Ensembles in Monte Carlo

Ensembles (Chapter 5) Practical Aspects

Free Energy and Phase Equilibria

Thermodynamic Integration (7.1) Chemical Potentials (7.2) Umbrella Sampling (7.4) (Application: Phase Diagram of Carbon)

Classical and Statistical Thermodynamics

Problem: we have a set of coordinates and velocities -what to do with it?

- Statistical Thermodynamics
 - The probability to find a particular configuration
 - Properties are expressed in term of averages
 - Free energies
- Thermodynamics: relation of the free energies to thermodynamic properties

Monte Carlo

What is the correct probability? Statistical Thermodynamics

- Generate a set of configurations with the correct probability
- Compute the thermodynamic and transport properties as averages over all configurations

How to compute these properties from a simulation?

Different Ensembles

Ensemble	Name	Constant (Imposed)	Fluctuating (Measured)
NVT	Canonical	N,V,T	Р
NPT	Isobaric-isothermal	N,P,T	V
μVT	Grand-canonical	μ,V,T	Ν

NVT

Liquids

... if force is difficult to calculate ... e.g. carbon force field

TABLE I. Parameters of the LCBOPII. The units of energy and length are eV and Å, respectively.

Switch	q	q _{min}	q _{max}	р	Switch	9	q _{min}	q _{max}	р	Switch	q	q_{min}	q _{max}	р
Salown	r _{ij}	1.7	2.2	3.0	S ^{up} _{mr}	r _{ij}	1.7	2.2	-2.0	S _N ^{down}	r _{ij}	1.7	2.2	-3.0
Stown	r _{ij}	5.5	6.0	0	S_M^{up}	N _{ki}	2.0	3.0	0	Sat	N _{ki}	3.0	4.0	0
Sdown	x_{ij}^{db}	0.0	1.0	0	Sup 20	Yij	0.34	0.93	0	Sup y.2	Yij	0.30	0.93	0
			Sho	ort-range pol	tential Vsr				2					
V _R			$A^{sr} = 3$	53026.92614	$\alpha = 6.747$	50993			_					
VA	B	r=27618.35	5706 $\beta_1 = 6$	5.34503890	$B_2^{sr} = 34.07$	142502 B	2=1.197128	39						
G		8 mi	n=0.002058	8719 g _{gr} =	-0.08310470	$g_{max} = 1$	16.0							
		$g_{1,0}=0.7$	7233666272	$g_{1,1} = 1.73$	334665088	$g_{1,2} = 1.870$	1997632							
		$g_{2,0}=0.7$	3994527795	$g_{2,1} = -1.$	999211817	$g_{2,2} = -17.4$	43251545							
			$g_{2,3} = -33$	3.96127110	$g_{2,4} = -44$	65392079								
		g _{3,0} =	-15.19 83.	1=-25.6168	8552398 g	$_{3,2} = -21.517$	28397							
			$g_{3,3}=0.9$	9899080993	$g_{3,4} = 13.6$	6416160								
				$A_{y_0} = -0.4$	$B_{y_0} = 0.0187$	5								
		$A_{g} = 5.6$	304664723	$B_g = 0.151$	6943990	$C_g = 0.009832$	2975891							
			$D_g = -0.189$	9175977654	$E_g = 0.050$	0977653631								
Н		d = 0.14	$C_1 = 3.335$	$C_4 = 220.0$	For C_6 , L ,	κ , R_0 and R	see text.							
F ^{conj}		F_i^c	onj j.0			F_i^c	onj j,1							
	0.0000	0.0207	-0.0046	-0.1278	0.0000	0.0584	0.0416	-0.1278						
	0.0207	0.0000	-0.0365	-0.1043	0.0584	0.1379	0.0062	-0.1243						
	-0.0046	-0.0365	0.0000	-0.0273	0.0416	0.0062	0.0936	-0.0393						
	-0.1278	-0.1043	-0.0273	0.0000	-0.1278	-0.1243	-0.0393	0.0000						
A _{ij}				$\alpha_0 =$	=0.95									
T _{ij}				$A_t = -13.1$	52909887									
		B_{t1}	=-0.048683	9616 B_{12} =	= 3.8 $B_{t3} = 0$	$B_{t4}=0$.005							
				Long-range	potential V	lr								
5	$\tau_0 = 3.71573$	5 = 0.00	2827918	$\lambda_1 = 1.33816$	$\lambda_{2} = 2.20$	60479 For	e. n. and	na see text						
	0 5.11515	er er ere	N	fiddle-range	potential V	mr	cl, ol, and	07 see tent						
				induite runge	Potential /				-					

Imp

NPT

Non-Isotropic Systems e.g. Solids

Structure and Transformation of Carbon Nanotube Arrays

μVT

Adsorption

Adsorption in Carbon Nanostructues

Lecture 2

Statistical Thermodynamics

Partition function (NVT)

$$Q_{NVT} = \frac{1}{\Lambda^{3N} N!} \int d\mathbf{r}^N \exp\left[-\beta U(\mathbf{r}^N)\right]$$

Ensemble average

$$\langle A \rangle_{NVT} = \frac{1}{Q_{NVT}} \frac{1}{\Lambda^{3N} N!} \int d\mathbf{r}^N A(\mathbf{r}^N) \exp[-\beta U(\mathbf{r}^N)]$$

