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Example: Chemical Processes in Complex Environment
Key Notions

Chemical Transformations <-> Electronic Structure
Temperature <-> Motion & Fluctuations

Condensed Phase <-> Statistical Mechanics Methods




CONTEXT

FORCES

FIRST-PRINCIPLES APPROACH

INTER-ATOMIC FORCES BY ELECTRONIC STRUCTURE CALCULATION

LENNARD-JONE

DISTANCE  \_

CHANGING CHEMISTRY IMPLICIT

DIFFICULT (MANY ELECTRONS)

COMPUTATIONALLY EXPENSIVE




METHODS
DFT-Based Molecular Dynamics

ATOMIC NUCLEI + ELECTRONS

Electrons  w==p  Atomic FOrces ===  Atomic Motion

QUANTUM MECHANICS NEWTON’S EQN

Density Functional Theory Molecular Dynamics




Density Functional Theory

INTERACTING ELECTRONS

Hamiltonian (atomic units) for A/ electron system
Kinetic energy

N
T=-2) Vi
1=1

External potential

N
‘tht — Z v (i:z)

Electron-electron interaction

where r; iS the position vector of electron z.




Density Functional Theory

DENSITY FUNCTIONAL THEORY

State description electronic system

N — electron wavefunction W (ry,...ry)
Hohenberg-Kohn (HK)
one-electron density n (r)
(! Kohn-Sham (KS)
N one-electron orbitals ¢y (r),... ¥ (T)

Density is the key connection
N

N/drg...drd;\r W (r,ra...TN) 2 = n(r) = Z i (I‘)\:2

=1

Note, we assume that the ¥; (r) are spin orbitals occupied by one electron.




Density Functional Theory

KS ENERGY DECOMPOSITION

Separate total energy in one and many-electron terms

E[n] =Ts[n] + / drn(r) v(r) + J [n] + Ezc[n]

giving an one-electron kinetic energy term (recall ; = v¥;[n])

Tl =Y (-39 0r)

)

an independent electron interaction (Hartree) term

_ 1 , n(r)n(r’)
J[n]—E/drer

plus the remaining many-electron term, called exchange correlation energy.
Erc[n] =T [n] = Ts [n] + Vee [n] — J [n]

Note, the exchange correlation (XC) energy includes a kinetic contribution.




Density Functional Theory

KOHN-SHAM THEORY SUMMARY
¢ What have we achieved?

Correlated wavefunction (WF) + bare Hamiltonian —
Independent-electron WF + correlated Hamiltonian.

Correlated Ham. = Independent-electron Ham. +
Exchange-Correlation (XC) energy

e In practice

All depends on approximation to the XC functional.




Density Functional Theory

LOCAL DENSITY APPROXIMATION (LDA)

Approximate XC energy by the integral over a local XC energy density

ELPA (] = / dr Fye (n () = / dr eze (n () n (1)

ezc (n) = The exchange correlation energy per electron of
the homogeneous electron gas at density n

eze(n) = ez(n) + ec(n)

with e;(n) the Dirac exchange density of the homogeneous electron gas

1/3
T

and e.(n) obtained from quantum Monte Carlo (Ceperley-Alder).




Density Functional Theory

GRADIENT CORRECTED XC FUNCTIONALS
Question How to improve on the LDA?
The idea

Extend energy density with terms depending on Vn (r)

Ere [n] = /dI‘ Fyc (n (r),Vn (I‘))

Problem

Taylor expansion in Vn doesn’t work, gradients in atoms too large.

Solution: Generalized Gradient Approximation (GGA)

Extrapolation to higher gradients using

e Formal properties (scaling, asymptotic limits).
e Fits to experimental and/or ab initio data.




Plane Waves & Pseudopotentials
Periodic Boundary Conditions
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Basis set {¢.} of Plane Waves (2 is the volume of the box)

eiG(_y '7_"

) =
@a(r)_m

The wavefunctions are expanded as

Gi(T) =

G

For an orthorhombic box with lengths L., L, and L., the wavevectors

C_jare 5 5 0
é:i-L—:-f+j-L—Z-g‘+k~L—7:-5; with i, j.k € Z




Plane Waves & Pseudopotentials

Plane Waves

Advantages

independent of the nuclei position (good for forces)

no BSSE

one parameter controls the basis set size
orthogonal

Disadvantages

e large number of basis set elements needed
e |oss of chemical insight
Border line

e naturally periodic




Plane Waves & Pseudopotentials

Why Pseudopotentials?

