and Ri represents its Cartesian coordinates.
Note that the Coulomb matrix not only encodes inverse
pairwise distances between atoms but also the chemical
elements involved. As different molecules have different
numbers of atoms, their Coulomb matrices will vary in size.
Distant neighbors are expected to have a comparatively small
impact on a prediction, such that the inclusion of all neighbors
can prove inefficient for large molecules. Given a set of
molecules, we pad matrices with zeros such that their size
amounts to n × n, where n is the number of closest neighboring
atoms considered.28 In the following, we set n = 4. Given a
molecule’s d atoms, there are d individual atomic MTP samples
for the ML to learn from. For each, an individual Coulomb
matrix is built in which the atom of interest fills up the first
row/column, while the indices of the surrounding n atoms are
sorted according to the atoms’ Euclidean distances to the query
atom. As such, we coarsen our descriptor to contain at least the
first shell of n covalently bound neighbors, and atoms that only
differ in their environment at larger distances will be assigned
the same MTP. We have found n = 4 to correspond to a
reasonable compromise between computational efficiency and
performance. Note, however, that while such choices of
descriptor typically do affect the model’s performance for
given training sets, other descriptor choices could work just as
wellas long as they meet the requirements and invariances
necessary for the ML of quantum properties.29

In the context of applying ML to the prediction of tensorial
quantities, such as MTPs, properties pVor(x) and p(x) will be
expressed as vectors of size mthe number of independent
coefficients of the tensor of interest (e.g., 1 for a scalar charge, 3
for a vector dipole moment, 5 for a traceless second-rank tensor
quadrupole). We express MTP moments with their minimal
number of independent coefficients by using the spherical-
coordinate representation. We recognize that the kernel
matrices, K and K′, will remain unmodified when learning/
predicting different tensor components of the same input data
vector. Finally, the weights α are expressed as a matrix of size m
× n, which naturally reduces to a vector when predicting a
scalar quantity.
For this work, we have used the Laplacian kernels,
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where σ and ζ are free parameters and |...| corresponds to the
Manhattan, or city block, L1 norm. This combination of kernel
functions and distance measure has previously been shown to
yield the best performance for the modeling of molecular
atomization energies and other electronic properties using the
Coulomb-matrix representation.30,31 Nt is the number of
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The main diagonal of the Coulomb matrix 0.5 Zi
2.4 consists of

a polynomial fit of the nuclear charges to the total energies of
the free atoms,2 while the remaining elements contain the
Coulomb repulsion for each pair of nuclei in the molecule.
Except for homometric structures (not present in the data set)
the Coulomb matrix is a unique representation of molecules.
The fact that rotations, translations, and symmetry

operations such as mirror reflections of a molecule in 3D
space keep the total energy constant is reflected by the
invariance of the Coulomb matrix with respect to these
operations.
However, there are two problems with the representation of

molecules by their Coulomb matrices, which make it difficult to
use this representation in a vector-space model. First, different
numbers of atoms d result in different dimensionalities of the
Coulomb matrices, and second there is no well-defined
ordering of the atoms in the Coulomb matrix; therefore, one
can obtain up to d! different Coulomb matrices for the same
molecule by simultaneous permutation of rows and columns,
while the energies of all these configurations remain unchanged.
In order to solve the first problem we introduce “dummy

atoms” with zero nuclear charge and no interactions with the
other atoms. In the Coulomb matrix representation this is
achieved by padding each matrix with zeros,2 which causes all
matrices to have size d × d (where d is the maximal number of
atoms per molecule).
The ambiguity in the ordering of the atoms is more difficult

as there is no obvious physically plausible solution. To
overcome this problem we investigate three candidate
representations derived from the Coulomb matrix. They are
depicted in Figure 2: (a) the eigenspectrum representation
consisting of the sorted eigenvalues of C, (b) a sorted variant of
the Coulomb matrix based on a sorting of the atoms, and (c) a

set of Coulomb matrices, which all follow a slightly different
sorting of atoms. All of them are explained in more detail
below.

2.2.1. Eigenspectrum Representation. In the eigenspectrum
representation the eigenvalue problem Cv = λv for each
Coulomb matrix C is solved to represent each molecule as a
vector of sorted eigenvalues (λ1,...,λd), λi ≥ λi+1. This
representation (first introduced by Rupp et al.2) is invariant
with respect to permutations of the rows and columns of the
Coulomb matrix.
Computing the eigenspectrum of a molecule reduces the

dimensionality from (3d−6) degrees of freedom to just d. In
machine learning, dimensionality reduction can sometimes
positively influence the prediction accuracy by providing some
regularization. However, such a drastic dimensionality reduc-
tion can cause loss of information and introduce unfavorable
noise (see Moussa35 and Rupp et al.36), like any coarse-grained
approach.