Probability to find a particular configuration

$$N(r^{N}) = \frac{1}{Q_{NVT}} \frac{1}{\Lambda^{3N} N!} \int dr'^{N} \delta(r'^{N} - r^{N}) \exp\left[-\beta U(r'^{N})\right] \propto \exp\left[-\beta U(r^{N})\right]$$

Free energy

$$\beta F = -\ln(Q_{NVT})$$

9

Lecture 2

Ensemble average

$$\begin{split} \left\langle A \right\rangle_{NVT} &= \frac{1}{Q_{NVT}} \frac{1}{\Lambda^{3N} N!} \int d\mathbf{r}^{N} A(\mathbf{r}^{N}) \exp\left[-\beta U(\mathbf{r}^{N})\right] \\ &= \int d\mathbf{r}^{N} A(\mathbf{r}^{N}) P(\mathbf{r}^{N}) = \frac{\int d\mathbf{r}^{N} A(\mathbf{r}^{N}) P(\mathbf{r}^{N})}{\int d\mathbf{r}^{N} P(\mathbf{r}^{N})} \\ &= \frac{\int d\mathbf{r}^{N} A(\mathbf{r}^{N}) C \exp\left[-\beta U(\mathbf{r}^{N})\right]}{\int d\mathbf{r}^{N} C \exp\left[-\beta U(\mathbf{r}^{N})\right]} = \frac{\int d\mathbf{r}^{N} A(\mathbf{r}^{N}) \exp\left[-\beta U(\mathbf{r}^{N})\right]}{\int d\mathbf{r}^{N} \exp\left[-\beta U(\mathbf{r}^{N})\right]} \end{split}$$

Generate configuration using MC:

$$\left\{\mathbf{r}_{1}^{N}, \mathbf{r}_{2}^{N}, \mathbf{r}_{3}^{N}, \mathbf{r}_{4}^{N} \cdots, \mathbf{r}_{M}^{N}\right\}$$
Weighted Distribution
with

$$P^{MC}(\mathbf{r}^{N}) = C^{MC} \exp\left[-\beta U(\mathbf{r}^{N})\right]$$

$$= \frac{\int d\mathbf{r}^{N} A(\mathbf{r}^{N}) P^{MC}(\mathbf{r}^{N})}{\int d\mathbf{r}^{N} P^{MC}(\mathbf{r}^{N})}$$
$$= \frac{\int d\mathbf{r}^{N} A(\mathbf{r}^{N}) C^{MC} \exp[-\beta U(\mathbf{r}^{N})]}{\int d\mathbf{r}^{N} C^{MC} \exp[-\beta U(\mathbf{r}^{N})]}$$
$$= \frac{\int d\mathbf{r}^{N} A(\mathbf{r}^{N}) \exp[-\beta U(\mathbf{r}^{N})]}{\int d\mathbf{r}^{N} \exp[-\beta U(\mathbf{r}^{N})]}$$

Lecture 2

Monte Carlo: Detailed balance

$$K(o \to n) = K(n \to o)$$

$$K(o \to n) = \begin{cases} K(o \to n) = N(o) \times \alpha(o \to n) \times \operatorname{acc}(o \to n) \\ \bullet & N(o) : \text{ total number of systems in our ensemble in state of } \\ \bullet & a(o \to n) : \text{ a priori probability to generate a move } o \to n \\ \bullet & acc(o \to n) : \text{ probability to accept the move } o \to n \end{cases}$$

$$\frac{\operatorname{acc}(o \to n)}{\operatorname{acc}(n \to o)} = \frac{N(n) \times \alpha(n \to o)}{N(o) \times \alpha(o \to n)} = \frac{N(n)}{N(o)}$$

Monte Carlo in *NVT*-Ensemble

$$\frac{N(n) \propto \exp\left[-\beta U(n)\right]}{\arccos(n \to o)} = \frac{N(n)}{N(o)}$$

Metropolis, Rosenbluth, Rosenbluth,

Teller and Teller[#]choice: # J. Chem. Phys. 21, 1087 (1953)

$$\operatorname{acc}(o \to n) = \frac{N(n)}{N(o)} = \exp\left[-\beta(U(n) - U(o))\right] \quad if \quad N(n) < N(o)$$
$$= 1 \qquad \qquad if \quad N(n) > N(o)$$

Lecture 2

NPT ensemble

We control the

- Temperature (T)
- Pressure (P)
- Number of particles (N)

Intermezzo

Scaled coordinates

Partition function

$$Q_{NVT} = \frac{1}{\Lambda^{3N} N!} \int d\mathbf{r}^N \exp\left[-\beta U(\mathbf{r}^N)\right]$$

Scaled coordinates

$$\mathbf{s}_i = \mathbf{r}_i / L$$

This gives for the partition function

The energy depends on the real coordinates

$$Q_{NVT} = \frac{L^{3N}}{\Lambda^{3N}N!} \int ds^{N} \exp\left[-\beta U\left(s^{N};L\right)\right]$$
$$= \frac{V^{N}}{\Lambda^{3N}N!} \int ds^{N} \exp\left[-\beta U\left(s^{N};L\right)\right]$$

NPT Ensemble

Partition function:

$$Q_{NPT} = \frac{\beta P}{N! \Lambda^{3N}} \int dV \exp[-\beta PV] V^N \int ds^N \exp[-\beta U(s^N;L)]$$

