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The Multiscale Challenge

Atomistic and Near-Atomistic 
Molecular Dynamics Simulation

Closely tied to Structural and Molecular 
Biology, e.g., X-ray Crystallography, 
NMR, Single Particle cryo-EM, 
Spectroscopy, etc

Higher Scale and Multiscale 
Simulation

Closely tied to Cellular and Systems 
Biology, e.g., Various forms of Imaging, 
Cryo-Electron Tomography, 
Biochemical Networks, etc

Physical-based Computer Simulation at the Scales of Cellular Biology



“Force” Behind the 2013 Nobel Prize in Chemistry? 
“Coarse-graining Away” of Electronic Structure

“Coarse-
graining” of 

wave 
functions to 

simpler force 
fields

HΨ = EΨ HMM

Particles interact via a 
simpler “molecular 

mechanics” forcefield

Electronic degrees of 
freedom explicitly treated:

DFT, MP2, etc...



The Concept of “Bottom-up” Coarse-graining

Coarse-Graining can be based on Statistical Mechanics

exp(−βF) ∝ dr∫ exp[−βV(r)] (β =1/kBT )

How to determine               ?          VCG(RCG)

How best to define        ?RCG

NRCG << Nr⎛
⎝⎜

⎞
⎠⎟

dr∫ exp[−βV(r)] ≡ dRCG∫ exp[−βVCG(RCG)]

Shown here is a “high resolution” CG model 
having some number of CG sites or “beads” 
per each amino acid residue in the peptide. 



Coarse-Graining Consistent with Statistical Mechanics: 
Mathematical Details

For a given        :RCG

VCG(RCG)How to determine                  ?

NRCG << Nr⎛
⎝⎜

⎞
⎠⎟

 
dr∫ exp[−βV(r)]= dr∫ dRCG∫ δ (MR(r)−RCG)

=1! "####### $#######

exp[−βV(r)]

 

!
Switch Integration Order, Substitute and Subtract RHS

exp[−βVCG(RCG)] ≡ dr∫ δ (MR(r)−RCG)exp[−βV(r)]
↓

For integral to be strictly zero for arbitratry V(r), it follows that...

dRCG∫ exp[−βVCG(RCG)]− drδ (MR(r)−RCG)∫ exp[−βV(r)]⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=0

(Stat Mech 
Consistency)

dRCG∫ exp[−βVCG(RCG)] = dr∫ exp[−βV(r)] (β =1/kBT )

MR(r)
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In coarse-grained (CG) models where certain fine-grained (FG, i.e., atomistic resolution) observables
are not directly represented, one can nonetheless identify indirect the CG observables that capture
the FG observable’s dependence on CG coordinates. Often, in these cases it appears that a CG
observable can be defined by analogy to an all-atom or FG observable, but the similarity is misleading
and significantly undermines the interpretation of both bottom-up and top-down CG models. Such
problems emerge especially clearly in the framework of the systematic bottom-up CG modeling,
where a direct and transparent correspondence between FG and CG variables establishes precise
conditions for consistency between CG observables and underlying FG models. Here we present
and investigate these representability challenges and illustrate them via the bottom-up conceptual
framework for several simple analytically tractable polymer models. The examples provide special
focus on the observables of configurational internal energy, entropy, and pressure, which have been
at the root of controversy in the CG literature, as well as discuss observables that would seem to be
entirely missing in the CG representation but can nonetheless be correlated with CG behavior. Though
we investigate these problems in the framework of systematic coarse-graining, the lessons apply to
top-down CG modeling also, with crucial implications for simulation at constant pressure and surface
tension and for the interpretations of structural and thermodynamic correlations for comparison to
experiment. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4959168]

I. INTRODUCTION

Models with a range of resolutions can be used to describe
the same physical system, with each model’s resolution
providing the context to interpret its representation. For
example, coarse-grained (CG) models use fewer particles
than their fine-grained (FG) counterparts to represent the
same system, while FG classical atomistic models explicitly
represent each atom (nucleus) with a single point particle.1–5

One “bottom-up” example of a CG model that relates
the FG to CG representations is the Multiscale Coarse-
graining (MS-CG) method,6–19 while another is the relative
entropy approach.20–24 In all cases, these models may claim
to achieve physical significance from comparison to the
experiment, and this comparison is between experimental
observables and corresponding model observables. Therefore,
the relationship between each model’s observables and
experimental observables must first be firmly established in
order for these models to be as meaningful as possible.

Often, however, the relationships between models and
experiment can be unclear. Common statistical mechanical
results and intuitive structural relationships establish connec-
tions between atomistic models and experiment,25–29 but
the model’s connection to experiment ultimately depends
on the resolution of the model, as some authors have

a)J. W. Wagner and J. F. Dama contributed equally to this work.
b)Author to whom correspondence should be addressed. Electronic mail:

gavoth@uchicago.edu

attempted to make clear.30–32 This concept of resolution-
dependent interpretation has been applied to studies of how
thermodynamic observable representations may change based
on resolution and thermodynamic ensemble, for example,
by D’Adamo et al.,33 Das and Andersen,13 and Dunn
and Noid.34 However, though this literature focuses on
thermodynamic observables,13,30–37 the issue of CG observable
representation is more fundamental: It concerns every aspect
of CG model interpretation involving comparison with
experiments or FG physics. Thus, the recognition that CG
observables are not simply analogs of their FG counterparts
is fundamental to understanding and ultimately addressing the
issue of representability in coarse-graining. This recognition
is commonly overlooked or ignored in the CG modeling and
the simulation literature. A more nuanced understanding is
therefore needed to interpret CG models so that they have
more meaningful connections to experiment.

