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Recap: The Verlet algorithms
Original Verlet algorithm

Downside regular verlet algorithm: velocity is not known, worse accuracy.

Velocity verlet (Andersen 1983): 

(Is based on Trotter decomposition of Liouville operator formulation,
also basis of Multiple time steps). 

Velocity Verlet has the advantage of allowing multiple time stepping
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Is Verlet a good algorithm?
Verlet algorithm

– is time reversible
– does  conserve volume in phase space
– (is �symplectic�)
– does not suffer from energy drift

...but is it a good algorithm?
i.e. does it predict the time evolution of the system correctly???



Molecular chaos
Dynamics of �well-behaved� classical many-body system is chaotic.

Consequence: Trajectories that differ very slightly in their initial conditions 
diverge exponentially (�Lyapunov instability�)



Lyapunov instability
The Lyapunov disaster in action... 
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Any small error in the numerical integration of the equations of motion,
will blow up exponentially....

always...

...and for any algorithm!!

SO:
Why should anyone believe Molecular Dynamics simulations ???



Answers:
1. In fact, one should not…

2. Good MD algorithms (e.g. Verlet) can also be considered as good 
Monte Carlo algorithms –they therefore yield reliable STATIC 
properties (�Hybrid Monte Carlo�)

3. What is the point of simulating dynamics, if we cannot trust the resulting 
time-evolution???

4. All is well (probably), because of...
The Shadow Theorem.



Shadow theorem
• For any realistic many-body system, the shadow theorem is merely a 

hypothesis.

• It basically states that Good algorithms generate numerical trajectories 

that are �close to� a REAL trajectory of the many-body system.

• Question: Does the Verlet algorithm indeed generate �shadow�
trajectories?

• Take a different look at the problem.

– Do not discretize NEWTON�s equation of motion…

– ...but discretize the ACTION



Lagrangian Classical mechanics

• Newton:

• Lagrange:
– Consider a system that is at a point r0 at time t=0 

and at point rt at time t=t, then the system follows 
a trajectory r(t) such that:

is an extremum. The Lagrangian L is defined as:

Fi = mi
d2xi(t)

dt2
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Langrangian
For example, if we use cartesian coordinates:

What does this lead to?

Consider the �true� path R(t), with R(0)=r0 and R(t)=rt.
Now, consider a path close to the true path:

Then the action S is an extremum if 

What does this lead to?

r(t�) = R(t�) + �r(t�)

�S

�r(t�)
= 0 for all t

L(r(t)) =
N�

i=1

1
2
miṙ

2
i � U(r1, r2, . . . rN )



Discretized action

For a one dimensional system this becomes

Scont =
� t1

t0

dtL(t)

L(ti) = K(ti)� U(ti)Sdisc = �t
imax�

i=0

L(ti)
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2
m�t
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�t2
� U(xi)�t

Sdisc =
imax⇤
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�
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2�t
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Minimize the action
Now do the standard thing: Find the extremum for small variations in the 
path, i.e. for small variations in all xi.

�Sdisc

�xi
= 0 for all i

This will generate a 
discretized trajectory that 
starts at time t0 at X,  and 
ends at time t at Xt.



Minimizing the action
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• which is the Verlet algorithm!

• The Verlet algorithm generates a trajectory that satisfies the boundary 
conditions of a REAL trajectory –both at the beginning and at the 
endpoint.

• Hence, if we are interested in statistical information about the dynamics 
(e.g. time-correlation functions, transport coefficients, power spectra...)
...then a �good� MD algorithm (e.g. Verlet) is fine.

0 = 2xi � xi+1 � xi�1 �
�t2

m

�U(xi)
�xi

xi+1 = 2xi � xi�1 +
�t2

m
F (xi)
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Lagrangian approach
Lagrangian is sum of two terms 

�L
�ṙ

=
�K

�ṙ
= p

�L
�r

= ��U

�r
= F

ṗ =
�L(ṙ, r)

�r
p =

�L(ṙ, r)
�ṙ

Newton : F=ma

L(ṙ, r) = K(ṙ)� U(r) =
mṙ2

2
+ U(r)_
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Hamiltonian approach
The Hamiltonian is defined as 

Hamilton�s equations are then

Integrating equations of motion (by Verlet) conserves the Hamiltonian 

H(pN , rN ) = U(rN ) +
�

i

p2
i

2mi

=
p

m

= ��U(rN )
�r

H(p, r) = pṙ � L(ṙ, r)