Probability to find a particular configuration:

Detailed balance

$$K(o \to n) = K(n \to o)$$

$$K(o \to n) = N(o) \times \alpha(o \to n) \times \operatorname{acc}(o \to n)$$

$$K(n \to o) = N(n) \times \alpha(n \to o) \times \operatorname{acc}(n \to o)$$

$$\frac{\operatorname{acc}(o \to n)}{\operatorname{acc}(n \to o)} = \frac{N(n) \times \alpha(n \to o)}{N(o) \times \alpha(o \to n)} = \frac{N(n)}{N(o)}$$

$$NPT\text{-ensemble}$$

$$N_{NPT}(V, \mathbf{s}^{N}) \propto V^{N} \exp[-\beta PV] \exp[-\beta U(\mathbf{s}^{N}; L)]$$

$$\frac{\operatorname{acc}(o \to n)}{\operatorname{acc}(n \to o)} = \frac{N(n)}{N(o)}$$

Suppose

 $\frac{\text{Acc}(o - Metropolis, Rosenbluth, Rosenbluth,}{\text{Teller and Teller}^{\#} choice:}$ $\frac{\text{Acc}(n - \text{J. Chem. Phys. 21, 1087 (1953)})}{\text{Acc}(n - \text{Hom. Phys. 21, 1087 (1953)})}$

1

$$\operatorname{acc}(o \to n) = \frac{N(n)}{N(o)}$$

=

particle

$$if \quad N(n) < N(o)$$

$$if \quad N(n) > N(o)$$

$$NPT\text{-ensemble}$$

$$N_{NPT}(V, \mathbf{s}^{N}) \propto V^{N} \exp[-\beta PV] \exp[-\beta U(\mathbf{s}^{N}; L)]$$

$$\frac{\operatorname{acc}(o \to n)}{\operatorname{acc}(n \to o)} = \frac{N(n)}{N(o)}$$

Suppose we change the *volume* of the system

$$\frac{\operatorname{acc}(o \to n)}{\operatorname{acc}(n \to o)} = \frac{V_n^N \exp\left[-\beta P V_n\right] \exp\left[-\beta U\left(s^N; L_n\right)\right]}{V_o^N \exp\left[-\beta P V_o\right] \exp\left[-\beta U\left(s^N; L_o\right)\right]}$$
$$= \left(\frac{V_n}{V_o}\right)^N \exp\left[-\beta P\left(V_n - V_o\right)\right] \exp\left\{-\beta \left[U(n) - U(0)\right]\right]$$

Algorithm: NPT

- Randomly change the position of a particle
- Randomly change the volume

Algorithm 10 (Basic NPT-Ensemble Simulation)

```
basic NPT ensemble simulation
 PROGRAM mc_npt
                                    perform neyc1 MC cycles
 do icycl=1,ncycl
   ran=ranf()*(npart+1)+1
   if (ran.le.npart) then
     call mcmove
                                    perform particle displacement
   else
     call mcvol
                                    perform volume change
   endif
   if (mod(icycl,nsamp).eq.0)
                                    sample averages
     call sample
+
 enddo
 end
```

```
attempts to displace a particle
 SUBROUTINE mcmove
                                  select a particle at random
 o=int(ranf()*npart)+1
                                  energy old configuration
 call ener (x(o), eno)
                                  give particle random displacement
 xn=x(o) + (ranf() - 0.5) * delx
                                  energy new configuration
 call ener(xn, enn)
                                  acceptance rule (3.2.1)
 if (ranf().lt.exp(-beta
                                  accepted: replace x(o) by xn
+ *(enn-eno)) x(o) = xn
 return
 end
```

Comments to this algorithm:

- 1. Subroutine ener calculates the energy of a particle at the given position.
- 2. Note that, if a configuration is rejected, the old configuration is retained.
- 3. The ranf () is a random number uniform in [0, 1].

Algorithm 11 (Attempt to Change the Volume)

NPT simulations

Equation of State of Lennard Jones System

Grand-canonical ensemble

- We impose:
 - Temperature (T)
 - Chemical potential (μ)– Volume (V)

– But **NOT** pressure

µVT Ensemble

Partition function:

$$Q_{\mu VT} = \sum_{N=0}^{N=\infty} \frac{\exp(\beta \mu N) V^{N}}{\Lambda^{3N} N!} \int ds^{N} \exp\left[-\beta U(s^{N};L)\right]$$

Probability to find a particular configuration:

Detailed balance

$$K(o \to n) = K(n \to o)$$

$$K(o \to n) = N(o) \times \alpha(o \to n) \times \operatorname{acc}(o \to n)$$

$$K(n \to o) = N(n) \times \alpha(n \to o) \times \operatorname{acc}(n \to o)$$

$$\frac{\operatorname{acc}(o \to n)}{\operatorname{acc}(n \to o)} = \frac{N(n) \times \alpha(n \to o)}{N(o) \times \alpha(o \to n)} = \frac{N(n)}{N(o)}$$

$$\frac{\mu VT\text{-ensemble}}{N_{\mu VT}\left(V,\mathbf{s}^{N}\right) \propto \frac{\exp(\beta\mu N)V^{N}}{\Lambda^{3N}N!} \exp\left[-\beta U\left(\mathbf{s}^{N};L\right)\right]}{\operatorname{acc}(n \to o)} = \frac{N(n)}{N(o)}$$

