ADVANCED TECHNIQUES (MC/MD)

A (seemingly) random selection.

Daan Frenkel

Beyond Newtonian MD

Langevin dynamics
Brownian dynamics
Stokesian dynamics

Dissipative particle dynamics

o M 0 bh =

Etc. etc.

WHY?
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1. Can be used to simulate molecular
motion in a viscous medium,
without solving the equations of
motion for the solvent particles.

2. Can be used as a thermostat.

Friction Conservative

First, consider

lone:

mv = —~i(t') — VU ,

After a short while, all particles will stop
moving, due to the fricti

Better:

N

mu(t)=—v v (t) — VU + ((t)
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There is a relation between the
correlation function of the random force
and the friction coefficient:

< Cz(0) ¢z (¥) >= 2kTv4(1)
The derivation is straightforward, but beyond

the scope of this lecture.

The KEY point is that the friction force and the
random force ARE RELATED.

Limiting case of Langevin dynamics:
No inertial effects (m=0)
mu(t)=—v v (t) = VU +((t)

Becomes:

0=—v v (t) = VU + ((¢)

“Brownian Dynamics”

(But still the friction force and the random
force are related)
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What is missing in Langevin dynamics
and Brownian dynamics?

1. Momentum conservation

2. Hydrodynamics

(1 and 2 are not independent).

Is this serious?

Not always: it depends on the time
scales.

Momentum “diffuses” away in a time
L2/v. After that time, a “Brownian”
picture is OK.

However: hydrodynamics makes that
the friction constant depends on the
positions of all particles (and so do
the random forces...).
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Momentum conserving, coarse-grained
schemes:

 Dissipative particle dynamics

» Stochastic Rotation Dynamics

These schemes represent the solvent
explicitly (i.e. as particles), but in a highly
simplified way.

ADVANCED MC SAMPLING
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Is the rejection of Monte Carlo trial moves wasteful?

Conventional MC performs a random walk in
configuration space, such that the number of
times that each point is visited, is proportional
to its Boltzmann weight.

n(rY) = cexp[—AuU(x™M)]

Whatever our rule is for moving from
one point to another, it should not
destroy the equilibrium distribution.

That is: in equilibrium we must have

\/o%
/
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N (0) > m(o—n) => N(n)r(n — o)

N(o)rm(o —n) = N(n)m(n — o).

For every pair {n,o}.

Detailed Balance

With:

(o —-n) = alo — n) x acc(o — n)

detailed balance implies that:

N(o)a(o — n) x acc(o — n)

N(n)a(n — o) x acc(n — o)
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acc(o —n) _ N(n)
acc(n — o)  N(o)

= exp{—pU(n) —U(0)]}

Metropolis,
Rosenbluth,Rosenbluth,

Teller and Teller choice:

acc(o — n) = min (1, exp{—B[Z/I(r’N) — U(I'N)]}>

Solution of conflict: play with the a-priori
probabilities of trial moves:

a(o —n) = aln — o)

acc(o—mn)  a(n—o)
acc(n = 0)  alo—n) exp{—p[U(n) —U(0)]}.

In particular, if:

a(n — o)

alo=n) exp{—p[U(o) —U(n)]}.
Then

22281 : Z; =1 (100% acceptance)
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100% acceptance can be achieved in
special cases: e.g. Swendsen-Wang,
Wolff, Luyten, Whitelam-Geissler,
Bortz-Kalos-Lebowitz, Krauth...

General idea: construct “cluster moves”

Simplest example:
Swendsen-Wang

lllustration: 2D Ising model.

Snapshot: some neighbors are parallel, others
anti-parallel
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Number of parallel nearest-neighbor pairs: N,
Number of anti-parallel nearest neighbor pairs is: N

Total energy: U= (N,-N ) J

a

b

l
I B!

Make “bonds” between parallel neighbors. The
probability to have a bond (red line) between
parallel neighbors is p (as yet undetermined).
With a probability 1-p, parallel neighbors are not
connected (blue dashed line).
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S

Form clusters of all spins that are connected by
bonds. Some clusters are all “spin up” others are
all “spin down”.