Conservation of Hamiltonian

So a solution to the Hamiltonians equation conserves the  TOTAL 
energy

€ 

dH( p,r) =
∂H
∂p

dp +
∂H
∂r

dr

∂H
∂p

= ˙ r ∂H
∂r

= − ˙ p 

dH( p,r)
dt

=
∂H
∂p

˙ p + ∂H
∂r

˙ r = ˙ r ̇  p − ˙ p ̇  r = 0

E = K + U

MD generates the NVE ensemble

How do we sample the canonical ensemble with MD?
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Constant Temperature: a naïve approach

Velocity scaling

Does not sample the canonical ensemble!
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This is called the isokinetic thermostat



Thermostat: From NVE to NVT
• Introduce proper thermostat in MD trajectory:

• deterministic thermostat:
– Nose-Hoover

• stochastic thermostats:
– Andersen
– Langevin 
– Bussi 
– Nose Hoover- Langevin

All of these alter the velocities such that the trajectory samples the 
canonical NVT ensemble, and the partition function becomes

These thermostats differ in how they achieve this

Z =
1

N !�3N

�
e��U(r)drQ



Andersen Thermostat
• Every particle has a fixed probability 

to collide with the Andersen demon

• After collision the particle is give a 
new velocity

• The probabilities to collide are 
uncorrelated (Poisson distribution)
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Andersen thermostat: 
static properties



Andersen thermostat: 
dynamic properties



• The Andersen thermostat samples the correct ensemble, but is rather violent 
to the dynamics.

• The Bussi thermostat combines rescaling with a stochastic approach:
– Evolve a single time step with a symplectic integrator e.g. velocity Verlet
– Calculate the kinetic energy Kt .
– Evolve the kinetic energy Kt =Kt + dK for a time corresponding to a 

single time step using an auxiliary continuous stochastic dynamics:

– Rescale the velocities so as to enforce this new value of the kinetic 
energy Kt.

Velocity rescaling revisited

relaxation time parameter

Wiener noise term



Bussi thermostat 
Solving the differential equation 

gives

Where the Ri are independent Gaussian random numbers

(Bussi et al 2007)



goal: compute MD trajectory sampling NVT ensemble.
Take kinetic energy out of the system and put it back in via a �piston�.
piston can be seen as additional variable s storing kinetic energy
Approach: extended Lagrangian

Nose Hoover thermostat

extended variable

+

effective mass

constant to be set



equations of motion follow from Hamilton's equations.

Nose-Hoover Thermostat
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Nose Hoover implementation
NH equation of motion can be rewritten as ( Hoover 1984)

Where                               now denotes a kind of ‘friction’ term

Mass Q determines the damping

ṙi = pi/mi

ṗi = fi � ⇠pi

⇠ = ps/Q

⇠̇ =

 
X

i

p2i /mi � 3N/�

!
/Q



Effect of mass Q
Lennard-Jones fluid

mean square displacement temperature relaxation



!

˙ =

˙ = ( )�⇠

⇠̇ = ( � )/µ��⇠ + � ˙

�� ˆ ⇡ �(� / )ˆ + �(� / )ˆ + �(� / )ˆ + �� ˆ

+ �(� / )ˆ + �(� / )ˆ + �(� / )ˆ

ˆ = ˆ + ˆ + ˆ + ˆ

( , ; +� ) = �� ˆ
( , ; )

Nose Hoover Langevin thermostat

• Nose Hoover is not ergodic ( NH Chains can alleviate this)
• Better option might be Nose-Hoover-Langevin (Leimkuhler 2012)

μ is mass

Friction and noise term 



Implementation of NHL thermostat
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Note the similarity  to Velocity rescaling (Bussi)

(Leimkuhler 2012)



Constant Pressure 
• The pressure can be kept constant using a similar extended 

Lagrangian formalism as the Nose Hoover thermostat.

• rectangular boxes 
– Andersen barostat,
– Martyna-Tuckerman-Klein barostat, 
– Nosé-Hoover Langevin barostat

• variable box shape 
– Parrinello Rahman barostat
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Ensemble averages by ergodicity
time  averages over a NVT MD trajectory

ensemble average

Ergodicity theorem states that for an �ergodic system�

Ā =
1
T

� T

0
A(t)dt

⇥A⇤ =
�

drNA(rN ) exp(��U(rN ))�
drN exp(��U(rN ))

Ā = �A⇥



Computing equilibrium properties
Ensemble averages follow from time averages

Temperature follows from  equipartition: ½ kBT per d.o.f.

