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ADVANCED TECHNIQUES (MC/MD) 

 

A (seemingly) random selection. 

Daan	Frenkel	

Beyond Newtonian MD 

 

1.  Langevin dynamics 

2.  Brownian dynamics 

3.  Stokesian dynamics 

4.  Dissipative particle dynamics 

5.  Etc. etc. 

WHY?	
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1.  Can be used to simulate molecular 
motion in a viscous medium, 
without solving the equations of 
motion for the solvent particles. 

2.  Can be used as a thermostat. 

First, consider motion with friction  
alone: 

After a short while, all particles will stop 
moving, due to the friction.. 

Better: 

Conservative 
force 

“random” force 

Friction 
force 
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There is a relation between the 
correlation function of the random force 
and the friction coefficient: 

The derivation is straightforward, but beyond 
the scope of this lecture.  

The KEY point is that the friction force and the 
random force ARE RELATED.  

Limiting case of Langevin dynamics:  

No inertial effects (m=0) 

Becomes: 

“Brownian Dynamics” 
(But still the friction force and the random 
force are related)  
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What is missing in Langevin dynamics 
and Brownian dynamics? 

1. Momentum conservation 

2. Hydrodynamics 

(1 and 2 are not independent). 

Is this serious? 

Not always: it depends on the time 
scales.  

Momentum “diffuses” away in a time 
L2/ν. After that time, a “Brownian” 
picture is OK. 

However: hydrodynamics makes that 
the friction constant depends on the 
positions of all particles (and so do 
the random forces…). 
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Momentum conserving, coarse-grained 
schemes: 

 

•  Dissipative particle dynamics 

•  Stochastic Rotation Dynamics 

 

These schemes represent the solvent 
explicitly (i.e. as particles), but in a highly 
simplified way. 

ADVANCED	MC	SAMPLING 
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Conven6onal	MC	performs	a	random	walk	in	
configura6on	space,	such	that	the	number	of	
6mes	that	each	point	is	visited,	is	propor6onal	
to	its	Boltzmann	weight.	

Is	the	rejec6on	of	Monte	Carlo	trial	moves	wasteful?	

Metropolis,	
Rosenbluth,Rosenbluth,		

Teller	and	Teller	choice:	
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In particular, if: 

Then 

(100% acceptance) 

Solution of conflict: play with the a-priori 
probabilities of trial moves:  

100%	acceptance	can	be	achieved	in	
special	cases:	e.g.	Swendsen-Wang,	
Wolff,	Luyten,	Whitelam-Geissler,	
Bortz-Kalos-Lebowitz,	Krauth…			

General	idea:	construct	“cluster	moves”	

Simplest	example:	
Swendsen-Wang	
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Illustra6on:	2D	Ising	model.	

Snapshot:	some	neighbors	are	parallel,	others	
an6-parallel	

Number of parallel nearest-neighbor pairs:  Np 

Number of anti-parallel nearest neighbor pairs is:   Na 

Total energy: U = (Na-Np) J 
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Make “bonds” between parallel neighbors. The 
probability to have a bond (red line) between 
parallel neighbors is p (as yet undetermined). 
With a probability 1-p, parallel neighbors are not 
connected (blue dashed line).  

Form clusters of all spins that are connected by 
bonds. Some clusters are all “spin up” others are 
all “spin down”.   

Denote the number of clusters by M. 
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Now randomly flip clusters. This yields a new 
cluster configuration with probability P(flip) 
=(1/2)M. 

Then reconnect parallel spins 

Next: forget about the “bonds”… 
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New spin configuration! 
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Moreover, we want 100% acceptance, i.e.: 

Pacc(o→n) = Pacc(n→o) = 1  



26/01/18	

13	

Hence: 

But remember: 

Combining this with: 

we obtain: 
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100% acceptance!!! 

Include “rejected” moves in the sampling 

WASTE RECYCLING MC 
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This is the key: 

This, we can rewrite as: 
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Note that <A> is no longer an average 
over “visited” states – we also include 
“rejected” moves in the sampling.   

