

Machine learning for energy landscapes

Van 't Hoff Institute for Molecular Sciences & Informatics Institute University of Amsterdam

MAX PLANCK INSTITUTE FOR POLYMER RESEARCH

Tristan Bereau

Introduction to kernel-based ML Today

Machine learning for energy landscapes

Van 't Hoff Institute for Molecular Sciences & Informatics Institute University of Amsterdam

X PLANCK INSTITUTE FOR POLYMER RESEARCH

Incorporation of physical symmetries, conservation laws

Tristan Bereau

Introduction to kernel-based ML Today

Machine learning for energy landscapes

Supervised ML in chemistry and materials science

Thursday

X PLANCK INSTITUTE FOR POLYMER RESEARCH

Incorporation of physical symmetries, conservation laws

Tristan Bereau

- Van 't Hoff Institute for Molecular Sciences & Informatics Institute
 - University of Amsterdam

Kevin Jablonka Mohamad Moosavi

$\mathbf{F} = m\mathbf{a}$

$\mathbf{F} = m\mathbf{a}$ Specify interparticle forces: "force field"

Numerically integrate particle positions

$\mathbf{F} = ma^{\prime}$

Specify interparticle forces: "force field"

Numerically integrate particle positions

$\mathbf{F} = ma^{\prime}$

Specify interparticle forces: "force field"

Numerically integrate particle positions

$\mathbf{F} = ma^*$

Specify interparticle forces: "force field"

S

 μ S

MS

Numerically integrate particle positions

$\mathbf{F} = ma^{\prime}$

Specify interparticle forces: "force field"

S

 μ S

MS

Numerically integrate particle positions

$\mathbf{F} = ma^{\prime}$

Specify interparticle forces: "force field"

Timescales of interest

Numerically integrate particle positions

$\mathbf{F} = m\mathbf{a}$

Specify interparticle forces: "force field"

<u>12</u>

GROUP

Data as the 4th pillar of science

A. Agrawal and A. Choudhary APL Mater. 4 053208 (2016); https://www.bigmax.mpg.de

3rd PARADIGM Computational Science, Simulations

4th PARADIGM **Big-Data-Driven Science**

Monte Carlo; molecular dynamics; density-functional theory and beyond

Detection of patterns and anomalies in Big Data; artificial intelligence; etc.

З

Databases

Data science

Hardware

Machine learning

Databa

Data science

Machine learning

Links to machine learning

Potential energy surface

Interpolation of a high-dimensional function

Can we build a more accurate PES?

Can we **easily** build an accurate PES?

Can we make the numerical integration faster and/or more efficient?

. . .

Good

Not good

Teaser: let's fit data points

Teaser: let's fit data points

Good

Not good

Teaser: let's fit data points

ruthlessly stolen from A. von Lilienfeld

Teaser: let's fit data points

Multivariate function approximation

Sparse data

infer smooth function

7

Sparse data

7

Sparse data

THEORY GROUP Rupp, International Journal of Quantum Chemistry 115 (2015)

7

Sparse data

THEORY Rupp, International Journal of Quantum Chemistry 115 (2015)

Regression:

prediction of $f: \mathbb{R}^d \to \mathbb{R}$ based on noisy data points $D = (\mathbf{X}, \mathbf{y}) = {\{\mathbf{x}_{n}, y_{n}\}_{n=1}^{N}}$

$$y_n = f(\mathbf{x}_n) + \varepsilon$$

What is

7

Kernel methods are vintage

THEORY GROUP

Kernel

needs a representation linear algebra can be efficient with small data

Deep learning

learns the representation complex mathematical structure data hungry

Learning from experience

Inductive (based on examples)

Input Space

Feature Space

source: xkcd

Extrapolation in machine learning

Extrapolation in machine learning

Prediction

Bayesian inference

Prior beliefs

Sampled data

Prediction

Bayesian inference

Prior beliefs

Sampled data

Prediction

posterior

Bayesian inference

Bayes' formula

THEORY GROUP Rasmussen, Advanced lectures on machine learning. Springer, 63-71 (2004)