2.2.2. Sorted Coulomb Matrices. One way to find a unique
ordering of the atoms in the Coulomb matrix is to permute the
matrix in such a way that the rows (and columns) Ci of the
Coulomb matrix are ordered by their norm, i.e. ||Ci|| ≥ ||Ci+1||.
This ensures a unique Coulomb matrix representation. As a
downside, this new representation makes the problem much
higher-dimensional than it was when choosing only eigenvalues.
The input space has now dimensionality Natoms

2 compared to
Natoms for the eigenspectrum representation. Also, slight
variations in atomic coordinates or identities may cause abrupt
changes in the Coulomb matrix ordering, thereby impeding the
learning of structural similarities.

2.2.3. Random(-ly Sorted) Coulomb Matrices. The problem
of discontinuities due to abrupt changes in the matrix ordering
can be mitigated by considering for each molecule a set of

Figure 1. Coulomb matrix representation of ethene: A three-dimensional molecular structure is converted to a numerical Coulomb matrix using
atomic coordinates Ri and nuclear charges Zi. The matrix is dominated by entries resulting from heavy atoms (carbon self-interaction 0.5·62.4 = 36.9,
two carbon atoms in a distance of 1.33 Å result in ((6.6)/(1.33/0.529)) = 14.3). The matrix contains one row per atom, is symmetric, and requires
no explicit bond information.

Figure 2. Three different permutationally invariant representations of a molecule derived from its Coulomb matrix C: (a) eigenspectrum of the
Coulomb matrix, (b) sorted Coulomb matrix, (c) set of randomly sorted Coulomb matrices.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct400195d | J. Chem. Theory Comput. 2013, 9, 3404−34193406

Hansen et al., J Chem Theory Comput, 9 (2013)

Symmetries of the representation should emulate symmetries of the system

1. Translation 
2. Rotations 
3. Mirror reflection

~ Coulomb’s law E =
qiqj

|ri − rj |
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Symmetries of the representation should emulate symmetries of the system

1. Translation 
2. Rotations 
3. Mirror reflection

Problems:
1. Dimensionality from # atoms
2. Ordering of the atoms~ Coulomb’s law E =

qiqj

|ri − rj |
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Empirically test for relevant physics
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29Risi Kondor, Group theoretical methods in machine learning, PhD thesis (2008)

Action of group      on input sampleG x ↦ Tg(x)

Can we find a kernel that is invariant to this group action? f(Tg(x)) = f(x)∀g ∈ G
k(x, x′ ) = k(Tg(x), Tg′ 

(x′ ))

To ensure invariance, symmetrize the kernel

kG(x, x′ ) =
1

|G| ∑
g∈G

k(x, Tg(x′ ))
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Example of symmetrized kernel

30

Vanilla/naïve kernel

k(ρ, ρ′ ) = ∫ drρ(r)ρ(r′ )

SOAP kernel/representation*

Bartók, Kondor, Csányi, Phys Rev B 87 (2013)

*Smooth Overlap of Atomic Positions: is a distance metric between two samples
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FIG. 6. Examples of the angular basis functions for lmax = 4
of the AFS descriptor.

IV. A SIMILARITY MEASURE BETWEEN

ATOMIC ENVIRONMENTS

It is clear from the preceding section that there is a
lot of freedom in constructing descriptors, e.g. in the
choice of angular band limit, the radial basis and also
which subset of the basis elements are actually used. As
we have shown in section II, the key to PES fitting are
not the descriptors per se, but the similarity measure
K(q,q0) that is constructed from the descriptors. This
suggests an alternative approach, in which descriptors are
bypassed altogether, and a similarity measure between
atomic neighbourhoods is constructed directly. The cri-
teria for a good similarity measure is not only that it be
invariant to symmetry operations of the atoms of each en-
vironment and have a well-defined limit when comparing
two identical or two very di↵erent environments, but also
that the it change smoothly with the Cartesian atomic
coordinates.

We define the similarity of two atomic environments
directly as the inner product of two atomic neighbour
densities ⇢ and ⇢

0 (defined in equation (9)), as the overlap

S(⇢, ⇢0) =

Z
⇢(r)⇢0(r)dr. (29)

This clearly satisfies the permutational invariance crite-
rion. Integrating equation (29) over all possible rotations
of one of the environments leads to a rotationally invari-
ant similarity kernel

k(⇢, ⇢0) =

Z ���S(⇢, R̂⇢
0)
���
n

dR̂ =

=

Z
dR̂

����
Z

⇢(r)⇢0(R̂r)dr

����
n

, (30)

It is easy to see that for n = 1, all angular information –
the relative orientation of individual atoms – is lost be-
cause the order of the two integrations can be exchanged,
but for n � 2 the kernel retains the angular informa-
tion of the original environments. The obvious practical
di�culty with this construction is the evaluation of the
angular integral, which is addressed next.