Where f is number of degrees of freedom

T =
2K
kB f

K =
1
2

mvi
2

i=1

N
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Ā =
1
T

� T

0
A(t)dthAi =

P = NkBT
V

+
1
3V

fijrij
i< j

N

∑

Pressure follows from virial expression



Computing free energy landscape
Statistical mechanics gives us

Project free energy on collective variable q 

The result is a Landau free energy

This can be generalized to multiple dimensions

F = �kBT lnQF = �kBT ln

Z
drNe��U(rN )

F (q) = �kBT ln

Z
drN�(q � q(rN ))e��U(rN )

F (q) = �kBT lnh�(q � q(rN ))i

�F (x, y) = � lnP (x, y)

F (q) = �kBT lnP (q)



Transport coefficients: Diffusion
Diffusion equation (Fick’s second law)

�c(x, t)

�t
= D

�2c(x, t)

�x2

c(x, t) =
1p
4�Dt

exp

✓
� x2

4Dt

◆Solution for an initial c(x,0)=δ(0): all molecules at origin 

hx2(t)i =
R
dxx2c(x, t)R
dxc(x, t)

=

Z
dx

x2e�
x2

4Dt

p
4�Dt

= 2Dt

Mean square displacement of the molecules

Or:

This is how Einstein proposed to measure the

diffusion coefficient of Brownian particles

Time derivative gives

D =
1

6
lim
t!1

dhr2(t)i
dt

Diffusion in 3 dimensions



Relation to velocity
Relation to velocity



(“Green-Kubo relation”)

�hx2(t)i
�t

= 2
�

�t

Z t

0
dt0

Z t0

0
dt00hvx(t0)vx(t00)i

(“Green-Kubo relation”)

Define τ = t –t’’

Green –Kubo relation

Also exists for other transport coefficients, such as viscosity and conductivity
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All-atom force fields for biomolecules

• Potential energy for protein
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Ewald sums
• Coloumb interaction

• With φ(r) the electrostatic potential at position r

• The sum runs over all periodic images n

• This equation does converge poorly.

UCoul =
1
2

qiφ(ri )
i=1

N

∑

φ(ri ) =
qj

rij +nLj,n
∑



• The trick of the Ewald sum is to add a 
screened potential of the opposite sign, 
such each charge q is canceled

• A direct sum of the screened potentials 
converges much quicker.

Ucoul =
1
2V

4π
k2k≠0

∑ ρ(k) 2 exp −k2 / 4α( )− α
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• Thus 3 contributions
• Direct sum of point charges q with Gaussian screening with 

charge (converges quickly) 
• Compensating screening with charge q (can be represented 

by a Fourier series)
• Self energy correction



Currently available empirical force fields

• CHARMm (MacKerrel et 96)

• AMBER    (Cornell et al. 95)

• GROMOS  (Berendsen et al 87)

• OPLS-AA (Jorgensen et al 95)

• ENCAD    (Levitt et al 83) 

• Subtle differences in improper torsions, scale factors 1-4 bonds, united 

atom  rep.

• Partial charges based on empirical fits to small molecular systems 

• Amber & Charmm also include ab-initio calculations 

• Not clear which FF is best : top 4 mostly used

• Water models also included in description

– TIP3P, TIP4P

– SPC/E

• Current limit: 10
6

atoms, microseconds ( with Anton ms)
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X-tal structure of  Trigger Factor (TF)

• Chaperone protein characterized in E. coli
• Dual role:

– Ribosome exit tunnel
– Downstream in cytosol

• Flexible dragon-shaped structure
• 432 amino acid residues
• 3 domains: 

– N-terminal: Tail
– C-terminal: Body + Arms
– PPIase domain: Head

A. Hoffmann, B. Bukau, and G. Kramer, 
Biochimica et Biophysica Acta 1803 (2010),  650



Solution structure very different from x-tal

MD 250 ns trajectories in 50 mM salt solution 
Amber FF
System with explicit water: 200000 atoms



Probability Histogram gives free energy landscape

Caveat: MD not long enough to be converged

Collapse Mechanism

Head --- Arm1
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K. Singhal, J. Vreede, A. Mashaghi, S. J. Tans, P. G 
Bolhuis, PLoS One, 8, e59683 (2013)

�F (x, y) = � lnP (x, y)



Trigger factor interacting with substrate



Conclusions Trigger factor
• Trigger factor very flexible in solution

– crystal structure collapses 
– first hydrophobic collapse of Head-Arm1
– followed by hydrophilic interaction of Nterm-Arm2

• Structural motions in TF stabilized in presence of substrate protein 
• N-terminal crucial: mostly hydrophilic interactions with MBP subfold
• C-terminal crucial: also hydrophobic interactions with unfolded chain

• Clearly MD is not long enough
• Dynamics is dominated by rare events 

caused by high barriers

Next Thursday: rare events!