Suppose

Metropolis, Rosenbluth, Rosenbluth, $\frac{\operatorname{acc}(o - \operatorname{Teller} \text{ and Teller}^{\sharp} \text{ choice:}}{\operatorname{acc}(n - \operatorname{Flue} \operatorname{Phys. 21, 1087 (1953)}}$ $\operatorname{acc}(o \to n) = \frac{N(n)}{N(o)}$ = 1

. particle

 $if \quad N(n) < N(o)$

 $if \quad N(n) > N(o)$

$$\frac{\mu VT\text{-ensemble}}{N_{\mu VT}\left(V, \mathbf{s}^{N}\right) \propto \frac{\exp(\beta \mu N)V^{N}}{\Lambda^{3N}N!} \exp\left[-\beta U\left(\mathbf{s}^{N}; L\right)\right]}{\operatorname{acc}(o \to n)} = \frac{N(n)}{N(o)}$$

Suppose we change the *number of particles* of the system

$$\frac{\operatorname{acc}(o \to n)}{\operatorname{acc}(n \to o)} = \frac{\frac{\exp(\beta\mu(N+1))V^{N+1}}{\Lambda^{3N+3}(N+1)!} \exp[-\beta U(s^{N+1};L_n)]}{\frac{\exp(\beta\mu N)V^{N}}{\Lambda^{3N}N!} \exp[-\beta U(s^{N};L_o)]}$$
$$= \frac{\exp(\beta\mu)V}{\Lambda^{3}(N+1)} \exp[-\beta\Delta U]$$
²⁸

Algorithm 12 (Basic Grand-Canonical Ensemble Simulation)

```
basic uVT ensemble
 PROGRAM mc_gc
                                       simulation
                                      perform ncycl MC cycles
 do icycl=1,ncycl_
  ran=int(ranf()*(npav-nexc))+1
  if (ran.le.npart) then
    call mcmove
                                      displace a particle
  else
                                      exchange a particle
    call mcexc
                                      with the reservoir
  end1f
  if (mod(icycl,nsamp).eq.0)
    call sample
                                      sample averages
+
 enddo
 end
```

Comments to this algorithm:

- This algorithm ensures that, after each MC step, detailed balance is obeyed. Per cycle we perform on average npav attempts^b to displace particles and nexc attempts to exchange particles with the reservoir.
- Subroutine memove attempts to displace a particle (Algorithm 2), subroutine meaxe attempts to exchange a particle with a reservoir (Algorithm 13), and subroutine sample samples quantities every nsamp cycle.

Algorithm 13 (Attempt to Exchange a Particle with a Reservoir)

Application: adsorption in zeolites

31

Summary

Ensemble	Constant (Imposed)	Fluctuating (Measured)	Function
NVT	N,V,T	Р	$\beta F=-lnQ(N,V,T)$
NPT	N,P,T	V	$\beta G = -\ln Q(N, P, T)$
μVT	μ,V,T	Ν	$\beta\Omega = -\ln Q(\mu, V, T) = -\beta PV$

Beyond standard MC

Biased Sampling (different T / parallel) – Lecture 2

More to Come

Monday (**Thijs Vlugt**) Tuesday (**Daan Frenkel**)

Parallel tempering/Replica Exchange

Ergodicity problems can occur, especially in glassy systems: biomolecules, molecular glasses, gels, etc.

The solution: go to high temperature

High barriers in energy landscape: difficult to sample

Barriers effectively low: easy to sample

Parallel tempering/Replica Exchange

Simulate two systems simultaneously

system 1 temperature T₁ system 2 temperature T₂

 $e^{-\beta_1 U_1(r^N)}$

 $e^{-\beta_2 U_2(r^N)}$

total Boltzmann weight:

 $_{\rho}-\beta_{1}U_{1}(r^{N})_{\rho}-\beta_{2}U_{2}(r^{N})$

Swap move

Allow two systems to swap

system 2 temperature T₁

 $e^{-\beta_1 U_2(r^N)}$

system 1 temperature T₂

 $e^{-\beta_2 U_1(r^N)}$

total Boltzmann weight:

$$e^{-\beta_1 U_2(r^N)}e^{-\beta_2 U_1(r^N)}$$

Acceptance rule

The ratio of the new Boltzmann factor over the old one is

$$\frac{\mathcal{N}(n)}{\mathcal{N}(o)} = e^{(\beta_2 - \beta_1)[U_2(r^N) - U_1(r^N)]}$$

The swap acceptance ratio is

_

$$\operatorname{acc}(1 \leftrightarrow 2) = \min\left(1, e^{(\beta_2 - \beta_1)[U_2(r^N) - U_1(r^N)]}\right)$$

More replicas

Consider M replica's in the NVT ensemble at a different temperature.

A swap between two systems of different temperatures (T_i,T_j) is accepted if their potential energies are near.

other parameters can be used: Hamiltonian exchange

Free Energy and Phase Equilibria

Thermodynamic Integration (7.1) Chemical Potentials (7.2) Umbrella Sampling (7.4) (Application: Phase Diagram of Carbon)

Why Free Energies?