A. Analytic evaluation a smooth similarity kernel

Retaining the Dirac-delta functions in the definition of
the atomic neighbour density would lead to a discontinu-
ous similarity kernel in that the dissimilarity between two
environments with very close but not identical atomic po-
sitions would be large. Therefore, instead of the Dirac-
delta functions, we construct the atomic neighbour den-
sity using Gaussians, expanded in terms of spherical har-
monic functions as58
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(r̂i), (31)

where ◆l are the modified spherical Bessel functions of
the first kind. The atomic neighbour density function is
then defined as a sum of Gaussians with one centred on
each neighbour,
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The overlap between an atomic environment (un-
primed) and a rotated environment (primed) is

S(R̂) ⌘ S(⇢, R̂⇢
0) =

Z
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Tensorial property (e.g., dipole moment, force) rotates with the sample

“Build kernel so as to encode the rotational 
properties of the target property”
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2

VECTORIAL GAUSSIAN PROCESS

REGRESSION

We wish to model by a VGP the force f acting on
an atom whose chemical environment is in a configura-
tion ⇢ that encodes the positions of all of neighbours of
the atom, up to a suitable cutoff radius, in an arbitrary
Cartesian reference frame. In a Bayesian setting, before
any data is considered, f is treated as a Gaussian Process,
i.e., it is assumed that for any finite set of configurations
{⇢i, i = 1, . . . N} the values f(⇢i) taken by the vector
function f are well described by a multivariate Gaussian
distribution [21]. We write:

f(⇢) ⇠ GP(m(⇢),K(⇢, ⇢0)) (1)

where m(⇢) is a vector-valued mean function and K(⇢, ⇢0)
is a matrix-valued kernel function. Before any data is
considered, m is usually assumed to be zero as all prior
information on f is encoded into the kernel function
K(⇢, ⇢0). The latter represents the correlation of the vec-
tors f(⇢) and f(⇢0) as a function of the two configurations
(“input space points”) ⇢ and ⇢

0:

K(⇢, ⇢0) = hf(⇢)fT(⇢0)i, (2)

where angular brackets here signify the expected value
over the multivariate Gaussian distribution. Any ker-
nel K consistent with this definition must be a positive
semi-definite matrix function, since for any collection of
vectors {vi}

X

ij

vT
i
K(⇢i, ⇢j)vj = h(

X

i

vT
i
f(⇢i))

2
i � 0. (3)

To train the prediction model we need to access a
database of atomic configurations and reference forces
D = {(⇢, fr)i, i = 1, . . . , N}. Using Bayes’ theorem [27]
the distribution (1) is modified to take the data D into ac-
count [21]. If the likelihood function [22] is also Gaussian
(which effectively assumes that the observed forces fr

i
are

the true forces subject to Gaussian noise of variance �
2
n
)

then the resulting posterior distribution f(⇢ | D), condi-
tional on the data, will also be a Gaussian process

f(⇢ | D) ⇠ GP(f̂(⇢ | D), Ĉ(⇢, ⇢0)). (4)

The mean function of the posterior distribution, f̂(⇢ | D),
is at this point the best estimate for the true underlying
function:

f̂(⇢ | D) =
NX

ij

K(⇢, ⇢i)[K+ I�2
n
]�1
ij

fr
j
. (5)

Here �
2
n
, formally is the noise affecting the observed

forces fr, serves in practice as a regulariser for the matrix
inverse. In the following, blackboard bold characters such

as K or I indicate N⇥N block matrices (for instance, the
Gram matrix K is defined as (K)ij = K(⇢i, ⇢j)). Simil-
arly, we denote by [K+ I�2

n
]�1
ij

the ij-block of the inverse
matrix.

We next examine how to incorporate the vector be-
haviour of forces into the learning algorithm. The rel-
evant symmetry transformations in the input space are:
rigid translation of all atoms, permutation of atoms of
the same chemical species, rotations and reflections of
atomic configurations. Forces are invariant with respect
to translations and atomic permutations, and covariant
with respect to rotations and reflections. Assuming that
the representation of the atomic configuration is local,
i.e., the atom subject to the force fi is at the origin of the
reference frame used for ⇢i, translations are automatic-
ally taken into account. The remaining symmetries must
be addressed in the construction of covariant kernels.

COVARIANT KERNELS

From now on we will define S to be any symmetry
operator (rotation or reflection) acting on an atomistic
configuration of a d-dimensional system. Rotations will
be denoted by R and reflections by Q.