Often, models are parameterized using observable
constraints so that they reproduce a given experimental
observable using a chosen observable expression.4,7,38 Any
one experimental observable can always be reproduced
this way. However, models need to reproduce several
experimental observables simultaneously, and a model
cannot reproduce several observables simultaneously if
their corresponding constraints conflict. For example, the
Henderson uniqueness theorem guarantees a unique radial
distribution given a pair potential.39 To reproduce any
additional experimental observable such as the pressure with
this fixed pair potential, the model observable must be able

0021-9606/2016/145(4)/044108/12/$30.00 145, 044108-1 Published by AIP Publishing.
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Coarse-Graining Consistent with Statistical Mechanics: 
Mathematical Details

For a given        :RCG

VCG(RCG)How to determine                  ?

 
dr∫ exp[−βV(r)]= dr∫ dRCG∫ δ (MR(r)−RCG)

=1! "####### $#######

exp[−βV(r)]

 

!
Switch Integration Order, Substitute and Subtract Right Hand Side

exp[−βVCG(RCG)] ≡ dr∫ δ (MR(r)−RCG)exp[−βV(r)]
↓

For integral to be strictly zero for arbitratry V(r), it follows that...

dRCG∫ exp[−βVCG(RCG)]− drδ (MR(r)−RCG)∫ exp[−βV(r)]⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=0

(Stat Mech Consistency)

dRCG∫ exp[−βVCG(RCG)] = dr∫ exp[−βV(r)] (β =1/kBT )

MR(r)



The Multiscale Coarse-Graining (MS-CG) 
Variational Approach*

   


Fα

CG

R( )Find from

   

δ χ2 F CG⎡⎣ ⎤⎦
δ

Fα

CG = 0

    
χ 2 !F CG⎡⎣ ⎤⎦ = 1

3M
!
Fα

CG
!
R( )− !Fα

!r( ) 2

α=1

NCG

∑

 

r :


R :


Fα
CG :

VCG :


Fα :

M :

χ 2 :

…

Atomic coordinates

CG site coordinates

Exact CG force

Exact CG potential

Instantaneous sum of atomic forces
acting on the CG site

Total number of CG sites

The residual

average over configurations    


Fα

CG

R( ) = −

∂VCG


R( )

∂

Rα

Proven That:

*S. Izvekov and GAV, J. Phys. Chem. B 109, 2469 (2005); J. Chem. Phys. 123, 134105 (2005); 
W. G. Noid, et al., J. Chem. Phys. 128, 244114 (1-11) (2008); 128, 244115 (1-20) (2008).



1/18/1
8

9

Force Matching and Genetic Algorithm 
(aka “Machine Learning”)

χ 2 = Fj
CG − Fj

AA

j=1

NCG

∑ 2

Highly 
“evolved”
solution

??



The MS-CG Algorithm

     
F
αβ
MS R

αβ
;φ( ) = φ

d
d=1

Nd

∑ f R
αβ

, R
1
,…R

Nd
{ }( )

(2) Expand all types of interactions as a linear expansion of 
basis functions:

(3) Force matching becomes a linear least squares problem:

    
χ2 φ⎡⎣ ⎤⎦= 1

3M

Fα

MS

R;φ( ) − Fα

r( ) 2

α=1

M

∑

  

δ χ2 φ⎡⎣ ⎤⎦
δφd '

= 0

(1) Assume pair wise decomposable radial non-bonded forces:

 


Fα
CG approximate

with⎯ →⎯⎯⎯

Fα

MS

Fα

MS = Fαβ
MS Rαβ ;φ( ) uαβ

β≠α

Μ

∑



CG Models by Relative Entropy Minimization*

l Relative entropy is a measure of “distance” between a 
model and target distribution

l Relative entropy can be applied to the canonical 
distribution

l A CG model can be determined by gradient descent by 
taking derivatives of the relative entropy with respect 
to the basis set coeffs.

*Scott Shell and co-workers

 
Srel = β U M −UT T

− AM − AT( ) + Smap T

  

∂Srel

∂λi

= β
∂U M R N( )

∂λi
T

− β
∂U M R N( )

∂λi
M

   
Srel = drpT M rn( )( )ln pT M rn( )( )

pM R N( )∫



Example: One Site CG Water Models

c.o.m.

c.o.m.

S. Izvekov and G. A. Voth, “Multiscale Coarse-Graining of Liquid State 
Systems,” J. Chem. Phys. 123, 134105(1-13) (2005). 



Results for One-Site CG Water

Radial Distribution Function (RDF)



ONE-Site  MS-CG Water Model

One Bead CG Water 
Pair Potential

   

VCG(R) = 1
2

VCG,ij(Rij)
i< j
∑



MS-CG Effective Potential Free Energy Decomposition*

  
−S

CG,ij
(R,T )=[V

CG,ij
(R,T+ΔT )−V

CG,ij
(R,T )]/ΔT

Entropy Calculation: By numerical differentiation

  
E

CG,ij
(R)=V

CG,ij
(R,T )−(−TS

CG,ij
(R))

   

VCG(R) = 1
2

VCG,ij(Rij,T )
i< j
∑

V
CG,ij

(R
ij
,T )=E

CG,ij
(R

ij
,T )−TS

CG,ij
(R

ij
,T )

Energetic/
Enthalpic

Entropic

ECG,ij obtained through subtraction from MS-CG pair PMF:

• Entropy is calculated as the slope from a linear fitting.
• Other analytical approximations of PMF can also be implemented.

* L. Lu and G. A. Voth, “The Multiscale Coarse-Graining Method. VII. Free Energy Decomposition of 
Coarse-Grained Effective Potentials”, J. Chem. Phys. 134, 224107 (2011).



Coarse-grained DMPC Lipid Bilayer

Goal: To study the CG lipid tail-tail (SM-SM) interaction in a lipid bilayer.