• Reaction equilibrium constants $A \leftrightarrow B$

$$K = \frac{[B]}{[A]} = \frac{p_B}{p_A} = \exp\left[-\beta(G_B - G_A)\right]$$

- Examples:
 - Chemical reactions: e.g. catalysis, etc....
 - Protein folding, binding: free energy gives binding constants

- Phase diagrams
 - Prediction of thermodynamic stability of phases
 - Coexistence lines
 - Critical points
 - Triple points
 - First order/second order phase transitions

Phase diagrams

Critical point: no transition between liquid and vapor

Triple point: liquid, vapor and solid in equilibrium.

How do we compute these lines?

Along the liquid-gas coexistence line increasing the pressure and temperature at constant volume the liquid density becomes lower and the vapor density higher.

Phase equilibrium

Criteria for equilibrium (for single component)

$$T_{I} = T_{II} \qquad P_{I} = P_{II} \qquad \mu_{I} = \mu_{II}$$

Chemical potential

$$\mu = \left(\frac{\partial F}{\partial N}\right)_{V,T} = \left(\frac{\partial G}{\partial N}\right)_{P,T} = G_m$$

If $\mu_{I} > \mu_{II}$: transport of particles from phase I to phase II.

Stable phase:

Lowest chemical potential (for single phase: lowest Gibbs free energy)

Relation thermodynamic potentials

Helmholtz free energy: F = U - TS

Gibbs free energy: G = F + PV

Suppose we have F(n, V, T)

Then we can find G from F from:

$$P = -\left(\frac{\partial F}{\partial V}\right)_{n,T} \qquad \qquad G = F - \left(\frac{\partial F}{\partial V}\right)_{n,T} V$$

All thermodynamic quantities can be derived from F and its derivatives

We need F (or G)

• We can calculated F(V)

$$F(V) = F(V_0) + \int_{V_0}^{V} \left(\frac{\partial F}{\partial V}\right)_{N,T} dV = F(V_0) - \int P dV$$
$$F(\rho) = F(\rho_0) + N \int_{\rho_0}^{\rho} \frac{P(\rho')}{\rho^2} d\rho'$$

- So in fact for only 1 point of the equation of state the F is needed
- For liquid e.o.s even from ideal gas

$$\beta F(\rho)/N = \beta F^{id}(\rho)/N + \int_0^{\rho} \frac{\beta P(\rho') - \rho'}{\rho^2} d\rho'$$

$$\beta F(\rho)/N = \beta F^{id}(\rho)/N + \int_0^{\rho} \frac{\beta P(\rho') - \rho'}{\rho^2} d\rho'$$

Free Energies and Phase Equilibria

General Strategies

• Determine free energy of both phases <u>relative to a reference state</u>

Free energy difference calculation General applicable: Gas, Liquid, Solid, Inhomogeneous systems, ...

 Determine free energy <u>difference between two phases</u> Gibbs Ensemble Specific applicable: Gas, Liquid

Statistical Thermodynamics

Probability to find a particular configuration (NVT) $P(\mathbf{r}^{N}) = \frac{1}{Q_{NVT}} \frac{1}{\Lambda^{3N} N!} \int d\mathbf{r}^{N} \delta(\mathbf{r}^{N} - \mathbf{r}^{N}) \exp[-\beta U(\mathbf{r}^{N})] \propto \exp[-\beta U(\mathbf{r}^{N})]$

Partition function

$$Q_{NVT} = \frac{1}{\Lambda^{3N} N!} \int d\mathbf{r}^N \exp\left[-\beta U(\mathbf{r}^N)\right]$$

Free energy $\beta F = -\ln(Q_{NVT})$

Ensemble average

$$\langle A \rangle_{NVT} = \frac{1}{Q_{NVT}} \frac{1}{\Lambda^{3N} N!} \int d\mathbf{r}^N A(\mathbf{r}^N) \exp[-\beta U(\mathbf{r}^N)]$$

Ensemble average versus free energy

Generate configuration using MC: $\{\mathbf{r}_1^N, \mathbf{r}_2^N, \mathbf{r}_3^N, \mathbf{r}_4^N, \cdots, \mathbf{r}_M^N\}$

$$\overline{A} = \frac{1}{M} \sum_{i=1}^{M} A(\mathbf{r}_{i}^{N}) \approx \frac{\int d\mathbf{r}^{N} A(\mathbf{r}^{N}) \exp[-\beta U(\mathbf{r}^{N})]}{\int d\mathbf{r}^{N} \exp[-\beta U(\mathbf{r}^{N})]} = \langle A \rangle_{NVT}$$

 $\left\{\mathbf{r}_{1}^{N},\mathbf{r}_{2}^{N},\mathbf{r}_{3}^{N},\mathbf{r}_{4}^{N}\cdots,\mathbf{r}_{M}^{N}\right\}$

$$\beta F = -\ln Q_{NVT} = -\ln \frac{1}{\Lambda^{3N} N!} \int d\mathbf{r}^N \exp\left[-\beta U(\mathbf{r}^N)\right]$$

F is difficult, because requires accounting of phase space volume

I - Thermodynamic integration

- Known reference state $\lambda=0$
- Unknown target state $\lambda=1$

$$F(\lambda = 1) - F(\lambda = 0) = \int_{\lambda=0}^{\lambda=1} d\lambda \left(\frac{\partial F(\lambda)}{\partial \lambda}\right)_{N,V,T}$$