We require two properties to apply to the predicted
force f̂(⇢ | D), once configurations are transformed by an
operator S (represented by a matrix S):

Property 1 If the target configuration ⇢ is trans-
formed to S⇢, the predicted force must transform ac-
cordingly:

f̂(S⇢ | D) = Sf̂(⇢ | D). (6)

Property 2 The predicted force must not change if we
arbitrarily transform the configurations in the database
(D ! D̃ = {(Si⇢i,Sifri )}) with any chosen set of roto-
reflections {Si}.

We next introduce a special class of kernel functions
that automatically guarantees these two properties: a
covariant kenrel has the defining property

K(S⇢,S 0
⇢
0) = SK(⇢, ⇢0)S0T

. (7)

That a covariant kernel imposes Property 1 follows
straightforwardly from equation (5):

f̂(S⇢ | D) =
NX

ij

K(S⇢, ⇢i)[K+ I�2
n
]�1
ij

fr
j

=
NX

ij

SK(⇢, ⇢i)[K+ I�2
n
]�1
ij

fr
j

= Sf̂(⇢ | D). (8)

To prove Property 2 we note that, if the kernel function is
covariant, the transformed database D̃ has Gram matrix
(K̃)ij = K(Si⇢i,Sj⇢j) = SiK(⇢i, ⇢j)ST

j
. If we define the
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VECTORIAL GAUSSIAN PROCESS

REGRESSION

We wish to model by a VGP the force f acting on
an atom whose chemical environment is in a configura-
tion ⇢ that encodes the positions of all of neighbours of
the atom, up to a suitable cutoff radius, in an arbitrary
Cartesian reference frame. In a Bayesian setting, before
any data is considered, f is treated as a Gaussian Process,
i.e., it is assumed that for any finite set of configurations
{⇢i, i = 1, . . . N} the values f(⇢i) taken by the vector
function f are well described by a multivariate Gaussian
distribution [21]. We write:

f(⇢) ⇠ GP(m(⇢),K(⇢, ⇢0)) (1)

where m(⇢) is a vector-valued mean function and K(⇢, ⇢0)
is a matrix-valued kernel function. Before any data is
considered, m is usually assumed to be zero as all prior
information on f is encoded into the kernel function
K(⇢, ⇢0). The latter represents the correlation of the vec-
tors f(⇢) and f(⇢0) as a function of the two configurations
(“input space points”) ⇢ and ⇢

0:

K(⇢, ⇢0) = hf(⇢)fT(⇢0)i, (2)

where angular brackets here signify the expected value
over the multivariate Gaussian distribution. Any ker-
nel K consistent with this definition must be a positive
semi-definite matrix function, since for any collection of
vectors {vi}

X

ij

vT
i
K(⇢i, ⇢j)vj = h(

X

i

vT
i
f(⇢i))

2
i � 0. (3)

To train the prediction model we need to access a
database of atomic configurations and reference forces
D = {(⇢, fr)i, i = 1, . . . , N}. Using Bayes’ theorem [27]
the distribution (1) is modified to take the data D into ac-
count [21]. If the likelihood function [22] is also Gaussian
(which effectively assumes that the observed forces fr

i
are

the true forces subject to Gaussian noise of variance �
2
n
)

then the resulting posterior distribution f(⇢ | D), condi-
tional on the data, will also be a Gaussian process

f(⇢ | D) ⇠ GP(f̂(⇢ | D), Ĉ(⇢, ⇢0)). (4)

The mean function of the posterior distribution, f̂(⇢ | D),
is at this point the best estimate for the true underlying
function:

f̂(⇢ | D) =
NX

ij

K(⇢, ⇢i)[K+ I�2
n
]�1
ij

fr
j
. (5)

Here �
2
n
, formally is the noise affecting the observed

forces fr, serves in practice as a regulariser for the matrix
inverse. In the following, blackboard bold characters such

as K or I indicate N⇥N block matrices (for instance, the
Gram matrix K is defined as (K)ij = K(⇢i, ⇢j)). Simil-
arly, we denote by [K+ I�2

n
]�1
ij

the ij-block of the inverse
matrix.

We next examine how to incorporate the vector be-
haviour of forces into the learning algorithm. The rel-
evant symmetry transformations in the input space are:
rigid translation of all atoms, permutation of atoms of
the same chemical species, rotations and reflections of
atomic configurations. Forces are invariant with respect
to translations and atomic permutations, and covariant
with respect to rotations and reflections. Assuming that
the representation of the atomic configuration is local,
i.e., the atom subject to the force fi is at the origin of the
reference frame used for ⇢i, translations are automatic-
ally taken into account. The remaining symmetries must
be addressed in the construction of covariant kernels.