Slightly dishonest and slightly trivial example:  
 
Sampling the magnetization of a 2D Ising 

system 
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Compare: 

1.  Normal (Swendsen-Wang) MC 
(sample one out of 2n states) 

2.  Idem + “waste 
recycling”         (sample all 2n states) 

10-4 

10-12 

10-16 

10-8 

P(S) 

Swendsen-Wang 

Waste-recycling MC 
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Monte	Carlo	sampling	with	noisy	weight	func6ons.		
	
Two	possible	cases:	

1.   The	calculaGon	of	the	energy	funcGon	is	
subject	to	staGsGcal	error		(Ceperley,	Dewing,	J.	Chem.	
Phys.	110,	9812	(1999).)	

u
computed

= u
real

+ �u

with:	
We	will	assume	that	
the	fluctua6ons	in	u	
are	Gaussian.	Then:	

< �u >= 0
< (�u)2 >= �2

s

P
n

(x
n

)
P

o

(x
o

) = exp[���u]

Now	consider	that	we	do	Monte	Carlo	with	this	noisy	
energy	func6on:	

�u = u
n

+ �u
n

� u
o

� �u
o

with	

Then:	D
P

n

P
o

E
= exp[��h�ui+ (��)2/2]

With:		�2 = 2�2
s



26/01/18	

19	

As	a	consequence,	we	sample	the	states	
with	the	wrong	weight.	

However,	we	can	use	another	acceptance	
rule:	
	Pacc = Min{1, exp[���u� (��)2/2]}

In	that	case:	D
P

n

P
o

E
= exp[��h�ui+ (��)2/2]⇥ exp[�(��)2/2]

= exp[��h�ui]

In	other	words:		
	
If	the	sta6s6cal	noise	in	the	energy	is	Gaussian,		
	
and	its	variance	is	constant,		
	
then	we	can	perform	rigorous	sampling,	even	when	
the	energy	func6on	is	noisy	
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2. 	The	weight	funcGon	is	noisy,	but	its	average	is	
correct	(not	so	common	in	molecular	simula6on,	but	
quite	common	in	other	sampling	problems)	

(can	also	be	sampled	rigorously	–	but	
outside	the	scope	of	this	lecture)	

Recursive sampling 
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Outline: 

1.  Recursive enumeration 

a)  Polymer statistics (simulation) 

b)  .. 

2.  Molecular Motors (experiments!) 

(well, actually, simulated experiments) 

Lattice polymers: 
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This method is exact for non-self-avoiding, non-
interacting lattice polymers. 

 

It can be used to speed up MC sampling of 
(self)interacting polymers  

B. Bozorgui and DF, Phys. Rev. E 75, 036708 (2007))   

NOTE:	`MFOLD’	also	uses	recursive	sampling	to	predict	RNA	secondary	
structures.	
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EXAMPLES: 
1.  Recursive analysis of Molecular Motor trajectories 
2.  Computation of granular entropy 

FREE-ENERGY	METHODS	OUTSIDE	STATISTICAL	MECHANICS	

EXAMPLES: 
1.  Recursive analysis of Molecular Motor trajectories 
2.  Computation of granular entropy 

FREE-ENERGY	METHODS	OUTSIDE	STATISTICAL	MECHANICS	
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Kinesin motor steps along micro-tubules 
with a step size of 8nm 

 

Experimentally, the step size is 
measured by fitting the (noisy) data. 
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Example:  noisy “synthetic data”  

: “true” trace 

Example:  noisy “synthetic data”  
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Best practice: “fit steps to data” 

J.W.J. Kerssemakers et al. , Nature 442,709 (2006) 

How well does it perform? 

1.  It can be used if the noise is less than 60% of the 
step size. 

2.  It yields a distribution of step sizes (even if the 
underlying process has only one step size) 
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Observation: 

We want to know the step size and the step frequency but… 

We do not care which trace is the “correct” trace. 

Bayesian approach:  compute the partition function Q of non-
reversing polymer in a rough potential energy landscape 

 “true” trace Other directed walks 
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As shown before: we can enumerate Q exactly (and 
cheaply). 

