

Ab Initio Molecular Dynamcis

MolSim2018

Evert Jan Meijer

Amsterdam Center for Multiscale Modeling

Van 't Hoff Insitute for Molecular Chemistry

University of Amsterdam

Example: Chemical Processes in Complex Environment Key Notions

Chemical Transformations <-> Electronic Structure

Temperature <-> Motion & Fluctuations

Condensed Phase <-> Statistical Mechanics Methods

CONTEXT

FORCES

FIRST-PRINCIPLES APPROACH

INTER-ATOMIC FORCES BY ELECTRONIC STRUCTURE CALCULATION

CHANGING CHEMISTRY IMPLICIT

DIFFICULT (MANY ELECTRONS)

COMPUTATIONALLY EXPENSIVE

METHODS

DFT-Based Molecular Dynamics

ATOMIC NUCLEI + ELECTRONS

Electrons

Atomic Forces

Atomic Motion

 $H\psi = E\psi$

 $F = m \times a$

QUANTUM MECHANICS

Density Functional Theory

NEWTON'S EQN

Molecular Dynamics

INTERACTING ELECTRONS

Hamiltonian (atomic units) for ${\cal N}$ electron system

$$\hat{H} = \hat{T} + \hat{V}_{ee} + \hat{V}_{ext}$$

Kinetic energy

$$\widehat{T} = -\frac{1}{2} \sum_{i=1}^{\mathcal{N}} \widehat{\nabla}_i^2$$

External potential

$$\widehat{V}_{ext} = \sum_{i=1}^{\mathcal{N}} v\left(\widehat{\mathbf{r}}_{i}\right)$$

Electron-electron interaction

$$\widehat{V}_{ee} = rac{1}{2} \sum_{i,j}^{\mathcal{N}} rac{1}{|\widehat{\mathbf{r}}_i - \widehat{\mathbf{r}}_j|}$$

where \mathbf{r}_i is the position vector of electron i.

DENSITY FUNCTIONAL THEORY

State description electronic system

Density is the key connection

$$\mathcal{N} \int d\mathbf{r}_2...d\mathbf{r}_{\mathcal{N}} |\Psi(\mathbf{r}, \mathbf{r}_2...\mathbf{r}_{\mathcal{N}})|^2 = n(\mathbf{r}) = \sum_{i=1}^{\mathcal{N}} |\psi_i(\mathbf{r})|^2$$

Note, we assume that the $\psi_i(\mathbf{r})$ are *spin* orbitals occupied by one electron.

KS ENERGY DECOMPOSITION

Separate total energy in one and many-electron terms

$$E[n] = T_s[n] + \int d\mathbf{r} \, n(\mathbf{r}) \, v(\mathbf{r}) + J[n] + E_{xc}[n]$$

giving an one-electron kinetic energy term (recall $\psi_i = \psi_i[n]$)

$$T_s[n] = \sum_{i}^{\text{occ}} \left\langle \psi_i \left| -\frac{1}{2} \nabla^2 \right| \psi_i \right\rangle$$

an independent electron interaction (Hartree) term

$$J[n] = \frac{1}{2} \int d\mathbf{r} d\mathbf{r}' \frac{n(\mathbf{r})n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

plus the remaining many-electron term, called exchange correlation energy.

$$E_{xc}[n] = T[n] - T_s[n] + V_{ee}[n] - J[n]$$

Note, the exchange correlation (XC) energy includes a kinetic contribution.

KOHN-SHAM THEORY SUMMARY

What have we achieved?

Correlated wavefunction (WF) + bare Hamiltonian \rightarrow Independent-electron WF + correlated Hamiltonian.

Correlated Ham. = Independent-electron Ham. + Exchange-Correlation (XC) energy

In practice

All depends on approximation to the XC functional.