COVARIANT KERNELS

From now on we will define S to be any symmetry
operator (rotation or reflection) acting on an atomistic
configuration of a d-dimensional system. Rotations will
be denoted by R and reflections by Q.

We require two properties to apply to the predicted
force f̂(⇢ | D), once configurations are transformed by an
operator S (represented by a matrix S):

Property 1 If the target configuration ⇢ is trans-
formed to S⇢, the predicted force must transform ac-
cordingly:

f̂(S⇢ | D) = Sf̂(⇢ | D). (6)

Property 2 The predicted force must not change if we
arbitrarily transform the configurations in the database
(D ! D̃ = {(Si⇢i,Sifri )}) with any chosen set of roto-
reflections {Si}.

We next introduce a special class of kernel functions
that automatically guarantees these two properties: a
covariant kenrel has the defining property

K(S⇢,S 0
⇢
0) = SK(⇢, ⇢0)S0T

. (7)

That a covariant kernel imposes Property 1 follows
straightforwardly from equation (5):

f̂(S⇢ | D) =
NX

ij

K(S⇢, ⇢i)[K+ I�2
n
]�1
ij

fr
j

=
NX

ij

SK(⇢, ⇢i)[K+ I�2
n
]�1
ij

fr
j

= Sf̂(⇢ | D). (8)

To prove Property 2 we note that, if the kernel function is
covariant, the transformed database D̃ has Gram matrix
(K̃)ij = K(Si⇢i,Sj⇢j) = SiK(⇢i, ⇢j)ST

j
. If we define the

Descriptor
Training data

Transformation (rotation/inversion)

Force prediction

“Transform the configuration, and 
the prediction transforms with it”
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We wish to model by a VGP the force f acting on
an atom whose chemical environment is in a configura-
tion ⇢ that encodes the positions of all of neighbours of
the atom, up to a suitable cutoff radius, in an arbitrary
Cartesian reference frame. In a Bayesian setting, before
any data is considered, f is treated as a Gaussian Process,
i.e., it is assumed that for any finite set of configurations
{⇢i, i = 1, . . . N} the values f(⇢i) taken by the vector
function f are well described by a multivariate Gaussian
distribution [21]. We write:

f(⇢) ⇠ GP(m(⇢),K(⇢, ⇢0)) (1)

where m(⇢) is a vector-valued mean function and K(⇢, ⇢0)
is a matrix-valued kernel function. Before any data is
considered, m is usually assumed to be zero as all prior
information on f is encoded into the kernel function
K(⇢, ⇢0). The latter represents the correlation of the vec-
tors f(⇢) and f(⇢0) as a function of the two configurations
(“input space points”) ⇢ and ⇢

0:

K(⇢, ⇢0) = hf(⇢)fT(⇢0)i, (2)

where angular brackets here signify the expected value
over the multivariate Gaussian distribution. Any ker-
nel K consistent with this definition must be a positive
semi-definite matrix function, since for any collection of
vectors {vi}

X

ij

vT
i
K(⇢i, ⇢j)vj = h(

X

i

vT
i
f(⇢i))

2
i � 0. (3)

To train the prediction model we need to access a
database of atomic configurations and reference forces
D = {(⇢, fr)i, i = 1, . . . , N}. Using Bayes’ theorem [27]
the distribution (1) is modified to take the data D into ac-
count [21]. If the likelihood function [22] is also Gaussian
(which effectively assumes that the observed forces fr

i
are

the true forces subject to Gaussian noise of variance �
2
n
)

then the resulting posterior distribution f(⇢ | D), condi-
tional on the data, will also be a Gaussian process

f(⇢ | D) ⇠ GP(f̂(⇢ | D), Ĉ(⇢, ⇢0)). (4)

The mean function of the posterior distribution, f̂(⇢ | D),
is at this point the best estimate for the true underlying
function:

f̂(⇢ | D) =
NX

ij

K(⇢, ⇢i)[K+ I�2
n
]�1
ij

fr
j
. (5)

Here �
2
n
, formally is the noise affecting the observed

forces fr, serves in practice as a regulariser for the matrix
inverse. In the following, blackboard bold characters such

as K or I indicate N⇥N block matrices (for instance, the
Gram matrix K is defined as (K)ij = K(⇢i, ⇢j)). Simil-
arly, we denote by [K+ I�2

n
]�1
ij

the ij-block of the inverse
matrix.

We next examine how to incorporate the vector be-
haviour of forces into the learning algorithm. The rel-
evant symmetry transformations in the input space are:
rigid translation of all atoms, permutation of atoms of
the same chemical species, rotations and reflections of
atomic configurations. Forces are invariant with respect
to translations and atomic permutations, and covariant
with respect to rotations and reflections. Assuming that
the representation of the atomic configuration is local,
i.e., the atom subject to the force fi is at the origin of the
reference frame used for ⇢i, translations are automatic-
ally taken into account. The remaining symmetries must
be addressed in the construction of covariant kernels.