Denote the number of clusters by M.

) @@.
el
D00

Now randomly flip clusters. This yields a new

cluster configuration with probability P g,
=(1/2)M.

Then reconnect parallel spins

15/01/19
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Next: forget about the “bonds”...

it

New spin configuration!
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POPclus(O)Pflip(M)PaCC(O —n)

PnPclus(n)Pflip(M)PaCC(n — 0)

exp(—BUo)p"e(1 — p) V() =me(1/2)M Pyee(0 — n)

exp(—BUn)p"e(1 —p)Np(W=1e(1/2)M Pree(n — o)

POPclus(O)Pflip(M)PaCC(O ~ n)

PnPeys n)Pflip(M) ce(n — o)

exp(+/BUs)p" (1 — p)Vp(@) e (1/2)M Pyco(o — n)

exp(—BUp)p"<(1 _P)Np(n)_nc(l/Q)MPaw(n — 0)
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Moreover, we want 100% acceptance, i.e.:

P, .(o—n)=P

acc@—0) =1

eXD(—BUo)}/C(l = )71/ )M Pace(o — n)

exp(—BUn)y‘/“(l —p)Np<”>—”c(1//>MPacc<n — 0)

Hence:

exp(—BU,) (1 —p)Nr(®) = exp(—BUy) (1 —p)Nr(™)

exp(B(Un — Up)) = (1 — p)Ne(n)=Np(0)

But remember:

Un—Uo = J(Na(n) — Np(”)) — J(Nq(0) — Np(O))

or
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and therefore
AU = -2JAN),

exp(B(Un — Uo)) = exp(—=2BJ(Np(n) — Np(0)))
Combining this with:

exp(B(Un — Up)) = (1 — p)Ne(m)=Np(0)

we obtain:

p=1—exp(—26J)

100% acceptance!!!
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WASTE RECYCLING MC

Include “rejected” moves in the sampling

This is the key:

Z p(m)Tmn = p(n)

The transition matrix =« leaves the equilibrium
distribution p unchanged.
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(A) p — Z Anpn
n
This, we can rewrite as:

Z Anpn = Z Z Anpmﬂ'mn = Z Pm Z AnTmn
n n m m n

Pm

(4), = <z7rmnAn>

Pm

Note that <A> is no longer an average
over “visited” states — we also include
“rejected” moves in the sampling.
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Slightly dishonest and slightly trivial example:

Sampling the magnetization of a 2D Ising
system

Compare:

1. Normal (Swendsen-Wang) MC
(sample one out of 2" states)

2. Idem + “waste
recycling” (sample all 2" states)

15/01/19
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Monte Carlo sampling with noisy weight functions.

Two possible cases:

1. The calculation of the energy function is

subject to statistical error (cCeperley, Dewing, J. Chem.
Phys. 110, 9812 (1999).)

Ucomputed = Ureal + ou

with:
< 5’& >— O We wHIassgme t'hat
o 5 the fluctuations in u
< ((SU) >= 0y are Gaussian. Then:
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Now consider that we do Monte Carlo with this noisy
energy function:

Feled — expl—gl

with
Au = U, + du,y — vy — O,

Then:
<P_o> = exp[—B(Au) + (80)?/2]

With: 02 = 202

As a consequence, we sample the states
with the wrong weight.

However, we can use another acceptance
rule:

P.cc = Min{1, exp[—BAu — (B0)?/2]}

In that case:
P,

B = expl-(Au) + (80)2/2) x expl—~(60)2/2
e exp[—ﬁ<Au>]

15/01/19
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In other words:
If the statistical noise in the energy is Gaussian,
and its variance is constant,

then we can perform rigorous sampling, even when
the energy function is noisy

2. The weight function is noisy, but its average is
correct (not so common in molecular simulation, but
quite common in other sampling problems)

(can also be sampled rigorously — but
outside the scope of this lecture)

15/01/19
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Recursive sampling

Outline:
1. Recursive enumeration
a) Polymer statistics (simulation)
b) ..
2. Molecular Motors (experiments!)