LOCAL DENSITY APPROXIMATION (LDA)

Approximate XC energy by the integral over a local XC energy density

$$E_{xc}^{\mathsf{LDA}}[n] = \int d\mathbf{r} \, F_{xc}(n(\mathbf{r})) = \int d\mathbf{r} \, \epsilon_{xc}(n(\mathbf{r})) \, n(\mathbf{r})$$

 $\epsilon_{xc}(n)$ = The exchange correlation energy per electron of the **homogeneous electron gas** at density n

$$\epsilon_{xc}(n) = \epsilon_x(n) + \epsilon_c(n)$$

with $\epsilon_x(n)$ the Dirac exchange density of the homogeneous electron gas

$$\epsilon_x(n) = C_x \, n^{1/3}, \qquad C_x = -\frac{3}{4} \left(\frac{3}{\pi}\right)^{1/3}$$

and $\epsilon_c(n)$ obtained from quantum Monte Carlo (Ceperley-Alder).

GRADIENT CORRECTED XC FUNCTIONALS

Question How to improve on the LDA?

The idea

Extend energy density with terms depending on ∇n (r)

$$E_{xc}[n] = \int d\mathbf{r} F_{xc}(n(\mathbf{r}), \nabla n(\mathbf{r}))$$

Problem

Taylor expansion in ∇n doesn't work; gradients in atoms too large.

Solution: Generalized Gradient Approximation (GGA)

Extrapolation to higher gradients using

- Formal properties (scaling, asymptotic limits).
- Fits to experimental and/or ab initio data.

Plane Waves & Pseudopotentials

Periodic Boundary Conditions

Basis set $\{\varphi_{\alpha}\}$ of Plane Waves (Ω is the volume of the box)

$$\varphi_{\alpha}(\vec{r}) = \frac{1}{\sqrt{\Omega}} e^{i\vec{G}_{\alpha} \cdot \vec{r}}$$

The wavefunctions are expanded as

$$\phi_i(\vec{r}) = \frac{1}{\sqrt{\Omega}} \sum_{\vec{G}} c_i(\vec{G}) e^{i\vec{G}\cdot\vec{r}}$$

For an orthorhombic box with lengths L_x , L_y and L_z , the wavevectors \vec{G} are

$$ec{G}=i\cdotrac{2\pi}{L_x}\cdotec{x}+j\cdotrac{2\pi}{L_y}\cdotec{y}+k\cdotrac{2\pi}{L_z}\cdotec{z}$$
 ; with $i,j,k\in\mathbb{Z}$

Plane Waves & Pseudopotentials

Plane Waves

Advantages

- independent of the nuclei position (good for forces)
- no BSSE
- one parameter controls the basis set size
- orthogonal

Disadvantages

- large number of basis set elements needed
- loss of chemical insight

Border line

naturally periodic

Plane Waves & Pseudopotentials

Why Pseudopotentials?

- Reduction of basis set size effective speedup of calculation
- Reduction of number of electrons
 reduces the number of degrees of freedom
- Inclusion of relativistic effects
 relativistic effects can be included "partially" into effective
 potentials

PSEUDO-POTENTIALS

$$V_{\text{e-ion}}\left(\mathbf{r}\right) = \sum_{\ell} v_{\ell}\left(\mathbf{r}\right) \mathcal{P}_{\ell}$$

Ions:
$$R^N = (R_1, R_2, ..., R_N)$$

Electrons:
$$\phi_i(\mathbf{r}, \mathbf{R}^N) = \sum_{\mathbf{G}} c_i(\mathbf{G}, \mathbf{R}^N) e^{i\mathbf{G} \cdot \mathbf{r}}$$

Energy:
$$E(\mathbf{R}^N) = E_{DFT}[n(\mathbf{R})] + E_{ion-ion}(\mathbf{R})$$
 $n(\mathbf{R}) = \sum_i |\phi(\mathbf{r}, \mathbf{R})|^2$

Two options for Molecular Dynamics

Born-Oppenheimer Molecular dynamics

- 1. optimize the wavefunction at fixed ionic positions
- 2. propagate the ions from the Hellmann-Feynman forces

Car-Parrinello Molecular Dynamics combines 1. and 2.