COVARIANT KERNELS

From now on we will define S to be any symmetry
operator (rotation or reflection) acting on an atomistic
configuration of a d-dimensional system. Rotations will
be denoted by R and reflections by Q.

We require two properties to apply to the predicted
force f̂(⇢ | D), once configurations are transformed by an
operator S (represented by a matrix S):

Property 1 If the target configuration ⇢ is trans-
formed to S⇢, the predicted force must transform ac-
cordingly:

f̂(S⇢ | D) = Sf̂(⇢ | D). (6)

Property 2 The predicted force must not change if we
arbitrarily transform the configurations in the database
(D ! D̃ = {(Si⇢i,Sifri )}) with any chosen set of roto-
reflections {Si}.

We next introduce a special class of kernel functions
that automatically guarantees these two properties: a
covariant kenrel has the defining property

K(S⇢,S 0
⇢
0) = SK(⇢, ⇢0)S0T

. (7)

That a covariant kernel imposes Property 1 follows
straightforwardly from equation (5):

f̂(S⇢ | D) =
NX

ij

K(S⇢, ⇢i)[K+ I�2
n
]�1
ij

fr
j

=
NX

ij

SK(⇢, ⇢i)[K+ I�2
n
]�1
ij

fr
j

= Sf̂(⇢ | D). (8)

To prove Property 2 we note that, if the kernel function is
covariant, the transformed database D̃ has Gram matrix
(K̃)ij = K(Si⇢i,Sj⇢j) = SiK(⇢i, ⇢j)ST

j
. If we define the
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Fig. 4 Learning the force
profile of a 1D LJ dimer using
data (blue circle) coming
from one atom only. It is
seen that a non covariant
GP (solid red line) does
not learn the symmetrically
equivalent force acting on
the other atom and it thus
predict a zero force and
maximum error. If covariance
is imposed to the kernel via
Eq. (23) (dashed blue line),
then the correct equivalent
(inverted) profile is recovered.
Shaded regions represent the
predicted 1sigma interval in
the two cases.

K(r,r 0) =
Z

dRRkb(r,Rr 0). (23)

This approach has been extended to learn higher order tensors in Refs. [49, 50].
Using rotational symmetry crucially improves the efficiency of the learned

model. A very simple illustrative example of the importance of rotational symmetry
is shown in Figure 4, addressing an atomic dimer in which force predictions coming
from a non-covariant squared exponential kernel and its covariant counterpart (ob-
tained using Eq. (23)) are compared. The figure reports the forces predicted to act on
an atom, as a function of the position on the x-axis of the other atom, relative to the
first. So that, for positive x values the figure reports the forces on the left atom as a
function of the position of the right atom, while negative x values will be associated
to forces acting on the right atom as a function of the position of the left atom. In
the absence of the covariance force properties, training the model on a sample of
nine forces acting on the left atom, will populate correctly only the right side of the
graph: a null force will be predicted to act on the right atom (solid red line on the
left panel). However, the covariant transformation (in 1D, just a change of sign) will
allow the transposition of the force field learned from one environment to the other,
and thus the correct prediction of the (inverted) force profile in the left panel.

2.3.3 Interaction order

Classical parametrised force fields are sometimes expressed as a truncated se-
ries of energy contributions of progressively higher n-body “interaction orders”
[51, 52, 53, 54]. The procedure is consistent with the intuition that, as long as the
series converges rapidly, truncating the expansion reduces the amount of data neces-
sary for the fitting, and enables a likely higher extrapolation power to unseen regions
of configuration space. The lowest truncation order compatible with the target pre-

241706-12 Bereau et al. J. Chem. Phys. 148, 241706 (2018)

multipoles may remain frozen and only get updated when large
conformational changes are detected.

We presented electrostatic calculations using distributed
multipole—up to quadrupole—models. In comparison with
other atomic properties, an accurate prediction of multipole
electrostatics proves all the more challenging and critical
for the accurate estimation of various molecular systems.
Improvements will require more accurate models, and possi-
bly the incorporation of more advanced physical interactions,
such as anisotropic70 or many-body repulsion interactions. Our
framework paves the way toward significantly more transfer-
able models that blend in the physical laws and symmetries rel-
evant for the phenomena at hand with a data-driven approach to
infer the variation of environmentally dependent local atomic
parameters across chemical space. We expect such models
that are transferable across chemical composition to be of
use in systems of interest in chemistry, biology, and materials
science.
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APPENDIX A: MANY-BODY DISPERSION