(a) The lipid tail 
conformational 
change produces an 
entropic effect.

(b) The tail excluded 
volume is increased 
consequently. 

Black: PMF
Red: energetic
Green: entropic
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The Multiscale Challenge

Higher Scale and Multiscale 
Simulation

Closely tied to Cellular and Systems 
Biology, e.g., Various forms of Imaging, 
Cryo-Electron Tomography, 
Biochemical Networks, etc

Physical-based Computer Simulation at the Scales of Cellular Biology



The emerging concept 
of the “Ultra-Coarse-
Grained” (UCG) model 
can accomplish this!

The Multiscale Challenge

How do we incorporate 
essential physics in 
such highly CG’ed
models?



Continuous kinematic movement 
of CG particles is there but not 
enough

CG Particles must have internal 
“states”

Dynamic state change within the 
CG particles modulates 
interactions between CG particles

*J. F. Dama, A. V. Sinitskiy, M. McCullagh, J. Weare, B. 
Roux, A. R. Dinner, and G. A. Voth, “Theory of Ultra 
Coarse-Graining. I. General Principles”, J. Chem. 
Theor. Comp. 9, 2466–2480 (2013).

Far Fewer CG 
“Particles” 

   

UCG Advantage ⇒
(#UCG States)× (#UCG Sites)≪ (#Higher Res CG Sites) < (#Atomic Sites)

A Step Further and Something Very Different! 
Ultra-Coarse-Graining (UCG)*



Origins of Possible “States” in the UCG Sites

States within UCG “beads”

— physical —
disorder transition
ligand binding

loop folding/unfolding 

— chemical —
nucleotide hydrolysis

redox reaction
protonation



Theory Provides New Directions in Multiscale Simulation 



• There should be some sort of isomorphism to mixed 
quantum-classical evolution of nuclear motion on 
multiple potential energy surfaces

What is the Influence on the UCG Time Evolution 
Equations from the Internal States?

• But are there too many states?? In principle:

  

Total # of states = M NCG (Yikes!!)
where M  is # internal states, NCG  is total # of UCG sites

• Mean field-like solutions:
   Total # of states ∼M ×NCG

• No! Dynamics will be in the “decoherence” limit; 
No-off diagonal density matrix elements: simpler
equations for the remaining diagonal elements



• Limit I: States can change infrequently, leading to a 
surface-hopping style dynamics

Two Understood Limits of UCG State Dynamics

  

Rate of state switch for i=k({neighs}i)
where {neighs}i is local configuration, k is UCG rate

• Use a local ansatz for populations:

• Limit II: States can change frequently, leading to an 
adiabatic and Ehrenfest style dynamics

• Use a local ansatz for rates:

  

Prob of state α  for site i= pi,α({neighs}i)
where {neighs}i is local configuration, pi,α  is UCG occupation

  UCG Payoff ⇒ (# UCG States)× (# UCG Sites)≪ (#Higher Res CG Sites) < (#All-Atom Sites)



New Life for “Higher Resolution” Coarse-graining?

exp(−βF) ∝ dr∫ exp[−βV(r)] (β =1/kBT )

How to determine               ?          VCG(RCG)

How best to define        ?RCG

NRCG << Nr⎛
⎝⎜

⎞
⎠⎟

dr∫ exp[−βV(r)] ≡ dRCG∫ exp[−βVCG(RCG)]

Shown here is a “high resolution” CG model 
having some number of CG sites or “beads” 
per each amino acid residue in the peptide. 



Target system: Include different intermolecular interactions 
and molecular symmetry between molecules

UCG Model for Liquid/Vapor Interfaces

Methanol Ethanol Acetone Acetonitrile Neopentane CCl4 CCl3H Benzene

- All-atom simulation is from 
OPLS/AA for 1,000 molecules

- Coarse-grained simulation
is from one-site CG model 
(center-of-mass)

J. Jin, G. A. Voth. Submitted



Slab Density Profiles: All-atom and MS-CG

(a) Methanol (b) Ethanol (c) Acetone (d) Acetonitrile

J. Jin, G. A. Voth. Submitted

Longer chain Linear chain

MS-CG theory generally fails to 
describe the interface system



UCG Model Design: Inner/Outer Regions 

Phase Boundary

Liquid Phase

Vapor Phase Bulk Liquid

 0

 0
.5 1

 1
.5 2

 2
.5

 0
 1

0
 2

0
 3

0
 4

0
 5

0
 6

0
 7

0
 8

0

Outer&region
Inner&region

Define inner and outer regions based on liquid phase and 
phase boundary of the system

UCG internal states are designed to distinguish denser (inner 
region) and less dense (outer region) local environment



Liquid/Vapor UCG Model Results

J. Jin, G. A. Voth. Submitted
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UCG Model for Liquid/Liquid Interface

- Liquid/Liquid Interface is challenging: Heterogeneous 
system composed of two different liquids

- Target system: Methanol/CCl4

J. Jin, G. A. Voth. In preparation

All-atom One-site CG Slab Density Profile

MS-CG
All-atom

MS-CG theory fails to 
capture phase coexistence
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Using a cross-density as an order parameter to 
distinguish the different chemical environments

UCG Model Design: Liquid/Liquid Interface

InnerOuter Outer

Inner 
region

Outer 
region

Local CCl4 density
from MeOH

Local MeOH density
from CCl4

> >

▶ For MeOH: Local density of neighboring CCl4 near MeOH
▶ For CCl4: Local density of neighboring MeOH near CCl4

J. Jin, G. A. Voth, Submitted



UCG Model Design: Local Cross-Density

(a) (b) (c) (d)

Local cross-density represents a bimodal character:
UCG model is designed to distinguish two different 
environments

Local density of CCl4 from MeOH Local density of MeOH from CCl4

Inner: Less denser
Outer: Denser

Inner: Denser
Outer: Less denser

1. Order Parameter for MeOH 2. Order Parameter for CCl4

J. Jin, G. A. Voth. Submitted



Liquid/Liquid UCG Model Results 
MeOH Density Profile

CCl4 Density Profile
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UCG model improves the phase coexistence with reproducing the 
correct structure from the RDFs  
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The emerging concept 
of the “Ultra-Coarse-
Grained” (UCG) model 
can accomplish this!