Gaussian processes

THEORY GROUP Rasmussen, Advanced lectures on machine learning. Springer, 63-71 (2004)

 $f \sim \mathcal{GP}(m,k)$

 $f \sim \mathcal{GP}(m,k)$ $\mu_i = m(x_i) \qquad \Sigma_{ij} = k(x_i, x_j)$

f(x)

random variable: value of the stochastic function at x

THEORY Rasmussen, Advanced lectures on machine learning. Springer, 63-71 (2004)

Gaussian processes

mean

covariance

Gaussian processes $f \sim \mathcal{GP}(m,k)$ $\mu_i = m(x_i) \qquad \Sigma_{ij} = k(x_i, x_j)$ covariance mean kernel

f(x)

random variable: value of the stochastic function at x

THEORY GROUP Rasmussen, Advanced lectures on machine learning. Springer, 63-71 (2004)

Linear-ridge regression

Linear-ridge vs kernel-ridge regression

- kernel-ridge regression (ML)
 - $\mathbf{K} \alpha = p$

- kernel-ridge regression (ML)
 - $\mathbf{K} \alpha = p$

in general: $m \ll N$

- kernel-ridge regression (ML)
 - $\mathbf{K} \alpha = p$

in general: $m \ll N$

- kernel-ridge regression (ML) $\mathbf{K} \alpha = p$ N ______

in general: $m \ll N$

kernel-ridge regression (ML) $\mathbf{K}\alpha = p$ linear N# training points NN $K_{ij} = K_{ij}(\mathbf{x}_i, \mathbf{x}_j)$ $=K_{ij}(|\mathbf{x}_i - \mathbf{x}_j|)$ $= \exp\left(-\frac{|\mathbf{x}_i - \mathbf{x}_j|}{\sigma}\right)$

Kernel machine learning 101

1) Define representation and kernel

$$K(r, r') = \exp\left(-\frac{(r - r')^2}{2\sigma^2}\right)$$

THEORY GROUP

Kernel machine learning 101

1) Define representation and kernel

$$K(r, r') = \exp\left(-\frac{(r - r')^2}{2\sigma^2}\right)$$

2) Train your model:

 $(\mathbf{K} + \lambda \mathbf{I}) \alpha = U$

 $\alpha = (K + \lambda \mathbb{I})^{-1} U$

Inverse is ill defined

Regularization: "hyperparameter" scales noise level

Optimize weight coefficients on training set

THEORY GROUP

Kernel machine learning 101

1) Define representation and kernel

$$K(r, r') = \exp\left(-\frac{(r - r')^2}{2\sigma^2}\right)$$

2) Train your model:

 $(\mathbf{K} + \lambda \mathbf{I}) \alpha = U$

 $\alpha = (K + \lambda \mathbb{I})^{-1} U$

Inverse is ill defined

Regularization: "hyperparameter" scales noise level

Optimize weight coefficients on training set

I HEUKY

• GROUP

GROUP

Conformational space missing from training

Linking conformational and interpolation spaces 📿

MAX PLANCK INSTITUTE FOR POLYMER RESEARCH

Symmetries and conservation laws

Mechanics 101: Principle of least action

Mechanics 101: Principle of least action $S[x(t)] = \int_{t_1}^{t_2} dt L[x(t), \dot{x}(t), t]$ kinetic energy action potential energy $_$ agrangian L = T

microtrajector

Hamilton's principle: system minimizes action (variational principle)

$\dot{\mathcal{S}}[x^*(t)] = 0$

Mechanics 101: Principle of least action kinetic energy potential energy

microtrajector

Hamilton's principle: system minimizes action (variational principle)

stationarity under small perturbations leads to Euler-Lagrange equations

$$\delta \mathcal{S} = \int_{t_1}^{t_2} \mathrm{d}t \, L(x^* + \varepsilon, \dot{x}^* + \dot{\varepsilon}, t) - L(x^*, \dot{x}^*, t)$$
$$= \int_{t_1}^{t_2} \mathrm{d}t \, \left(\varepsilon \frac{\partial L}{\partial x} + \dot{\varepsilon} \frac{\partial L}{\partial x}\right) = \int_{t_1}^{t_2} \mathrm{d}t \, \left(\varepsilon \frac{\partial L}{\partial x} - \varepsilon \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{x}}\right) = 0$$