The following summarizes the many-body dispersion
(MBD) method31,46,47 as implemented elsewhere.32 We start
with the atomic polarizability ↵p of atom p. The frequency
dependence of ↵p allows for an estimation of the pairwise
dispersion coefficient via the Casimir-Polder integral,

C6pq =
3
⇡

⌅ 1

0
d!↵p(i!)↵q(i!), (A1)

where i! are imaginary frequencies and p and q are a
pair of atoms. Given reference free-atom values for C6pp,
we can estimate the characteristic frequency of atom p!p

= 4C6pp/3↵2
p
.71

The atomic polarizabilities and characteristic frequen-
cies yield the necessary ingredients for the system of coupled
quantum harmonic oscillators with N atoms,

C
QHO
pq = !2

p
�pq + (1 � �pq)!p!q

p
↵p↵qTpq, (A2)

where Tpq = rrp
⌦ rrq

W (rpq) is a dipole interaction tensor
with modified Coulomb potential

W (rpq) =
1 � exp

"
�

✓
rpq

R
vdW
pq

◆�#

rpq

. (A3)

In this equation, � is a range-separation parameter and R
vdW
pq

= �(RvdW
p

+ R
vdW
q

) is the sum of effective van der Waals
radii scaled by a chemistry-independent fitting parameter. The
effective van der Waals radius is obtained by scaling its ref-
erence free-atom counterpart: R

vdW
p
= (↵p/↵free

p
)1/3

R
vdW, free
p .

An expression for Tpq is provided in the work of Bereau
and von Lilienfeld.32 In particular, we apply a range sepa-
ration to the dipole interaction tensor by scaling it by a Fermi
function72

f (rpq) =
1

1 + exp
f
�d(rpq/RvdW

pq � 1)
g . (A4)

Diagonalizing the 3N ⇥ 3N matrix C
QHO
pq yields its

eigenvalues {�i}, which in turn provide the MBD energy,

EMBD =
1
2

3NX

i=1

p
�i �

3
2

NX

p=1

!p. (A5)

The methodology depends on three chemistry-independent
parameters: �, �, and d.

APPENDIX B: COVARIANT KERNELS

Glielmo et al.
52 recently proposed a covariant kernel Kµ

for vector quantities—suitable here to predict dipoles—such
that two samples ⇢ and ⇢0 subject to rotations S and S0,
respectively, will obey

Kµ(S⇢,S0⇢0) = SKµ(⇢, ⇢0)S0T. (B1)

The atom i from sample ⇢ is encoded by a set of atom-centered
Gaussian functions

⇢(r, {ri}) =
1

(2⇡�2)3/2

X

i

exp
 
� | |r � ri | |2

2�2

!
, (B2)

and the covariant kernel is analytically integrated over all 3D
rotations to yield52

Kµ(⇢, ⇢0) =
1
L

X

ij

�(ri, rj)ri ⌦ r0T
j

,

�(ri, rj) =
exp

⇣
�↵ij

⌘

�2
ij

⇣
�ij cosh �ij � sinh �ij

⌘
,

L = (2
p
⇡�2)3, ↵ij =

r
2
i

+ r
2
j

4�2
, �ij =

rirj

2�2
, (B3)

where ⌦ denotes the outer product.
In the present work, we extend the construction of covari-

ant kernels to predict quadrupole moments. Following a similar
procedure adapted to second-rank tensors, we enforce the
relation

KQ(S⇢,S0⇢0) = S0STKQ(⇢, ⇢0)SS0T (B4)

onto a base pairwise kernel of diagonal form Kb(⇢, ⇢0)
= 1k

b(⇢, ⇢0), where k
b(⇢, ⇢0) is independent of the reference

ri

rj
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Lecture 7 – Support Vector Machines and Kernel Methods

Visualization of SVs

� Problem: z-Space is infinite (unknown)
� How can the Support Vectors (from existing points) be visualized?

� Solution: non-zero alphas have been the identified support vectors

� Support vectors exist in Z – space (just transformed original data points)

� Example: million-D means a million-D vector for 

� But number of support vector is very low,  expected Eout is related to #SVs

(solution of quadratic programming optimization will be a set of alphas we can visualize)

[7] Visualization of high-dimensional space

(generalization behaviour despite million-D & snake-like overfitting)

(snake seems like overfitting,
fitting to well, cf. Lecture 2) � Counting the number of support 

vectors remains to be a good indicator 
for generalization behaviour even
when performing non-linear 
transforms and kernel methods that
can lead to infinite-D spaces