 

From Q we can compute a “free energy”  

Compute the “excess free energy” with respect to reference data  
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EXAMPLES: 
1.  Recursive analysis of Molecular Motor trajectories 
2.  Computation of granular entropy 

FREE-ENERGY	METHODS	OUTSIDE	STATISTICAL	MECHANICS	

J.	Phys.	Condens.	Maner	2,	SA63	(1990)	

`Notice that the entropy S(N,V) is a well 
defined quantity, the logarithm of the  
number of ways the grains can be 
assembled to fill the volume V…’ 
 

J .  Phys.: Condens. Matter 2 (1990) SA63-SA68. Printed in the UK 

The flow of powders and of liquids of high viscosity 

S F Edwards 
Cavendish Laboratory, Cambridge CB3 OHE, UK 

Received 10 July 1990, in final form 21 September 1990 

Abstract. It is argued that powders have so many particles per unit volume that they can be 
treated in a manner similar to conventional liquids. They have an entropy S(V,  N ) ,  but as 
energy is not important the place of temperature dE/dSis taken by dV/aS. Equationscapable 
of giving plug flow are derived. It is argued that highly viscous liquids approaching the glass 
transition can have a structural order that differs from that of equilibrium at the ambient 
temperature, defined by the other majority degrees of freedom. The ideas from powder 
theory enable one to derive the dependence of the glass temperature on the cooling rate. 

1. Introduction 

Powders are normally assemblies of a very large number of grains-numbers that imply 
that there should be well defined laws for their equations of flow and of state. Many 
powders do indeed flow like liquids and show well defined rules for mixing and demixing 
of different species. 

Thermal properties are usually of little importance, i.e. temperature is a minor 
feature. The dominant physical feature is the absence of a definite density, since frictional 
effects are usually dominant and the density can be raised or lowered within well 
established limits by shaking or compressing. 

This dilatancy of powder should be describable by some analogue of temperature in 
thermal systems, i.e., just as a thermal system has any energy (within limits) and is 
therefore labelled by a temperature, we argue that a powder is characterized by a 
compactness which will be shown to be X = dV/dS in analogy to T = dE/dS. Notice that 
the entropy S ( N ,  V )  is a well defined quantity, the logarithm of the number of ways the 
grains can be assembled to fill the volume V ,  so Xis  well defined. 

The argument for the central position of X is given in section 2 where it is argued 
that whereas a flowing liquid is described by p,  U ,  T ,  a flowing powder is described by 
p ,  U ,  X, and some tentative equations of motion are offered there. 

The relationship with high viscosity liquids comes about in the following way. When 
a liquid is cooled towards the glass temperature its configurational structure departs 
from equilibrium according to the cooling rate. It is fruitful in theoretical physics to look 
at extreme cases, and an extreme version of disequilibrium is a powder. In such a case 
a variety of configurational orders are possible, characterized by dV/dS. We argue that 
the behaviour of the liquid rapidly cooled towards the glass can be described by the 
deviation of dV/dS from its equilibrium value. Although this idea is very close to the 
well known idea of having two temperatures in a system, it will be shown to have some 

0953-8984/90/SA0063 + 06 $03.50 @ 1990 IOP Publishing Ltd SA63 
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Well	defined	–	maybe…	

But	we	cannot	test	much,	if	we	cannot	
compute	Sgranular	

Note:	`powders’	are	non-thermal.	Hence,	
Boltzmann	Stat	Mech	does	not	apply.	

How	to	count	number	of	mechanically	
stable	`jammed’	states?	

	(number	of	poten6al	energy	minima)	
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U(x)	

x	

Start	with	a	random	ini6al	configura6on	of	sop	
spheres	and		

find	the	nearest	poten6al-energy	minimum		

s1	
0	 1	

1	

s2	

`High-dimensional’	case	
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Can we count the number of distinct 
jammed states numerically ? 

 

1. Brute-force method. 

Try a large number of initial 
configurations. Count how often a 
given minimum is visited. 

Works only for small systems  ( O(15) ) 

2.  “Average-volume” route. 

Brute	force	method:	
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How	do	we	count	the	number	of	dis6nct,	
disordered	states?	