Reduction of basis set size
effective speedup of calculation

Reduction of number of electrons
reduces the number of degrees of freedom

Inclusion of relativistic effects
relativistic effects can be included " partially” into effective
potentials

PSEUDO-POTENTIALS TRUE WAVEFUNCTION

PSEUDO WAVEFUNCTION
Ve-ion (I') = Zg\’e (I‘) Pﬂ




Car-Parrinello Molecular Dynamics

Ions: R" = (R,R,,...,Ry)

Electrons: (r,RY) =) (G, RY)eSr

G

Energy: E®RY) = Epmn(R)] + Enin(R)  n(R) = D o R

Two options for Molecular Dynamics

Born-Oppenheimer Molecular dynamics
1. optimize the wavefunction at fixed ionic positions

2. propagate the ions from the Hellmann-Feynman forces

Car-Parrinello Molecular Dynamics combines 1. and 2.
Non Hellmann-Feynman forces




Car-Parrinello Molecular Dynamics

Born-Oppenheimer Molecular Dynamics

. from the ionic configuration R(¢) at time ¢t we compute
e the minimal orbitals ¢?(t) = ¢¥(7, R(t))
e the total energy Ey = Ey[¢?(t), R(t)]

. we then get the forces from the Hellman-Feynman theorem

0Ey OF _/d37_,,0Ve$t(F,R(t))
Pi=?

Fit)==3r" =~ 2g, OR,

. advance ionic configuration R(t) — R(t + §t) by solving Newton's
equations of motion (Verlet algorithm)

. back to step 1

1 .
The total energy 5 Z]\JIRI(t) + Ey(t) is in principle a constant of
I

motion




Car-Parrinello Molecular Dynamics

The extended Car-Parrinello Lagrangian

Basic idea: introduce the Fourier coefficients cz-(é) of the electronic
orbitals in an extended CP Lagrangian:

L, &, R R) =p Y _ & (G)ai(G) + 5

i,G

+ZA1} Y cH(G)ei(G) - 6
G

This then defines a coupled electron-nuclei dynamics
e additional parameter u: fictitious mass of the electrons

E(c,R) = E(¢;(c),R) is the electron+nuclei total energy in the KS
framework

A;; are Lagrange multipliers introduced to satisfy the
orthonormality constraints




Car-Parrinello Molecular Dynamics
CP equation of motions

This leads to the coupled set of equations of motions:

= E( R _
pé; (G) = — OE(c,R) ZA”(‘ (G)

aE(c, R)
OR;

WHY DOES IT WORK?

M;R; = —

ELECTRONS ALMOST ON BORN-OPPENHEIMER SURFACE
DEVIATION DETERMINED BY MASS ELECTRONS pn

Time=0 Time=1 Time=2
E[c"]

ACTUAL FORCE IN ERROR

AVERAGE FORCE IS CORRECT -> TRUE TRAJECTORY




Car-Parrinello Molecular Dynamics

—

If the dynamics of ¢;(G)’s is fast enough, the electrons respond nearly

adiabatically to the change of the potential E(c,R) they feel, due to
the ionic motion.

Providing their dynamics is fast, the orbitals are “approximately”
minimal and we should stay ‘“close” to the Born-Oppenheimer surface

Advantages
e no self-consistency or loop minimization required

e the Hamiltonian H®? is better conserved than the classical
Hamiltonian of BO dynamics due to minimization errors. We
should thus have more stable thermodynamics

Disadvantages
e We are constantly a bit off the BO surface, E(c,R) > Ey(R)

e the timestep imposed by the fastest component, which are the
electrons, is smaller than in BO dynamics




Car-Parrinello Molecular Dynamics

ACCURACY

BASIS SET
#PLANE WAVES FEoi ~ K’

PSEUDO POTENTIALS
NORM-CONSERVING (BHS, Martins-Troullier)
SOFT (Vanderbilt, Bloechl)

DFT FUNCTIONAL
LDA+GGA: ENERGIES ACCURATE WITHIN FEW KCAL/MOL

ELECTRONIC MASS -—— MD TIME STEP

SMALL MASS 1 +: SMALL DEVIATION FROM BO SURFACE
- © SMALL TIME STEP -> MANY TIME STEPS