(rule of thumb)
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We wish to model by a VGP the force f acting on
an atom whose chemical environment is in a configura-
tion ⇢ that encodes the positions of all of neighbours of
the atom, up to a suitable cutoff radius, in an arbitrary
Cartesian reference frame. In a Bayesian setting, before
any data is considered, f is treated as a Gaussian Process,
i.e., it is assumed that for any finite set of configurations
{⇢i, i = 1, . . . N} the values f(⇢i) taken by the vector
function f are well described by a multivariate Gaussian
distribution [21]. We write:

f(⇢) ⇠ GP(m(⇢),K(⇢, ⇢0)) (1)

where m(⇢) is a vector-valued mean function and K(⇢, ⇢0)
is a matrix-valued kernel function. Before any data is
considered, m is usually assumed to be zero as all prior
information on f is encoded into the kernel function
K(⇢, ⇢0). The latter represents the correlation of the vec-
tors f(⇢) and f(⇢0) as a function of the two configurations
(“input space points”) ⇢ and ⇢

0:

K(⇢, ⇢0) = hf(⇢)fT(⇢0)i, (2)

where angular brackets here signify the expected value
over the multivariate Gaussian distribution. Any ker-
nel K consistent with this definition must be a positive
semi-definite matrix function, since for any collection of
vectors {vi}

X

ij

vT
i
K(⇢i, ⇢j)vj = h(

X

i

vT
i
f(⇢i))

2
i � 0. (3)

To train the prediction model we need to access a
database of atomic configurations and reference forces
D = {(⇢, fr)i, i = 1, . . . , N}. Using Bayes’ theorem [27]
the distribution (1) is modified to take the data D into ac-
count [21]. If the likelihood function [22] is also Gaussian
(which effectively assumes that the observed forces fr

i
are

the true forces subject to Gaussian noise of variance �
2
n
)

then the resulting posterior distribution f(⇢ | D), condi-
tional on the data, will also be a Gaussian process

f(⇢ | D) ⇠ GP(f̂(⇢ | D), Ĉ(⇢, ⇢0)). (4)

The mean function of the posterior distribution, f̂(⇢ | D),
is at this point the best estimate for the true underlying
function:

f̂(⇢ | D) =
NX

ij

K(⇢, ⇢i)[K+ I�2
n
]�1
ij

fr
j
. (5)

Here �
2
n
, formally is the noise affecting the observed

forces fr, serves in practice as a regulariser for the matrix
inverse. In the following, blackboard bold characters such

as K or I indicate N⇥N block matrices (for instance, the
Gram matrix K is defined as (K)ij = K(⇢i, ⇢j)). Simil-
arly, we denote by [K+ I�2

n
]�1
ij

the ij-block of the inverse
matrix.

We next examine how to incorporate the vector be-
haviour of forces into the learning algorithm. The rel-
evant symmetry transformations in the input space are:
rigid translation of all atoms, permutation of atoms of
the same chemical species, rotations and reflections of
atomic configurations. Forces are invariant with respect
to translations and atomic permutations, and covariant
with respect to rotations and reflections. Assuming that
the representation of the atomic configuration is local,
i.e., the atom subject to the force fi is at the origin of the
reference frame used for ⇢i, translations are automatic-
ally taken into account. The remaining symmetries must
be addressed in the construction of covariant kernels.

COVARIANT KERNELS

From now on we will define S to be any symmetry
operator (rotation or reflection) acting on an atomistic
configuration of a d-dimensional system. Rotations will
be denoted by R and reflections by Q.

We require two properties to apply to the predicted
force f̂(⇢ | D), once configurations are transformed by an
operator S (represented by a matrix S):

Property 1 If the target configuration ⇢ is trans-
formed to S⇢, the predicted force must transform ac-
cordingly:

f̂(S⇢ | D) = Sf̂(⇢ | D). (6)

Property 2 The predicted force must not change if we
arbitrarily transform the configurations in the database
(D ! D̃ = {(Si⇢i,Sifri )}) with any chosen set of roto-
reflections {Si}.

We next introduce a special class of kernel functions
that automatically guarantees these two properties: a
covariant kenrel has the defining property

K(S⇢,S 0
⇢
0) = SK(⇢, ⇢0)S0T

. (7)

That a covariant kernel imposes Property 1 follows
straightforwardly from equation (5):

f̂(S⇢ | D) =
NX

ij

K(S⇢, ⇢i)[K+ I�2
n
]�1
ij

fr
j

=
NX

ij

SK(⇢, ⇢i)[K+ I�2
n
]�1
ij

fr
j

= Sf̂(⇢ | D). (8)

To prove Property 2 we note that, if the kernel function is
covariant, the transformed database D̃ has Gram matrix
(K̃)ij = K(Si⇢i,Sj⇢j) = SiK(⇢i, ⇢j)ST

j
. If we define the

Build symmetries in ML model
Work with subset of kernels that a 
priori satisfy conservation law