Thermodynamic integration

$$Q_{NVT}(\lambda) = \frac{1}{\Lambda^{3N} N!} \int d\mathbf{r}^N \exp[-\beta U(\lambda)]$$

$$\left(\frac{\partial F(\lambda)}{\partial \lambda}\right)_{N,T} = -\frac{1}{\beta} \frac{\partial}{\partial \lambda} \ln(Q) = -\frac{1}{\beta} \frac{1}{Q} \frac{\partial Q}{\partial \lambda}$$

$$=\frac{\int \mathrm{d}\mathbf{r}^{N} (\partial U(\lambda)/\partial \lambda) \exp[-\beta U(\lambda)]}{\int \mathrm{d}\mathbf{r}^{N} \exp[-\beta U(\lambda)]}$$

$$= \left\langle \frac{\partial U(\lambda)}{\partial \lambda} \right\rangle_{\lambda}$$

Free-energy difference
as ensemble average!
$$F(\lambda = 1) - F(\lambda = 0) = \int d\lambda \left\langle \frac{\partial U(\lambda)}{\partial \lambda} \right\rangle_{\lambda}$$

Example

• In general

$$U(\lambda) = (1 - \lambda)U_{I} + \lambda U_{II}$$
$$\left\langle \frac{\partial U(\lambda)}{\partial \lambda} \right\rangle_{\lambda} = \left\langle U_{II} - U_{I} \right\rangle_{\lambda}$$

• Specific example

$$U(\lambda) = U^{LJ} + \lambda U^{\text{dipole-dipole}}$$
$$U(0) = U^{LJ}$$
$$U(1) = U^{\text{Stockm}}$$

Lennard-Jones

Stockmayer

$$\left\langle \frac{\partial U(\lambda)}{\partial \lambda} \right\rangle_{\lambda} = \left\langle U^{dip-dip} \right\rangle_{\lambda}$$

Free energy of solid

More difficult. What is reference? Not the ideal gas.

Instead it is the Einstein crystal: harmonic oscillators around r₀

$$U(\lambda; r^{N}) = (1 - \lambda)U(r^{N}) + \lambda U(r_{0}^{N}) + \lambda \sum_{i=1}^{N} \alpha (r_{i} - r_{0,i})^{2}$$

$$F = F_{ein} - \int_{\lambda=0}^{\lambda=1} d\lambda \left\langle \frac{\partial U(\lambda)}{\partial \lambda} \right\rangle_{\lambda}$$

Note, here: $\lambda = 1$ Reference System $\lambda = 0$ Target System

$$F = F_{ein} - \int_{\lambda=0}^{\lambda=1} d\lambda \left\langle -U(r^N) + U(r_0^N) + \sum_{i=1}^N \alpha (r_i - r_{0,i})^2 \right\rangle_{\lambda}$$

Hard sphere freezing

Tracing coexistence curves

• If we have a coexistence point on the phase diagram we can integrate allong the line while maintaining coexistence.

Tracing coexistence curves

Clapyeron equation

$$\frac{dP}{dT} = \frac{\Delta(U + PV)}{T\Delta V}$$

$$dP = \frac{\Delta(U + PV)}{T\Delta V} dT$$

Particle Insertion Method

$$Q_{NVT} = \frac{V^{N}}{\Lambda^{3N} N!} \int ds^{N} \exp\left[-\beta U(s^{N};L)\right]$$

$$\beta F = -\ln(Q_{NVT})$$
$$= -\ln\left(\frac{V^{N}}{\Lambda^{3N}N!}\right) - \ln\left(\int ds^{N} \exp\left[-\beta U\left(s^{N};L\right)\right]\right)$$
$$= -N\ln\left(\frac{1}{\Lambda^{3}\rho}\right) + N - \ln\left(\int ds^{N} \exp\left[-\beta U\left(s^{N};L\right)\right]\right)$$

$$\beta F = \beta F^{IG} + \beta F^{ex}$$

$$\beta \mu = \beta \mu^{IG} + \beta \mu^{ex}$$

$$\mu = \left(\frac{\partial F}{\partial N}\right)_{V,T}$$

$$\beta \mu^{IG} = \left(\frac{\partial \beta F^{IG}}{\partial N}\right)_{V,T} \beta \mu^{ex} = \left(\frac{\partial \beta F^{ex}}{\partial N}\right)_{V,T}$$

Widom test particle insertion

$$\begin{split} \beta\mu &= \left(\frac{\partial\beta F}{\partial N}\right)_{V,T} \quad \beta\mu = \frac{\beta F(N+1) - \beta F(N))}{N+1-N} \\ &= -\ln \frac{Q(N+1)}{Q(N)} \\ &= -\ln \left(\frac{\frac{V^{N+1}}{\Lambda^{3N+3}(N+1)!}}{\frac{V^N}{\Lambda^{3N}N!}}\right) - \ln \left(\frac{\int ds^{N+1} \exp\left[-\beta U(s^{N+1};L)\right]}{\int ds^N \exp\left[-\beta U(s^N;L)\right]}\right) \\ &= -\ln \left(\frac{V}{\Lambda^3(N+1)}\right) - \ln \left(\frac{\int ds^{N+1} \exp\left[-\beta U(s^{N+1};L)\right]}{\int ds^N \exp\left[-\beta U(s^N;L)\right]}\right) \\ \beta\mu &= \beta\mu^{IG} + \beta\mu^{ex} \\ \beta\mu^{ex} &= -\ln \left(\frac{\int ds^{N+1} \exp\left[-\beta U(s^{N+1};L)\right]}{\int ds^N \exp\left[-\beta U(s^N;L)\right]}\right) \end{split}$$