Non Hellmann-Feynman forces

Born-Oppenheimer Molecular Dynamics

- 1. from the ionic configuration $\mathbf{R}(t)$ at time t we compute
 - ullet the minimal orbitals $\phi_i^0(t) = \phi_i^0(\vec{r},\mathbf{R}(t))$
 - the total energy $E_0 = E_0[\phi_i^0(t), \mathbf{R}(t)]$
- 2. we then get the forces from the Hellman-Feynman theorem

$$F_I(t) = -\frac{\partial E_0}{\partial R_I} = -\left. \frac{\partial E}{\partial R_I} \right|_{\phi_i = \phi_i^0} = \int d^3 \vec{r} \, \frac{\partial V_{ext}(\vec{r}, \mathbf{R}(t))}{\partial R_I}$$

- 3. advance ionic configuration $\mathbf{R}(t) \to \mathbf{R}(t+\delta t)$ by solving Newton's equations of motion (Verlet algorithm)
- 4. back to step 1

The total energy $\frac{1}{2}\sum_I M_I \dot{R}_I(t) + E_0(t)$ is in principle a constant of motion

The extended Car-Parrinello Lagrangian

Basic idea: introduce the Fourier coefficients $c_i(\vec{G})$ of the electronic orbitals in an **extended CP Lagrangian**:

$$\mathcal{L}^{CP}(\mathbf{c}, \dot{\mathbf{c}}, \mathbf{R}, \dot{\mathbf{R}}) = \mu \sum_{i, \vec{G}} \dot{c}_i^*(\vec{G}) \dot{c}_i(\vec{G}) + \frac{1}{2} \sum_I M_i \dot{\vec{R}}_i^2 - E(\mathbf{c}, \mathbf{R})$$
$$+ \sum_{ij} \Lambda_{ij} \left[\sum_{\vec{G}} c_i^*(\vec{G}) c_j(\vec{G}) - \delta_{ij} \right]$$

This then defines a coupled electron-nuclei dynamics

- ullet additional parameter μ : fictitious mass of the electrons
- $E(\mathbf{c}, \mathbf{R}) = E(\phi_i(\mathbf{c}), \mathbf{R})$ is the electron+nuclei total energy in the KS framework
- ullet Λ_{ij} are Lagrange multipliers introduced to satisfy the orthonormality constraints

CP equation of motions

This leads to the coupled set of equations of motions:

$$\mu \ddot{c}_i(\vec{G}) = -\frac{\partial E(\mathbf{c}, \mathbf{R})}{\partial c_i^*(\vec{G})} + \sum_j \Lambda_{ij} c_j(\vec{G})$$
$$M_I \ddot{\vec{R}}_I = -\frac{\partial E(\mathbf{c}, \mathbf{R})}{\partial \vec{R}_I}$$

WHY DOES IT WORK?

ELECTRONS ALMOST ON BORN-OPPENHEIMER SURFACE

DEVIATION DETERMINED BY MASS ELECTRONS μ

ACTUAL FORCE IN ERROR

AVERAGE FORCE IS CORRECT -> TRUE TRAJECTORY

If the dynamics of $c_i(\vec{G})$'s is fast enough, the electrons respond nearly adiabatically to the change of the potential $E(\mathbf{c}, \mathbf{R})$ they feel, due to the ionic motion.

Providing their dynamics is fast, the orbitals are "approximately" minimal and we should stay "close" to the Born-Oppenheimer surface

Advantages

- no self-consistency or loop minimization required
- ullet the Hamiltonian \mathcal{H}^{CP} is better conserved than the classical Hamiltonian of BO dynamics due to minimization errors. We should thus have more stable thermodynamics

Disadvantages

- We are constantly a bit off the BO surface, $E(\mathbf{c},\mathbf{R}) \geq E_0(\mathbf{R})$
- the timestep imposed by the fastest component, which are the electrons, is smaller than in BO dynamics

ACCURACY

BASIS SET

PLANE WAVES $E_{\text{cut}} \sim |\mathbf{k}_{\text{max}}|^2$

PSEUDO POTENTIALS

NORM-CONSERVING (BHS, Martins-Troullier) SOFT (Vanderbilt, Bloechl)

DFT FUNCTIONAL

LDA+GGA: ENERGIES ACCURATE WITHIN FEW KCAL/MOL

ELECTRONIC MASS → → MD TIME STEP

SMALL MASS μ +: SMALL DEVIATION FROM BO SURFACE

- : SMALL TIME STEP -> MANY TIME STEPS