(well, actually, simulated experiments)
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Lattice polymers:

Consider a lattice (e.g. 2D-square).

At a given point z;, the potential energy is U(x;).

The Boltzmann factor for a particle at point x; is

exp(—QU(x;)) = 2}

15/01/19
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Consider a lattice (e.g. 2D-square).

At a given point z;, the potential energy is U(x;).
The Boltzmann factor for a particle at point z; is
exp(—QU(x;)) = 2}

The partition function for a single point particle is

71 =37

Dimers

The Boltzmann factor for a dimer on points z; and z;41 is

exp(—B(U(z;) + U(zit1)) = 2} X Zz'1+1

The Boltzmann factor for all dimers terminating
on point x; is

(2) — 1 1
Zi L =% ijnmz'

15/01/19
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The partition function for a single dimer is

Z2 = ZZ 252)

n-mers

The Boltzmann weight for an n-mer
terminating on point x; is

(n) _ 1 (n—1)
Zp =2 X Zjnni <5

and the corresponding partition function is

15/01/19

25



This method is exact for non-self-avoiding, non-
interacting lattice polymers.

It can be used to speed up MC sampling of
(self)interacting polymers

B. Bozorgui and DF, Phys. Rev. E 75, 036708 (2007))

NOTE: "MFOLD’ also uses recursive sampling to predict RNA secondary
structures.

FREE-ENERGY METHODS OUTSIDE STATISTICAL MECHANICS

EXAMPLES:
1. Recursive analysis of Molecular Motor trajectories
2. Computation of granular entropy

15/01/19
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FREE-ENERGY METHODS OUTSIDE STATISTICAL MECHANICS

EXAMPLES:
1. Recursive analysis of Molecular Motor trajectories
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Kinesin motor steps along micro-tubules
with a step size of 8nm

15/01/19

27



Experimentally, the step size is
measured by fitting the (noisy) data.

Example: noisy “synthetic data”
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Example: noisy “synthetic data”

true lattice
probing lattice

——————— : “true” trace

Best practice: “fit steps to data”

true lattice
probing lattice

J.W.J. Kerssemakers et al. , Nature 442,709 (2006)
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How well does it perform?

1. It can be used if the noise is less than 60% of the
step size.

2. ltyields a distribution of step sizes (even if the
underlying process has only one step size)

Observation:

We want to know the step size and the step frequency but...

We do not care which trace is the “correct” trace.

15/01/19

30



Bayesian approach: compute the partition function Q of non-
reversing polymer in a rough potential energy landscape €A

true lattice

T | R

)
>

probing lattice

‘.
.
(=
>

2A I . ! s B
0 100 time 200 3003 A
Other directed walks

As shown before: we can enumerate Q exactly (and
cheaply).

From Q we can compute a “free energy”

(F = -nQ)

15/01/19
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Compute the “excess free energy” with respect to reference data

0.8 T T T T T T T T

0.6

€X

02

FREE-ENERGY METHODS OUTSIDE STATISTICAL MECHANICS

EXAMPLES:

2. Computation of granular entropy
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The flow of powders and of liquids of high viscosity

S F Edwards
Cavendish Laboratory, Cambridge CB3 0HE, UK

Received 10 July 1990, in final form 21 September 1990

J. Phys. Condens. Matter 2, SA63 (1990)

..we argue that the powder is characterised by a compactness, which will be

shown to be X = %, in analogy with T' = %

"Notice that the entropy S(N,V) is a well
defined quantity, the logarithm of the
number of ways the grains can be
assembled to fill the volume V...’

Well defined — maybe...

But we cannot test much, if we cannot

compute Sgranular

Note: ‘powders’ are non-thermal. Hence,
Boltzmann Stat Mech does not apply.

15/01/19
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How to count number of mechanically
stable jammed’ states?