1. Compute the distribution P(v) of 
(scaled) volumes v. 

2. 1/Nds = <v> 

s1	0	 1	

1	

s2	This	translates	a	
counGng	problem	into	
a	sampling	problem.	

How	to	enumerate	the	troughs	(“minima”)	in	a	percola6ng	
lake?	



26/01/18	

36	

STEPS:	
1.  Compute	the	area	A	of	the	map	(easy:	Lx	x	Ly)	
2.  Compute	the	average	area	<a>	of	a	trough																			

(“the	volume	of	a	basin	of	anrac6on”)		
3.  Ω	=	A/<a>	
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To	compute	the	“hyper-volume” 	v	of	the	
basin	of	anrac6on	of	a	given	jammed	state	
we	must	use	a	free-energy	calcula6on	
(similar	to	Einstein-crystal	method):		

f(v)=-kT	ln(v)	

Calcula6on	(e.g.	by	thermodynamic	integra6on)	is		
expensive	because	every	Monte	Carlo	trial	move	
requires	a	full	energy	minimiza6on	

H0(X) = 0 if inside

H0(X) = 1 if outside

Xmin
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Looks	like	a	par66on	func6on…	

Compute	f	by	thermodynamic	integra6on	

Define	`free	energy’	f	

f = � lnVbasin

Vbasin =

´
basin dX exp (�H0)

For	`large’	λ,	f(λ)	is	the	(known)	N-dimensional	
Harmonic	Oscillator	free	energy.		

Generalise	Hamiltonian:	

H� = H0(X) + � (X �Xmin)
2

Define	`free	energy’	f(λ)	

f(�) = � ln

⇥´
basin dX exp (�H�(X))

⇤
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Compute		 Vbasin = e�f(�=0)

By	thermodynamic	integra6on,	using	

@f(�)
@� =

D
(X �Xmin)

2
E

Prac6cal	challenge:	we	must	sample	inside	the	
basin	

Compu6ng	basin	volumes	in	high-dimensional	
spaces	is	a	general	problem,	not	just	in	granular	
physics	

Example	from	Dynamical	Systems	Theory:	
“the	en6re	topic	of	basins	is	something	of	an	enigma	in	
dynamical	systems	theory	[.	.	.	]	what	we	do	not	know	is	
how	 to	 compute	 the	 total	 volume	 or	 “measure”	 of	 a	
basin,	which	 is	what	 determines	 the	probability	 that	 a	
random	ini6al	state	will	be	drawn	toward	the	associated	
anractor.”	
	
D.	A.	Wiley,	S.	H.	Strogatz,	and	M.	Girvan.	Chaos	16.1	(2006),	p.	015103	
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(−

ln
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This is an example of the distribution of basin volumes  

System: 2D polydispers Hard Disks 

10250		

That is about 
10240 times better 

than existing 
methods 

Polydisperse 2D `soft’ 
disks – just above 
jamming (φ=0.88) 

(number	of	par6cles)	
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Method	to	obtain	the	best	es6mate	of	free-	
energy	differences	from	umbrella	sampling	

(Mul6state	Bennen	Acceptance	Ra6o)	

Shirts,	M.	R.,	and	Chodera,	J.	D.	(2008)	Sta6s6cally	
op6mal	analysis	of	samples	from	mul6ple	
equilibrium	states.	J.	Chem.	Phys.	129,	129105.	

COMBINING	HISTOGRAMS:	
HOW?	

Problems:	
1. What	is	the	`best’	bin	width	
2.  How	do	we	s6tch	histograms	

together?	
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We	start	from:	

Z =

Z
dRN

exp[��U(RN
)]

F = �kBT lnZ

Suppose we have k di↵erent samples (e.g. in umbrella sampling), biased with

potentials Vk(R
N
). Assume that we have Nk points for sample k We can then

define ‘partition functions Zk for the biased systems as

and	

MBAR:	No	binning	and	`opGmal’	sGtching.	