The Multiscale Challenge

How do we incorporate 
essential physics in 
such highly CG’ed
models?



Virion maturation

Immature virion releaseVirion assembly
and budding

Fusion with
cell membraneCapsid

uncoating

Viral RNA is
replicated by

the infected cell

Gag polyprotein
and other

virion components
are generated by
the infected cell

Ganser-Pornilloset	al,	Curr.	O
p.	Struct.	Biol.2008,	18:203

UCG	Application:	HIV	Capsid	Assembly



Virion maturation

Immature virion releaseVirion assembly
and budding

Fusion with
cell membraneCapsid

uncoating

Viral RNA is
replicated by

the infected cell

Gag polyprotein
and other

virion components
are generated by
the infected cell

Ganser-Pornilloset	al,	Curr.	O
p.	Struct.	Biol.2008,	18:203

Next	Application:	HIV	Capsid	Assembly*

*John M. A. Grime, J. F. Dama, B. K. Ganser-Pornillos, C. L. 
Woodward, G. J. Jensen, M. Yeager, G. A. Voth, “Coarse-grained 
Simulation Reveals Key Features of HIV-1 Capsid Self-Assembly”, 
Nature Comm. 7, 11568(1-11) (2016). 



HIV-1 “maturation”: no conical capsid, no infectivity
All-atom	CA	dimer

CG	CA	dimer

✂
�

✂
�

✂
�



Coarse-grained CA Protein Model: Excluded Volumes 
by Helices and CTD / CTD Dimer Interface Constraint

• Important distance constraint between carbon betas 
of residue 185 (helix 9) across the dimer interface; 
conserved for 2KOD1 & 1A432 ( 9.17 Å & 9.18 Å )

1: Byeon et al, Cell 139 (2009) 2: Worthylake et al, Acta Cryst. D 55 (1999)

Side	view Top	viewFront	view



NTD/NTD	
binding	pocket NTD/CTD	

binding	pocket

Energy	terms	in	the	CG	model	are	therefore	”simple”:

1. Purely	repulsive	interactions	on	almost	all	CG	beads,	relatively	insensitive	to	
the	precise	functional	form	(Morse,	repulsive	Lennard-Jones,	simple	linear	
repulsion	have	all	been	tested)

2. Simple	attractive	basin	for	the	binding	pockets (again,	apparently	insensitive	to	
the	functional	form:	truncated	harmonic,	Gaussian,	simple	linear	attraction)

3. Harmonic	angle	potential to	control	CTD	pivot	motions,	parameterized	to	
reproduce	range	of	pivot	angles	in	model	capsid	structure1

The	effects	of	flexibility	in	the	CTD	dimer	interface	are	currently	under	investigation.
1	Pornillos et	al,	Nature	2011;	469:424-428

Coarse-grained CA Protein 
Model: Attractive Interfaces
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(Figure 9C). The cluster 6 configuration, however, does not
exhibit any intersubunit interactions between the N- and C-
terminal domains. Transient intersubunit interactions between
the N- and C-terminal domains in the CAFL dimer are
predominantly observed in the cluster 2 configuration (Figure
8A) and involve contacts between helix 10 of the C-terminal
domain (Pro196, Lys203, Ala204) and helices 2 (Pro34, Ile37,
Pro38) and 7 (Arg 132) of the N-terminal domain (Figures 8A
and S5A). Mutation of Pro38, Arg132, and Lys203 to a
hydrophobic residue is predicted to enhance intersubunit

contacts between the N- and C-terminal domains, thereby
reducing the population of the cluster 6 configurations relevant
for capsid assembly and providing a possible explanation for the
reduced capsid assembly rates observed for the P38A, R132A,
and K203A mutants.6,58,59

The N-terminal domain in the mutant CAFL
W184A/M185A

monomer, on the other hand, samples a much larger region
of conformational space than in the wild-type CAFL monomer
(Figure 7E,F). The latter is partially restricted not only by
transient interactions between Trp184 of the C-terminal

Figure 6. Structural ensembles calculated for the wild-type capsid (CAFL) dimer (A) and monomer (B). The overall distribution of the N-terminal
domain relative to the C-terminal domain (light and dark gray ribbons) is displayed as a reweighted atomic probability plotted at 50% (blue) and
10% (transparent red) of maximum. Also shown are projection contour maps that display the distribution of the position of the centroid of the N-
terminal domain relative to the C-terminal domain (see Materials and Methods). The dimer and monomer ensembles are characterized by six and
three main clusters, respectively. Representative structures from each cluster are shown as ribbon diagrams with a single C-terminal domain subunit
in light gray and the N-terminal domain in green. The orientation of the displayed C-terminal domain for the dimer and monomer clusters is the
same as that of the A subunit (light gray) shown in the top of panel A. For simplicity, only a single subunit is shown for the six dimer clusters.

Journal of the American Chemical Society Article

dx.doi.org/10.1021/ja406246z | J. Am. Chem. Soc. 2013, 135, 16133−1614716143

Relatively	small	amount	
of	CA	in	“native-style”	
NTD/CTD	conformation	
in	solution	(≈	5%),	with	
domain	motions	time-
correlated	(≈	5	ns) 1.