(number of potential energy minima)

U(x)

Start with a random initial configuration of soft
spheres and

find the nearest potential-energy minimum

15/01/19
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15/01/19

"High-dimensional’ case

Sz

Can we count the number of distinct
jammed states numerically ?

1. Brute-force method.

Try a large number of initial _
configurations. Count how often a
given minimum is visited.

Works only for small systems ( O(15) )

2. “Average-volume” route.
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Brute force method:

How do we count Q, the number of
distinct, disordered states?

1. Compute the distribution P(v) of
(scaled) volumes v.

2. V/Q=<v>

This translates a X,
counting problem into
a sampling problem.

15/01/19
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STEPS:
1. Compute the area A of the map (easy: L, x L)
2. Compute the average area <a> of a trough

(“the volume of a basin of attraction”)
3. Q=A/<a>

To compute the “hyper-volume” v of the
basin of attraction of a given jammed state
we must use a free-energy calculation
(similar to Einstein-crystal method):

f(v)=-kT In(v)

Calculation (e.g. by thermodynamic integration) is

expensive because every Monte Carlo trial move
requires a full energy minimization
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Vbasin — fbasin dX exp (_HO)

Looks like a partition function...

Define ‘free energy’ f

f = —In Vbasin

Compute f by thermodynamic integration

Generalise Hamiltonian:
Hy = Hy(X) + M(X — Xmin)®

Define ‘free energy’ f(A)
f(A) =—1In Ubasin dX exp (—HA(X))]

For “large’ A, f(A) is the (known) N-dimensional
Harmonic Oscillator free energy.
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Compute Vpasin = e~ f(A=0)

By thermodynamic integration, using

Of (A 2
g&) = <(X — Xmin) >

Practical challenge: we must sample inside the
basin

Computing basin volumes in high-dimensional

spaces is a general problem, not just in granular

physics

Example from Dynamical Systems Theory:

“the entire topic of basins is something of an enigma in
dynamical systems theory [. . . ] what we do not know is
how to compute the total volume or “measure” of a
basin, which is what determines the probability that a
random initial state will be drawn toward the

associated attractor.”

D. A. Wiley, S. H. Strogatz, and M. Girvan. Chaos 16.1 (2006), p. 015103

15/01/19
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This is an example of the distribution of basin volumes
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(Multistate Benn

equilibrium states. J. Chem. Phys.

MIBAR

ett Acceptance Ratio)

Method to obtain the best estimate of free-
energy differences from umbrella sampling

Shirts, M. R., and Chodera, J. D. (2008) Statistically
optimal analysis of samples from multiple

129, 129105.

COMBINING HISTOGRAMS:
HOW?

0 20 40 60
Cluster size n

Problems:

1. What is the “best’ bin width

2. How do we stitch histograms
together?

0 50 100 150
Cluster size n

15/01/19
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MBAR: No binning and “optimal’ stitching.

We start from:

7 = / dRY exp[-pURM)]

and
F=—kgTInz

Suppose we have k different samples (e.g. in umbrella sampling), biased with
potentials Vi, (R”Y). Assume that we have Nj, points for sample & We can then
define ‘partition functions Z; for the biased systems as

7, = / dRY exp(—B[URY) + Vi(RY))

and
Fk = —kBTln Zk;

In what follows, we will use:

15/01/19
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The key assumption of MBAR is that the true (as
opposed to the sampled) distribution function is
a weighted set of delta-functions at the points
that have been sampled.

In words: we do not assume anything
about points that we have not sampled.

The distribution function is then of the form:
K Ng

PRY) =27"Y ) pjnd (RN —R},)
j=1n=1
Where the p; , are (as yet) unknown.

The normalization factor is defined as:
K Ng

Z=) ) Pin

j=1n=1

15/01/19
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Once the full distribution is known, the biased
distributions follow:

K Ng
PuRY) = 270303 pjnexp(—AVi(RY))5 (RY — RY,)

j=1n=1

The normalization factor Z, is defined as:

K Ny

Ze =) Y pinexp(—BVi(RY,))

j=1n=1

Now we must compute the unknown
weights p; |

We do this, using ‘'maximum likelihood’.