$\mathcal{S}[x^*(t)] = 0$

Mechanics 101: Principle of least action $\mathcal{S}[x(t)] = \int_{t_1}^{t_2} dt \, L[x(t), \dot{x}(t), t] \qquad \qquad \text{kinetic end}$ action $Lagrangian \ L = T - Lagrangian$ kinetic energy potential energy

microtrajector

Hamilton's principle: system minimizes action (variational principle)

stationarity under small perturbations leads to Euler-Lagrange equations

 $\varepsilon(t_1) = \varepsilon(t_2) = 0$

$$\delta S = \int_{t_1}^{t_2} dt \, L(x^* + \varepsilon, \dot{x}^* + \dot{\varepsilon}, t) - L(x^*, \dot{x}^*, t)$$
$$= \int_{t_1}^{t_2} dt \, \left(\varepsilon \frac{\partial L}{\partial x} + \dot{\varepsilon} \frac{\partial L}{\partial x}\right) = \int_{t_1}^{t_2} dt \, \left(\varepsilon \frac{\partial L}{\partial x} - \varepsilon \frac{d}{dt} \frac{\partial L}{\partial \dot{x}}\right) = 0$$

Integration by parts &

$\mathcal{S}[x^*(t)] = 0$

From symmetries, to invariants, to conserved quantities

 $\mathcal{S}[x(t), y(t), z(t)] = \left[dt \, \frac{m}{2} \left(\dot{x}^2 + \dot{y}^2 + \dot{z}^2 \right) - mgz \right]$

- $\mathcal{S}[x(t), y(t), z(t)] =$
- Introduce constant translations along x and y:
 - $S[x(t) + x_0, y(t) + y_0, z(t)]$

$$\mathrm{d}t\,\frac{m}{2}\left(\dot{x}^2+\dot{y}^2+\dot{z}^2\right)-mgz$$

$$= \int dt \frac{m}{2} \left(\dot{x}^2 + \dot{y}^2 + \dot{z}^2 \right) - mgz$$
$$= \mathcal{S}[x(t), y(t), z(t)]$$

- $\mathcal{S}[x(t), y(t), z(t)] =$
- Introduce constant translations along *x* and *y*:
 - $S[x(t) + x_0, y(t) + y_0, z(t)]$

(Translational) symmetry leaves the action invariant. It leaves the Euler-Lagrange equation unchanged:

$$\mathrm{d}t\,\frac{m}{2}\left(\dot{x}^2+\dot{y}^2+\dot{z}^2\right)-mgz$$

$$= \int dt \frac{m}{2} \left(\dot{x}^2 + \dot{y}^2 + \dot{z}^2 \right) - mgz$$
$$= \mathcal{S}[x(t), y(t), z(t)]$$

 $\frac{\partial L}{\partial x} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{x}} = 0$

$$\mathcal{S}[x(t), y(t), z(t)] = \int dt \, \frac{m}{2} \left(\dot{x}^2 + \dot{y}^2 + \dot{z}^2 \right) - mgz$$

Introduce constant translations along x and y:

$$\mathcal{S}[x(t) + x_0, y(t) + y_0, z(t)] = \int dt \, \frac{m}{2} \left(\dot{x}^2 + \dot{y}^2 + \dot{z}^2 \right) - mgz$$
$$= \mathcal{S}[x(t), y(t), z(t)]$$

(Translational) symmetry leaves the action invariant. It leaves the Euler-Lagrange equation unchanged:

$$\frac{\partial L}{\partial x} = 0 \qquad \qquad \frac{\partial L}{\partial \dot{x}} = m\dot{x} = \text{const.}$$

From symmetries, to invariants, to conserved quantities

 $\frac{\partial L}{\partial L} - \frac{\mathrm{d}}{\partial L} = 0$ $dt \partial \dot{x}$ ∂x