UCG-style	“switching”	
model	for	CA	…

1 Deshmukh et	al,	JACS 135:16133-16147	(2013)

CA Protein Structural Dynamism



Simple two-component system: A and B protein dimers with 
identical internal structure but different interactions:

Fixed overall [CA] (4mM, 200 mg/mL crowder), solution-state
proportion of A stochastically (re)assigned with a certain timescale. 
Examine effects of conformational heterogeneity on controlled HIV 
capsid self-assembly …
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B :
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+

=

=
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UCG-MD Style Model of HIV CA Protein
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4 mM [CA], 200 mg/mL crowder, vary proportion of “active” (i.e. 
assembly competent) CA in solution …

CA Structural Dynamism in UCG Model



No	UCG	switching UCG	switching

Controlled	self-assembly	requires	UCG-style	CA	model

20	nm
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Fig. 3. The structure of the CA pentamer.
(A) Cryo-ET reconstruction of the CA pentamer
(gray isosurface) viewed from outside the core.
The final structural model of the core pentamer is
shown with the NTD in cyan and the CTD in orange.
One monomer is highlighted in blue (NTD) and
red (CTD). (B) As in (A), viewed perpendicular to the
lattice. See also movie S4. (C) Our structural model
of the pentamer, for comparison to (D) the crystal
structure of the pentamer (PDB 3P05). (E) Com-
parison of the NTD-CTD interface in the pentamer
(cyan/red), and in the pentamer crystal structure
(magenta). (F) Two adjacent monomers within our
in-virus pentamer, with one shown as a surface view.
To illustrate how the NTD-CTD interface is opened
up in the pentamer compared to the hexamer, the
residues involved in the CPSF6 binding interface are
colored in gray. (G) As in (F) for the two adjacent
monomers in the cross-linked pentameric crystal
structure. (H) As in (F) for two adjacent monomers
in our hexamer. See also movie S5.
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Fig. 4. The arrangement of hexamers and pen-
tamers in cores. (A) Computational slices through
the tomographic reconstructions of four HIV-1 par-
ticles, twowith complete conical cores (left columns),
and two with incomplete cores (right columns).
Other cores are illustrated in fig. S7. (B) As in (A),
superimposed with the position and orientation of
each aligned hexameric and pentameric unit, re-
vealing the fullerene structure.TheCTDsare colored
gray; the NTDs of the hexameric units are colored
according to the quality of their alignment from red
(for low cross-correlation values) to green (for high
cross-correlation values); theNTDsof the pentame-
ric units are depicted in blue. (C) Three views of the
cores.The number of copies of CA making up each
of the illustrated cores is shown. See alsomovie S6.
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Recent	Cryo-ET1 used	to	infer	
hexagon	/	pentagon	subunits	
location	in	actual	in	vivo	viral	

cores:

1 Mattei,	Glass,	Hagen,	Krausslich,	and	Briggs.	Science 354:6318	(2016)



The HIV capsid (left) protects the viral genome so it can be delivered into host cells. Gilead’s tool compound, GS-CA1
(light green, right), binds between two capsid proteins in the pinwheel-like hexamer.

Credit: Gilead Sciences

Volume 95 Issue 31 | pp. 23-25
Issue Date: July 31, 2017

Conquering HIV’s capsid
After a dozen years, researchers have struck upon a molecule that can
disrupt an elusive HIV target
By Lisa M. Jarvis

For most of his career at Gilead Sciences, medicinal chemist Winston Tse has lived and

breathed one thing. While his peers at other companies hopped from project to project,

Tse has spent the past decade obsessing over a single target: the HIV capsid.

HIV’s capsid is a complex, protein-rich shell that protects the genetic payload the virus is

Conquering HIV’s capsid | July 31, 2017 Issue - Vol. 95 Issue 31 |... http://cen.acs.org/articles/95/i31/Conquering-HIVs-capsid.html?u...
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made up of 1,500 capsid proteins that

organize themselves into hexamers and

pentamers to form an eggplant-shaped

shell. HIV researchers had no close-ups of

the full capsid; a crystal structure had

captured only the monomeric protein.

Moreover, scientists weren’t—and still

aren’t—sure how the capsid assembles.

Many envision something like a

molecular knitting project that begins at

the stem end of the eggplant and gets

wider as rows of hexamers are added.

Yet one thing was clear: Those 1,500

proteins need to knit together with just

the right geometry and kinetics. “There is

a real beauty in how geometrically

structured it is,” says Tomas Cihlar, vice

president of biology at Gilead.

The shell needs to be stable enough to

come together during virus maturation

but still disassemble to expose its genetic

payload once it is inside the host cell.

That leads to a “delicate equilibrium in

the whole capsid shell, which we thought

could really be its Achilles’ heel,” Cihlar,

who conceived of the capsid program

back in 2006, adds.

In addition to having limited structural

information about the shell, Gilead researchers knew of no molecules that could

convincingly bind to the capsid protein. The only clues in the literature were “some really

Conquering HIV’s capsid | July 31, 2017 Issue - Vol. 95 Issue 31 |... http://cen.acs.org/articles/95/i31/Conquering-HIVs-capsid.html?u...