That is: we impose that the values of the
p; » should be such that the probability of
obtaining the observed histograms is
maximised

15/01/19
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We define the likelihood L:
Ny,

s

L depends on all p; ,

We determine p; , by imposing that L, or
equivalently In L is maximal.

If we look atInL

p’—’ exp(—BVi(RY)))

InL = ZZIH

j=1n=1

We see that Inp;, and Z, depend on p, ,
But the Boltzmann factor does not.

15/01/19
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Therefore:
K N

In, = constant + z Z Inp,, —In Zj]

j=1n=1
K Ng

= constantJrZZlnpjn ZNan

j=1n=1
Now, we can differentiate with respect to P;n

The constant yields zero.
The second term: 1/p; |

The third term follows if we use:
K N

Zy = Z ij,n exp(—AVi(R],))

j=1n=1

Our condition for maximum likelihood is then

1 K N exp[—BVi(R},))]

O —_—
Pjn 13 ' i
Or:
1
pj,n/Z — exp[—BVir (RY )]

K 7,Mn
2 k=1 Vi (Z/2)

15/01/19
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The probability to observe a given point (j,n)
given the optimal p;  is then

1

jn) 2 =
P / Zszl Nk exp[_6<Vk(R;\fn) - AFk)]

Where we have used

AF, =kgTIn(Z/Zy) =~ kT In(Z/Z})

We can rewrite our result as an implicit
equation for the AF, :

K N;j N
- exp[—B(Vi(R;,)]
AFZ = —k T] Js
’ D;X_:l S, Neexp[-B(Ve(RY,) — AFy)]

These are the MBAR equations that
must be solved self-consistently

15/01/19
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Advantages of MBAR over all earlier
schemes (except Bennett)

* It does not use bins.

* it makes no assumption about the form of
the distribution function where it has not
been sampled.

« different biased runs may sample different
points in parameter space

* the method yields the best (in the sense of
"‘the most likely’) estimate for the histograms
and the free energy differences.

Using Stat Mech to improve data analysis.

Example: the radial distribution function g(r)

g(r) = the average density at distance r from a particle, divided by the bulk density

alr)

15/01/19
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A free lunch.

What could be simpler than computing a
radial distribution function?

r—

The noise is determined by Poisson statistics.

Can we do better?

Yes

D. Borgis et al. Mol Phys 111, 3486 (2013)
D. de las Heras & M. Schmidt, Phys Rev Lett 120, 218001 (2018)

15/01/19
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We start from:

Now, note that:

O(r—r;) =——A

47T T|P —-Ijj’

Integrate by parts, using

V,=—V,, =4V,

and

V, e AUEY) — gR.e—BUGTY)

15/01/19
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We then obtain:

g(r) —1=h(r) = Nirp /d“ <ZZ ’::JJ_ =il 2 (F; — F; )>

i=1 j#i
— T
But [ df —
rij —r

is like the field at r; due to a unit charge uniformly
distributed over a sphere around the origin, with
radius r.

. r,, —r
/dr3—3
rij —x

15/01/19
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Hence:

dr ’r.zty_ " 3 = rgj 9(7“7;]' —”I“)
¥ 1]

and therefore

—6 NN 1 r;;

re.
i=1 j#i ij

NOTE: we do not assume pairwise additivity

g(r)

r (o)

Figure 1. Radial distribution function obtained for a single equi-
librated configuration of a Lennard-Jones liquid composed of 864
particles using either the force approach, Equation (6), or the
standard histogram technique, with a grid spacing Ar = 0.005¢.
The dashed blue line indicates the converged result after 10,000
simulation steps. -
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More impressive: works for very short ab-initio MD runs

3
1

g(r)

Figure 3. Oxygen—oxygen radial distribution function averaged
over 100 configurations extracted from a DFT-MD trajectory with
128 water molecules at ambient liquid conditions. The dashed
blue line indicates the converged result obtained by averaging

over 36,800 configurations.

4
r (A)
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