> Translational invariance implies linear momentum conversation

 $\mathcal{S}[\mathbf{r}(t)] =$

Rotational symmetry

Apply transformation $\mathbf{r} \rightarrow \mathbf{r}'$ where $\mathbf{r}'(t) = R\mathbf{r}(t) = \mathbf{r}(t) + \alpha \times \mathbf{r}(t)$

One can show that $\mathcal{S}[\mathbf{r}(t) + \alpha \times \mathbf{r}(t)] = \mathcal{S}[\mathbf{r}(t)]$

Conservation of angular momentum

From symmetries to conserved quantities (cont'd)

$$\int \mathrm{d}t \, \frac{m}{2} \dot{\mathbf{r}}^2 - V(r)$$

Time translation

Apply transformation $\mathbf{r} \rightarrow \mathbf{r}'$ where $\mathbf{r}'(t+\epsilon) = \mathbf{r}(t)$

One can show that $\mathcal{S}[\mathbf{r}'(t+\epsilon)] = \mathcal{S}[\mathbf{r}(t)]$ (up to a boundary term) Conservation of energy

Noether's theorem

To every differentiable symmetry generated by local actions there corresponds a conserved quantity

3 examples:

- Translational symmetry: Linear momentum conservation
- Rotational symmetry: Angular momentum conservation
- Time translation: Energy conservation

mentum conservation mentum conservation ation

Noether's theorem

To every differentiable symmetry generated by local actions there corresponds a conserved quantity

3 examples:

- Translational symmetry: Linear momentum cons
- Rotational symmetry: Angular momentum conset
- Time translation: Energy conservation

mentum conservation

2 ways of encoding symmetries:- Representation- ML model

MAX PLANCK INSTITUTE FOR POLYMER RESEARCH

Encoding symmetries in the representation

MAX PLANCK INSTITUTE FOR POLYMER RESEARCH

Translational and rotational symmetries Behler-Parrinello Coulomb matrix

$$G_{i}^{1} = \sum_{j \neq i}^{\text{all}} e^{-\eta(R_{ij} - R_{s})^{2}} f_{c}(R_{ij})$$

$$G_{i}^{2} = 2^{1-\zeta} \sum_{j,k \neq i}^{\text{all}} (1 + \lambda \cos \theta_{ijk})^{\zeta}$$

$$\times e^{-\eta(R_{ij}^{2} + R_{ik}^{2} + R_{jk}^{2})} f_{c}(R_{ij}) f_{c}(R_{ik}) f_{c}(R_{jk})$$

Distances
Angles

Behler & Parrinello, Phys Rev Lett 98 (2007)

Rupp, Tkatchenko, Müller, von Lilienfeld, Phys Rev Lett, 108 (2012)

THEORY

Representation: the Coulomb matrix

~ Coulomb's law $E = \frac{q_i q_j}{|\mathbf{r}_i - \mathbf{r}_j|}$

Hansen et al., *J Chem Theory Comput*, **9** (2013)

Symmetries of the representation should emulate symmetries of the system

- Translation
- 2. Rotations
- 3. Mirror reflection

THEORY GROUP

Representation: the Coulomb matrix

Η

0.2

2.9

Η

0.2

2.9

0.5

~ Coulomb's law $E = \frac{q_i q_j}{|\mathbf{r}_i - \mathbf{r}_j|}$

Hansen et al., *J Chem Theory Comput*, **9** (2013)

Symmetries of the representation should emulate symmetries of the system

- 1. Translation
- 2. Rotations
- 3. Mirror reflection

THEORY GROUP Huang and von Lilienfeld, J Chem Phys 145 (2016)

Max-Planck-Institut für Polymerforschung

Max Planck Institute for Polymer Research

Optimizing the representation links to the physics

THEORY GROUP Huang and von Lilienfeld, J Chem Phys 145 (2016)

Max-Planck-Institut für Polymerforschung

Max Planck Institute for Polymer Research

Optimizing the representation links to the physics

Max-Planck-Institut für Polymerforschung

Max Planck Institute for Polymer Research

Optimizing the representation links to the physics

Max-Planck-Institut für Polymerforschung

Max Planck Institute for Polymer Research

Encoding symmetries in the ML model

MAX PLANCK INSTITUTE FOR POLYMER RESEARCH

Action of group G on input sample $x \mapsto T_{g}(x)$

THEORY GROUP Risi Kondor, *Group theoretical methods in machine learning, PhD thesis* (2008)