3 of 8 8/2/17, 4:05 PM

New Anti-HIV Drug: Gilead GS-CA1



Strong	inter-molecular	binder:	“overloads”	controlled	CA	self-
assembly.	Effects	akin	to	those	in	our	“uncontrolled”	CG	simulations	…

Gilead: GS-CA1
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Under	conditions	that	do	not	otherwise	produce	self-assembly,	
mimic	GS-CA1 effects	via	stabilization	of	initial	small	number	of	
trimer-of-dimers	…

Gilead: GS-CA1
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Normal	conditions:	Only	transient	
trimer-of-dimers	produced



The Mature HIV-1 Virion: The “Fullerene 
Cone” Model of the Viral Capsid

N-Terminal Domain
C-Terminal Domain



Under	conditions	that	do	not	otherwise	produce	self-assembly,	
mimic	GS-CA1 effects	via	stabilization	of	initial	small	number	of	
trimer-of-dimers	…

Gilead: GS-CA1

Initial	“stabilized”	CA Result

≈	0.5% No	effect

≈	1.0% No	effect

≈	1.5% No	effect

≈	2.5% No	effect

≈	5.0% Single	nucleation

≈	10.0% Multiple	nucleation

Self-assembly	process	appears	sensitive	
to	even	small	localized	“boosts”



New	Breakthrough	for	Going	Back	Downward	in	Scale:	
Coarse-grained	Directed	Simulation	(CGDS)*

*G.	M.	Hocky,	T.	Dannenhoffer-Lafage,	and	G.	A.	
Voth,	“Coarse-grained	Directed	Simulation”,	J.	
Chem.	Theory	Comp.	13,	4593-4603	(2017).	



Goal:	Simulate	and	restrain	subsystem	in	a	way	that	includes	
more	information	about	environment

Ideally:	Simulate	subsystem	on	exact	PMF	generated	by	full	
system

	𝐹(𝑋) = −𝑘)𝑇	ln
∫ 𝑑𝑞⃗1𝑑𝑞⃗2𝛿 𝑞⃗1 − 𝑋 𝑒567(8⃗)	

∫ 𝑑𝑟�
� 	𝑒567 8⃗ 	

Full	system	with	3N+3M	atoms	has	coordinates	𝑟 = (𝑞⃗1, 𝑞⃗2),	subsystem	has	
coordinates	has	coordinates	𝑞⃗1.	Integrate	out	𝑞2leaving	PMF	actin	on	subsystem:

Then	the	average	value	of	any	observable	𝑓 of	the	subsystem	coordinates	
(𝑓 𝑟 ≡ 𝑓 𝑞⃗1 )	can	be	recovered	just	simulating	the	subsystem:

	 𝑓 =
∫𝑑𝑟�
� 𝑓 𝑟 𝑒567 8⃗

∫ 𝑑𝑟�
� 𝑒567 8⃗ =

O𝑑𝑋
�

�
	𝑓(𝑋)𝑒56P Q

∫ 𝑑𝑋𝑒56P Q
	

However:	This	cannot	be	done	in	practice



M.	McCullagh,	M.	G.	Saunders,	G.	A.	Voth.	JACS	(2014)
R.	Sun,	O.	O.	Sode,	J.	F.	Dama,	G.	A.	Voth.	JCTC	(2017)

Problem:	have	to	restrain	actin	monomer	to	get	these	results

Actin-Catalyzed	ATP	Hydrolysis

Harmonic	bias	shrinks	fluctuations	and	doesn’t	always	reach	
correct	target	value!



Alternative:
If	state	of	system	is	well	represented	by	a	few	coarse-grained	
observables,	can	bias	these	to	have	same	means	and	
fluctuations	as	in	the	larger	environment	

Can	introduce	this	extra	information	using	minimal	bias	methods	
that	minimize	relative	entropy	between	distribution	of	observables	
in	smaller	and	larger	system.	Doing	this	requires	adding	linear	bias	
on	each	observable:	

I =

Z
dXP (X) log(P (X)/P0(X))

…subject	to	constraints	

) P (X) =
e��(H(X)+H0(X))

R
dXe��(H(X)+H0(x))



Experimentally	Directed	Simulation	(EDS)	Method

• Stochastic	gradient	descent.	Iteratively	minimize	squared	error:

Challenge: how	to	estimate	many	Lagrange	multipliers	for	a	complex	system?

• For	a	given	set	of	bias	parameters,	run	for	time	𝜏
to	compute	sample	average	of	f

• Then, choose randomly observable i=1…N and:



Application	to	Actin
Biasing	𝜙, 𝛿𝜙2, 𝑑, 𝛿𝑑2 to	match	filament	values	

Naïve	application	failed:

After	extensive	algorithmic	improvements:



Larger	Subsystems

Biasing	only	
𝜙1, 𝜙2, 𝜙T, 𝑑1, 𝑑2, 𝑑T:

In	general:	want	to	simulate	smallest	possible	sub-system
However:	larger	subsystem	contains	extra	context

Get	variance	for	
free	from	allosteric	
contacts:



CGDS	Summary
• Biasing	coarse	grained	
observables	via	learned	linear	
bias	parameters	is	a	
promising	way	to	represent	a	
subsystem	rather	than	
treating	a	large	
macromolecular	assembly

• Systematically	improved	
learning	algorithms,	which	
should	apply	to	any	
experiment	directed	
simulation

• Available	for	use	now	à Hocky, Dannenhoffer-Lafage, Voth
J. Chem. Theory Comput. (2017)



Now for a little quantum mechanics….



Quantum Statistical Mechanics …
“Coarse-graining away” the quantum*

*A.	V.	Sinitskiy	and	G.	A.	Voth,	“A	Reductionist	Perspective	on	Quantum	
Statistical	Mechanics:	Coarse-Graining	of	Path	Integrals”,	J.	Chem.	Phys.	
143,	094104	(2015).	



Path	Integral	Formulation

q

q = q1 qP+1 = q'

qP

q2 q3

…

Classical	isomorphism	(Feynman):

(P→∞)

q e−βH q '

quantum

N particles

classical

NP particles

mP
2π2β
!