$$Widom test particle insertion$$

$$\beta\mu^{ex} = -\ln\left(\frac{\int ds^{N+1} \exp\left[-\beta U(s^{N+1};L)\right]}{\int ds^{N} \exp\left[-\beta U(s^{N};L)\right]}\right)$$

$$U(s^{N+1};L) = \Delta U^{+} + U(s^{N};L)$$

$$\beta\mu^{ex} = -\ln\left(\frac{\int ds^{N} \int ds_{N+1} \exp\left[-\beta (\Delta U^{+} + U(s^{N};L))\right]}{\int ds^{N} \exp\left[-\beta U(s^{N};L)\right]}\right)$$

$$= -\ln\left(\frac{\int ds_{N+1} \int ds^{N} \left\{\exp\left[-\beta \Delta U^{+}\right]\right\} \exp\left[-\beta U(s^{N};L)\right]}{\int ds^{N} \exp\left[-\beta U(s^{N};L)\right]}\right)$$

$$= -\ln\left(\int ds_{N+1} \left\langle \exp\left[-\beta \Delta U^{+}\right]\right\rangle_{NVTT}\right)$$
Ghost particle!

Hard spheres

$$\beta \mu^{ex} = -\ln \left(\int \mathrm{ds}_{N+1} \left\langle \exp[-\beta \Delta U^+] \right\rangle_{NVT} \right)$$

$$U(r) = \begin{cases} \infty & r \le \sigma \\ 0 & r > \sigma \end{cases}$$

$$\exp\left[-\beta\Delta U^{+}\right] = \begin{cases} 0 & \text{if overlap} \\ 1 & \text{no overlap} \end{cases}$$

 $\left\langle \exp\left[-\beta\Delta U^{+}\right]\right\rangle$ probability to insert a test particle!

But, ... may fail at high density

Thermodynamic perturbation – Umbrella Sampling

Two systems:
System 0: N, V, T, U₀

$$Q_{0} = \frac{V^{N}}{\Lambda^{3N}N!} \int d\mathbf{s}^{N} \exp(-\beta U_{0}) \qquad Q_{1} = \frac{V^{N}}{\Lambda^{3N}N!} \int d\mathbf{s}^{N} \exp(-\beta U_{1})$$

$$\Delta\beta F = \beta F_{1} - \beta F_{0} = -\ln(Q_{1}/Q_{0})$$

$$= -\ln\frac{\int d\mathbf{s}^{N} \exp[-\beta U_{1}]}{\int d\mathbf{s}^{N} \exp(-\beta U_{0})}$$

$$= -\ln\frac{\int d\mathbf{s}^{N} \exp[-\beta (U_{1} - U_{0})] \exp[-\beta U_{0}]}{\int d\mathbf{s}^{N} \exp(-\beta U_{0})}$$

$$\Delta\beta F = -\ln\left\langle \exp\left[-\beta\left(U_1 - U_0\right)\right]\right\rangle_0$$

Umbrella sampling

• Start with thermodynamic perturbation

$$\Delta\beta F = -\ln(Q_1/Q_0) = -\ln\left(\frac{\int ds^N \exp(-\beta U_1)}{\int ds^N \exp(-\beta U_0)}\right)$$
$$\exp(-\beta\Delta F) = \left(\frac{\int ds^N \exp(-\beta U_0) \exp(-\beta\Delta U)}{\int ds^N \exp(-\beta U_0)}\right)$$
$$\exp(-\beta\Delta F) = \left\langle \exp(-\beta\Delta U) \right\rangle_0$$

Can we use this for free energy difference between arbitrary systems?

Bridging function

• Introduce function $\pi(s^N)$ altering distribution.

$$\exp(-\beta\Delta F) = \left(\frac{\int d\mathbf{s}^N \pi(\mathbf{s}^N) \exp(-\beta U_1) / \pi(\mathbf{s}^N)}{\int d\mathbf{s}^N \pi(\mathbf{s}^N) \exp(-\beta U_0) / \pi(\mathbf{s}^N)}\right)$$

$$\exp(-\beta\Delta F) = \langle \exp(-\beta\Delta U) \rangle_{0}$$
$$= \frac{\langle \exp(-\beta U_{1}) / \pi \rangle_{\pi}}{\langle \exp(-\beta U_{0}) / \pi \rangle_{\pi}}$$

• This approach is called umbrella sampling

III - Overlapping Distribution Method

Two systems:

System 0: N, V, T, U_0

System 1: N, V, T, U_1

$$Q_{0} = \frac{V^{N}}{\Lambda^{3N}N!} \int d\mathbf{s}^{N} \exp(-\beta U_{0}) \qquad Q_{1} = \frac{V^{N}}{\Lambda^{3N}N!} \int d\mathbf{s}^{N} \exp(-\beta U_{1})$$

$$\Delta\beta F = \beta F_{1} - \beta F_{0} = -\ln(Q_{1}/Q_{0}) = -\ln\left(\frac{\int d\mathbf{s}^{N} \exp(-\beta U_{1})}{\int d\mathbf{s}^{N} \exp(-\beta U_{0})}\right) = -\ln\left(\frac{Q_{1}}{Q_{0}}\right)$$

$$p_{0}(\Delta U) = \frac{\int d\mathbf{s}^{N} \exp(-\beta U_{0})\delta(U_{1} - U_{0} - \Delta U)}{\int d\mathbf{s}^{N} \exp(-\beta U_{0})} \qquad p_{1}(\Delta U) = \frac{\int d\mathbf{s}^{N} \exp(-\beta U_{1})\delta(U_{1} - U_{0} - \Delta U)}{\int d\mathbf{s}^{N} \exp(-\beta U_{1})}$$

$$p_{1}(\Delta U) = \frac{\int d\mathbf{s}^{N} \exp(-\beta U_{0})}{Q_{1}} \qquad p_{1}(\Delta U) = \frac{\int d\mathbf{s}^{N} \exp(-\beta U_{1})\delta(U_{1} - U_{0} - \Delta U)}{\int d\mathbf{s}^{N} \exp(-\beta U_{1})}$$

$$= \frac{Q_{0}}{Q_{1}} \exp(-\beta \Delta U)$$

$$p_{1}(\Delta U) = \frac{Q_{0}}{Q_{1}} \exp(-\beta \Delta U) p_{0}(\Delta U) \qquad \ln p_{1}(\Delta U) = \beta(\Delta F - \Delta U) + \ln p_{0}(\Delta U)$$

Overlapping Distribution Method

$$\ln p_{1}(\Delta U) = \beta(\Delta F - \Delta U) + \ln p_{0}(\Delta U)$$

$$f_{0}(\Delta U) = \ln p_{0}(\Delta U) - 0.5\beta\Delta U$$

$$f_{1}(\Delta U) = \ln p_{1}(\Delta U) + 0.5\beta\Delta U$$
Simulate system 0: compute f_{0}
Simulate system 1: compute f_{1}
$$\beta\Delta F = f_{1}(\Delta U) - f_{0}(\Delta U)$$

Chemical potential

System 0: N-1, V, T, U + 1 ideal gas

System 1: N, V, T, U

$$\Delta\beta F = \beta F_1 - \beta F_0 \equiv \beta \mu^{ex}$$

System 0: test particle energy

$$\Delta U = U_1 - U_0$$

System 1: real particle energy

$$\begin{aligned} \mathbf{V} - \mathbf{Non-Boltzmann sampling} \\ \hline \mathbf{V} - \mathbf{Non-Boltzmann sampling} \\ \hline \mathbf{V}_{1} &= \frac{1}{Q_{NVT_{1}}} \frac{1}{\Lambda^{3N}N!} \int d\mathbf{r}^{N} A(\mathbf{r}^{N}) \exp\left[-\beta_{1}U(\mathbf{r}^{N})\right] \\ &= \frac{\int d\mathbf{r}^{N} A(\mathbf{r}^{N}) \exp\left[-\beta_{1}U(\mathbf{r}^{N})\right]}{\int d\mathbf{r}^{N} \exp\left[-\beta_{1}U(\mathbf{r}^{N})\right]} \\ &= \frac{\int d\mathbf{r}^{N} A(\mathbf{r}^{N}) \exp\left[-\beta_{1}U(\mathbf{r}^{N})\right]}{\int d\mathbf{r}^{N} \exp\left[-\beta_{1}U(\mathbf{r}^{N})\right] \exp\left[\beta_{2}U(\mathbf{r}^{N}) - \beta_{2}U(\mathbf{r}^{N})\right]} \\ &= \frac{\int d\mathbf{r}^{N} A(\mathbf{r}^{N}) \exp\left[-\beta_{1}U(\mathbf{r}^{N})\right] \exp\left[\beta_{2}U(\mathbf{r}^{N}) - \beta_{2}U(\mathbf{r}^{N})\right]}{\int d\mathbf{r}^{N} \exp\left[-\beta_{1}U(\mathbf{r}^{N})\right] \exp\left[\beta_{2}U(\mathbf{r}^{N}) - \beta_{2}U(\mathbf{r}^{N})\right]} \\ &= \frac{\int d\mathbf{r}^{N} A(\mathbf{r}^{N}) \exp\left[\beta_{2}U(\mathbf{r}^{N}) - \beta_{1}U(\mathbf{r}^{N})\right] \exp\left[-\beta_{2}U(\mathbf{r}^{N})\right]}{\int d\mathbf{r}^{N} \exp\left[\beta_{2}U(\mathbf{r}^{N}) - \beta_{1}U(\mathbf{r}^{N})\right] \exp\left[-\beta_{2}U(\mathbf{r}^{N})\right]} \\ &= \frac{\langle A \exp\left[(\beta_{2} - \beta_{1})U\right] \rangle_{NVT_{2}}}{\langle \exp\left[(\beta_{2} - \beta_{1})U\right] \rangle_{NVT_{2}}} \end{aligned}$$
 We perform a simulation at $T=T_{2}$ and we determine A at $T=T_{1}$