Encoding symmetries in ML models using group theory

Action of group G on input sample $x \mapsto T_{\rho}(x)$

Can we find a kernel that is invariant to this group action? $f(T_g(x)) = f(x) \forall g \in G$

THEORY GROUP Risi Kondor, Group theoretical methods in machine learning, PhD thesis (2008)

Encoding symmetries in ML models using group theory

 $k(x, x') = k(T_g(x), T_{g'}(x'))$

Action of group G on input sample $x \mapsto T_{\rho}(x)$

Can we find a kernel that is invariant to this group action?

To ensure invariance, symmetrize the kernel

 $k^{G}(x, x') = \frac{1}{|G|} \sum_{k \in V} k(x, T_{g}(x'))$ $g \in G$

Risi Kondor, Group theoretical methods in machine learning, PhD thesis (2008)

Encoding symmetries in ML models using group theory

 $f(T_g(x)) = f(x) \forall g \in G$ $k(x, x') = k(T_g(x), T_{g'}(x'))$

Example of symmetrized kernel

Vanilla/naïve kernel

Tensorial property (e.g., dipole moment, force) **rotates** with the sample

Tensorial property (e.g., dipole moment, force) **rotates** with the sample

Tensorial property (e.g., dipole moment, force) **rotates** with the sample

Tensorial property (e.g., dipole moment, force) **rotates** with the sample

"Build kernel so as to encode the rotational properties of the target property"

THEORY GROUP Glielmo, Sollich, De Vita, Phys Rev B 95 (2017)

Covariant kernels

Encode rotational properties of the target property in the **kernel**

$\hat{\mathbf{f}}(\mathcal{S}\rho \mid \mathcal{D}) = \hat{\mathbf{S}}\hat{\mathbf{f}}(\rho \mid \mathcal{D})$ Force prediction Transformation (rotation/inversion) Descriptor Training data

THEORY GROUP Glielmo, Sollich, De Vita, Phys Rev B 95 (2017)

Covariant kernels

Encode rotational properties of the target property in the **kernel**

$\mathbf{f}(\mathcal{S}\rho \mid \mathcal{D}) = \mathbf{S}\hat{\mathbf{f}}(\rho \mid \mathcal{D})$ Force prediction Transformation (rotation/inversion) Descripto Training data

THEORY Glielmo, Sollich, De Vita, *Phys Rev B* **95** (2017)

Covariant kernels

Encode rotational properties of the target property in the **kernel**

"Transform the configuration, and the prediction transforms with it"

Covariant kernels $\mathbf{K}(\mathcal{S}\rho,\mathcal{S}'\rho') = \mathbf{S}\mathbf{K}(\rho,\rho')\mathbf{S}'^{\mathrm{T}}$ Kernel Configurations

Transformations (rotation/inversion)

THEORY Glielmo, Sollich, De Vita, Phys Rev B 95 (2017)

 $\mathbf{K}(\boldsymbol{\rho},\boldsymbol{\rho}') = \int d\mathcal{R}\mathbf{R}k_b(\boldsymbol{\rho},\mathcal{R}\boldsymbol{\rho}')$

 $\mathbf{K}^{\mu}(\rho, \rho') = \frac{1}{L} \sum_{ij} \phi(r_i, r_j) \mathbf{r}_i \otimes \mathbf{r}_j'^{\mathrm{T}}$

Conclusions

Extrapolation in ML models of energy landscapes Can lead to catastrophic physics

Take advantage of symmetries Noether: symmetry leads to conservation law

$\mathbf{K}(\mathcal{S}\rho, \mathcal{S}'\rho') = \mathbf{S}\mathbf{K}(\rho, \rho')\mathbf{S}'^{\mathrm{T}}$

Build symmetries in ML model

Work with subset of kernels that a priori satisfy conservation law