"
#

$

%
&

P/2

dq2…dqPe
−βVP (q,q2 ,…qP ,qP+1 )∫

where VP (q,q2,…,qP,q ') =
mP
22β 2

qi − qi+1( )2 +V (qi )+V (qi+1)
2P

"

#
$

%

&
'

i=1

P

∑

PIMD or PIMC simulations:
Run simulations for large P

Chandler,	Wolnyes,	Berne,	Parrinello,	
Klein,	Doll,	etc (early	1980’s)

q'
 τ = !β



Our	Past:	Imaginary	Time	Path	
Centroids

• PI	centroid	density:	analogue	of	the	Boltzmann	density	from	
classical	statistical	mechanics

• How	to	deal	with	operators?

• Center	of	the	cyclic	paths:
no	off-diagonal	elements.

J.	Cao,	G.A.	Voth.	(1993) J.	Chem.	Phys and	subsequent	papers.
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FIG. 1. A schematic diagram depicting a discretized Feynman path q( r) 
within the imaginary time interval Q",.".,..fi/3. The isomorphic classical qua-
siparticles are shown by the dark circles which form a "ring polymer." Each 
quasiparticle "interacts" with its two nearest neighbors through effective 
harmonic forces and feels the external potential through the term V(qi)/P 
[cf. Eq. (1.2)]. The centroid variable qo defined in Eqs. (1.5) and (1.6) is also 
shown. 

Feynman noted that a quantum mechanical "centroid 
density" Pc(qc) can be defined for the path centroid variable 
which is the path sum over all paths with their centroids 
located at some point in space denoted by qc' Specifically, 
the formal expression for the centroid density is given by 

Pc(qc)= f .. J !f;q( r)o(qc-qo)exp{ -S[q( r)]/Ii}. (1.7) 

The quantum partition function in Eq. (1.3) is then obtained 
by the integration of the centroid density over all possible 
positions of the centroid, i.e., 

(1.8) 

Some caution is in order when one uses the centroid density 
because it is distinctly different from the coordinate (or par-
ticle) density p(q) given by 

p(q)=(qle-,sHlq)= J .. J 
Xexp{ -S[q( r)]/Ii}, (1.9) 

where q(O) is the beginning and end point of the cyclic 
quantum path q( r) and is definitely not the centroid variable 
in Eq. (1.5). Thus, the particle density function is the diago-
nal element of equilibrium density matrix in the coordinate 
representation, while the centroid density does not have a 
similar physical interpretation. Nevertheless, the integration 
over either density yields the quantum partition function. 

Feynman used the definition of the centroid density 
along with a simple approximation for the action functional 
in Eq. (1.4) to derive an expression for a quasiclassical par-
tition function.7 The latter function is expressed as an inte-
gration over an effective Boltzmann factor which, in tum, 
depends on a variational effective potential determined at 
each value of the centroid variable with the help of an ap-
propriate centroid density formulationS of the Gibbs-
Bogoliubov variational principle. In subsequent work, sev-
eral authors9- 11 have improved on Feynman's original 
approach by using a more physically accurate variational 
harmonic reference system to describe the imaginary time 
path fluctuations around the centroid variable. The effective 
harmonic frequency and effective potential are again deter-

mined at each value of the centroid variable, resulting in an 
approximate expression for the centroid density in Eq. (1.7). 
An approximate variational partition function9- 11 can then 
be determined in such a theory by virtue of Eq. (1.8). 

One conclusion that can be reached from the aforemen-
tioned work of Feynman7 and others,9-11 as well as from the 
apparent utility of the centroid density-based formulation of 
quantum transition state theory,12 is that the centroid density 
is a particularly useful quantity about which to develop ap-
proximate, but highly accurate, quantum mechanical expres-
sions and to probe the quantum-classical correspondence 
principle in statistical mechanics. It is in this spirit that a 
more general centroid density-based formulation of quantum 
Boltzmann statistical mechanics is presented in the present 
paper. This formulation is based on a single important no-
tion: In any such theory, the centroid density should occupy 
the same role as the Boltzmann density in classical statistical 
mechanics. That is, the rules for calculating operator aver-
ages and imaginary time correlation functions should be re-
formulated so that the final result of such a calculation is 
obtained by an integration over the centroid density (i.e., by 
a statistical weighting with the centroid density). It will be 
shown that such a formulation is not completely trivial due 
to the mathematical differences between the centroid ap-
proach and the usual rules of quantum statistical mechanics. 
Nevertheless, the resulting expressions are quite interesting 
both in terms of the classical-quantum correspondence prin-
ciple and from the analytical point of view. One result from 
this approach is that the centroid formulation seems to actu-
ally simplify the calculation of some quantum mechanical 
quantities since the imaginary time path fluctuations have 
been "preaveraged" in the centroid density expression. This 
statement is particularly true in the case of quantum dynam-
ics (i.e., time correlation functions) which are discussed in 
the companion paper13 and in Ref. 14. 

Another significant feature of the centroid density-based 
formulation of statistical mechanics is that by concentrating 
on the centroid density as the central statistical distribution, a 
formally exact diagrammatic expansion for the centroid den-
sity can be employed which turns out to be simplified from 
the point of view of the relevant diagram topologies. The 
diagrammatic expansion is also particularly amenable to 
powerful renormalization techniques. The diagrammatic 
theory draws the formal connection between various varia-
tional expressions for the centroid density which have been 
derived by others9- 11 and specific diagram resummation and 
renormalization strategies. A systematic approach to improve 
on the result of the variational centroid density theory thus 
emerges. A considerable amount of time will be devoted to 
the diagrammatic methods in the present article due to the 
central practical and formal importance of the centroid den-
sity in the formalism. 