Zk ⌘
Z

dRN
exp(��[U(RN

) + Vk(R
N
)])

Fk ⌘ �kBT lnZk

�Fk ⌘ Fk � F = kBT ln(Z/Zk)

and	

In	what	follows,	we	will	use:	
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The	key	assump6on	of	MBAR	is	that	the	true	(as	
opposed	to	the	sampled)	distribu6on	func6on	is	
a	weighted	set	of	delta-func6ons	at	the	points	
that	have	been	sampled.	

In	words:	we	do	not	assume	anything	
about	points	that	we	have	not	sampled.		

P (RN ) = Z�1
KX

j=1

NkX

n=1

pj,n�
�
RN �RN

j,n

�

Z ⌘
KX

j=1

NkX

n=1

pj,n

The	distribu6on	func6on	is	then	of	the	form:		

Where	the	pj,n	are	(as	yet)	unknown.	
	
The	normaliza6on	factor	is	defined	as:		
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Pk(R
N
) = Z�1

k

KX

j=1

NkX

n=1

pj,n exp(��Vk(R
N
))�

�
RN �RN

j,n

�

Once	the	full	distribu6on	is	known,	the	biased	
distribu6ons	follow:	

The	normaliza6on	factor	Zk	is	defined	as:		

Zk ⌘
KX

j=1

NkX

n=1

pj,n exp(��Vk(R
N
j,n))

Now	we	must	compute	the	unknown	
weights	pj,n	

We	do	this,	using	`maximum	likelihood’.	
	
That	is:	we	impose	that	the	values	of	the	
pj,n	should	be	such	that	the	probability	of	
obtaining	the	observed	histograms	is	
maximised		
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L ⌘
KY

j=1

"
NkY

n=1

Pk(R
N
j,n))

#
We	define	the	likelihood	L:	

L	depends	on	all	pj,n		

We	determine	pj,n	by	imposing	that	L,	or	
equivalently	ln	L	is	maximal.	

If	we	look	at	ln	L	

We	see	that		ln	pj,n		and	Zk	depend	on	pj,n		
But	the	Boltzmann	factor	does	not.	

lnL ⌘
KX

j=1

NkX

n=1

ln


pj,n
Zk

exp(��Vk(R
N
j,n))

�
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lnL = constant +

KX

j=1

NkX

n=1

[ln pj,n � lnZj ]

= constant +

KX

j=1

NkX

n=1

ln pj,n �
KX

j=1

Nj lnZj (1)

Therefore:	

Now,	we	can	differen6ate	with	respect	to	pj,n		
The	constant	yields	zero.	
The	second	term:	1/pj,n	
The	third	term	follows	if	we	use:	

Zk ⌘
KX

j=1

NkX

n=1

pj,n exp(��Vk(R
N
j,n))

0 =

1

pj,n
�

KX

k=1

Nk
exp[��Vk(R

N
j,n))]

Zk

Our	condi6on	for	maximum	likelihood	is	then	

Or:	

pj,n/Z =
1

PK
k=1

Nk
exp[��Vk(RN

j,n))]

(Zk/Z)
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pj,n/Z =

1

PK
k=1 Nk exp[��(Vk(R

N
j,n)��Fk)]

The	probability	to	observe	a	given	point	(j,n)	
given	the	op6mal	pj,n	is	then	

Where	we	have	used	

�Fk ⌘ kBT ln(Z/Zk) ⇡ kBT ln(Z/Zk)

�Fi = �kBT ln

KX

j=1

NjX

n=1

exp[��(Vi(R
N
j,n)]PK

k=1 Nk exp[��(Vk(RN
j,n)��Fk)]

We	can	rewrite	our	result	as	an	implicit	
equa6on	for	the	ΔFi	:	

These	are	the	MBAR	equa6ons	that	
must	be	solved	self-consistently	
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•  	It	does	not	use	bins.	
•  	it	makes	no	assump6on	about	the	form	of	
the	distribu6on	func6on	where	it	has	not	
been	sampled.	

•  different	biased	runs	may	sample	different	
points	in	parameter	space	

•  the	method	yields	the		best	(in	the	sense	of	
`the	most	likely’)	es6mate	for	the	histograms	
and	the	free	energy	differences.		

Advantages	of	MBAR	over	all	earlier	
schemes	(except	Bennen)	