The sections of this paper are organized as follows: In 
Sec. II, the basic equations are derived for operator averages 
and imaginary time correlation functions in the centroid 
density-based formulation of quantum statistical mechanics. 
The diagrammatic methods for the centroid density and re-
lated quantities are then discussed in Sec. III, while applica-

J. Chern. Phys., Vol. 100, No.7, 1 April 1994 

Downloaded 07 Apr 2013 to 128.135.233.48. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



Path	Integral	Formulation

q

q = q1 qP+1 = q'

qP

q2 q3

…

Classical	isomorphism	(Feynman):

(P→∞)

q e−βH q '

quantum

N particles

classical

NP particles

mP
2π2β
!

"
#

$

%
&

P/2

dq2…dqPe
−βVP (q,q2 ,…qP ,qP+1 )∫

where VP (q,q2,…,qP,q ') =
mP
22β 2

qi − qi+1( )2 +V (qi )+V (qi+1)
2P

"

#
$

%

&
'

i=1

P

∑

PIMD or PIMC simulations:
Run simulations for large P

Chandler,	Wolyes,	Berne,	Parrinello,	
Klein,	Doll,	etc (early	1980’s)

q'
 τ = !β



… and so this is what we do here for path 
integrals

Potential V

!!q= q1

!!q2 !!q3

!qP

!!qP−1

!!qP+1 = ′q…

…

 P→∞

Potential V

   
Q =

q2 +…+ qP

P −1

!q

! ′q

!Q

   VP q,q2 ,…,qP , ′q( )Isomorphic potential

Introduce an effective quasiparticle

Coarse-grained potential   VCG q,Q, ′q( )

   

VCG q,Q, ′q( ) = − 1
β lim

P→∞
ln π!2β

m
⎛

⎝
⎜

⎞

⎠
⎟

mP
2π!2β

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

P 2

dq2…dqP e−βVP q,q2,…,qP, ′q⎛
⎝⎜

⎞
⎠⎟δ Q− q2 +…+qP

P−1
⎛

⎝
⎜

⎞

⎠
⎟∫

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

Strict definition:

Sinitskiy	and	Voth,	J.	Chem.	Phys.	143,	094104	(2015)



Weyl Map: Now Momentum Comes in Play 

• The Weyl map WA is a classical-like function 
corresponding to an arbitrary QM operator    :

• In our formulas, switch from q and q' to

and get rid of       by integration over it.

• The results: momentum explicitly enters our formulas;
only two quasiparticles are left.

  
q = q + ′q

2
, Δq = ′q − q

   
′q Â p̂, q̂( ) q = dp

2π!
e

ipΔq
! WA p,q( )∫

 Δq

  Â

!q

! ′q
!!q ,p

!Q

Weyl Zeitschrift für Physik (1927)

Sinitskiy	and	Voth,	J.	Chem.	Phys.	143,	094104	(2015)



New Perspective on Quantum Statistics

• Now the expectation value of  a QM operator     at equilibrium 
and at temperature T can be computed as

• The classical two-quasiparticle effective Hamiltonian Heff is

where

  Â

  

Â p̂,q̂( ) =
dPQ dQdpdq e

−βHeff PQ ,Q,p,q⎛
⎝

⎞
⎠WA q, p( )∫

dPQ dQdpdq e
−βHeff PQ ,Q,p,q⎛

⎝
⎞
⎠∫

= WA p,q( )
"classical"

Weyl map
!!β =1 kBT

  

Heff PQ ,Q, p,q( ) = PQ
2

2MQ
+ p2

2meff q( ) +V Q( )+ kQq q( )
2 Q− q( )2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
× ...

   
kQq q( ) = 4m

!2β 2 ⋅
f 2 tanh f
f − tanh f

, meff q( ) = m ⋅ f
tanh f

, f = !β
2

′′V (q)
m

.

   
.. 1+O !3 β5 2

m3 2 ′′′V q( )⎛

⎝⎜
⎞

⎠⎟
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
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The Most Simplified Possible Quantum Statistical 
Mechanics

  
Heff PQ ,Q, p,q( )≅ PQ

2

2MQ
+ p2

2meff
const +V Q( )+ kQq q( )

2 Q− q( )2

Sinitskiy	and	Voth,	J.	Chem.	Phys.	143,	094104	(2015)



This is what we have learned about quantum 
stat mech in its most “reductionist” form:

QUANTUM 
PARTICLE

“Centroid” 
quasiparticle

Observable 
quasiparticle

Potential V(Q)

Harmonic 
spring”

OBSERVER !! q ,p( )

• The Coarse-Grained 
Path Integral (CG-PI) 
Theory

!! Q,PQ( )

Sinitskiy	and	Voth,	J.	Chem.	Phys.	143,	094104	(2015)



Example 2: Tunneling

• This 1D problem
is motivated by 
hydrogen tunneling
through 5 kcal/mol
barrier at 310 K

• The CG-PI result is 
very good 
(vs. classical) 
and cheap 
(vs. full quantum)

  
V q( ) = ciq

i

i=0

4

∑

  

c0 = 6, c1 = −1.5,
c2 = −44, c3 = 2, c4 = 88

ρ(q)/Z, Å-1



This is what we have learned about quantum 
stat mech in its most “reductionist” form:

QUANTUM 
PARTICLE

“Centroid” 
quasiparticle

Observable 
quasiparticle

Potential V(Q)

Harmonic 
spring”

OBSERVER !! q ,p( )

• The Coarse-Grained 
Path Integral (CG-PI) 
Theory

!! Q,PQ( )
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Summary: For the Future

• Ultra-Coarse-Graining (UCG): Exciting new capability

• Coarse-graining of the quantum mechanics (nuclear motion)

• Rigorous “bottom-up” theory for “QM/CG-MM” (JCP 2018)

• Quantum theory of MS-CG (qMS-CG) (JCP 2018)

• Mesoscopic “non-molecular” coarse-graining (in prep)

• Reactive and multi-configurational CG models (in prep)

• “On the fly” coarse-graining with quantum electronic structure
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