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Molecular Simulations

➡ Molecular dynamics: 
solve equations of motion 

➡ Monte Carlo: importance 
sampling
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Monte Carlo Simulations
3. Monte Carlo 

3.1.Introduction 
3.2.Statistical Thermodynamics (recall) 
3.3.Importance sampling 
3.4.Details of the algorithm 
3.5.Non-Boltzmann sampling 
3.6.Parallel Monte Carlo 
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3. Monte Carlo Simulations 

3.2 Statistical Thermodynamics
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Canonical ensemble: statistical mechanics

Consider a small system that can exchange energy 
with a big reservoir

Hence, the probability to find E1:

E1

lnΩ E1,E − E1( ) = lnΩ E( )− ∂lnΩ
∂E

⎛
⎝⎜

⎞
⎠⎟
E1 +!

=1/kBT

lnΩ E1,E − E1( )
lnΩ E( ) = −

E1
kBT

If the reservoir is very big we can ignore the higher 
order terms:

P E1( ) = Ω E1,E − E1( )
Ω Ei ,E − Ei( )i∑

=
Ω E1,E − E1( ) Ω E( )
Ω Ei ,E − Ei( ) Ω E( )i∑

= C
Ω E1,E − E1( )

Ω E( )

P E1( )∝ exp −
E1
kBT

⎡

⎣
⎢

⎤

⎦
⎥ ∝ exp −βE1⎡⎣ ⎤⎦

β=1/kBT
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Summary: Canonical ensemble (N,V,T)

Partition function:

Probability to find a particular 
configuration:

Free energy: 

QN,V ,T =
1

Λ3NN!
e
−
U r( )
kBT dr3N∫

P r3N( )∝ e−
U r3N( )
kBT

βF = − lnQNVT

Ensemble average:

A
N,V ,T

=

1
Λ3NN!

A r( )e−βU r( )dr3N∫
QN,V ,T

=
A r( )e−βU r( )dr3N∫
e

−βU r( )
dr3N∫
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3.Monte Carlo Simulations 

3.3 Importance Sampling
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Numerical Integration
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Monte Carlo simulations

Generate M configurations using 
Monte Carlo moves:

r1
3N ,r2

3N ,r3
3N ,r4

3N ,!,rM
3N{ }

We can compute the average:
A = A ri

3N( )i=1

M∑
The probability to generate a 
configuration in our MC 
scheme: PMC

A =
A r3N( )PMC r3N( )dr3N∫
PMC r3N( )dr3N∫

Question: how to chose PMC such that 
we sample the canonical ensemble?
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Ensemble Average

A
NVT

= 1
QNVT

1
N!Λ3N

A r3N( )e−βU r3N( )dr3N∫

We can rewrite this using the 
probability to find a particular 
configuration

P r3N( ) = e
−βU r3N( )

Λ3NN!QNVT

A
NVT

= A r3N( )P r3N( )dr3N∫

with

A
NVT

= A r3N( )P r3N( )dr3N∫ =
A r3N( )e−βU r3N( )dr3N∫
e
−βU r3N( )dr3N∫
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2. No need to know 
the partition function

1. No need 
to know C

Monte Carlo - canonical ensemble
Canonical ensemble:

P r3N( ) = e
−βU r3N( )

Λ3NN!QNVT

with

A
NVT

= A r3N( )P r3N( )dr3N∫ =
A r3N( )e−βU r3N( )dr3N∫
e
−βU r3N( )dr3N∫

Monte Carlo: A = A ri
3N( )i=1

M∑ A =
A r3N( )PMC r3N( )dr3N∫
PMC r3N( )dr3N∫

Hence, we need 
to sample: PMC r3N( ) = Ce−βU r3N( )

A =
C A r3N( )e−βU r3N( )dr3N∫
C e

−βU r3N( )dr3N∫
=
A r3N( )e−βU r3N( )dr3N∫
e
−βU r3N( )dr3N∫

= A
NVT
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Importance Sampling: what got lost?
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3.Monte Carlo Simulation

3.4 Details of the algorithm
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2.2 A Basic Monte Carlo Algorithm 43

Algorithm 1 (Basic Metropolis Algorithm)

PROGRAM mc basic Metropolis algorithm

do icycl=1,ncycl perform ncycl MC cycles
call mcmove displace a particle
if (mod(icycl,nsamp).eq.0)

+ call sample sample averages
enddo

end

Comments to this algorithm:

1. Subroutine mcmove attempts to displace a randomly selected particle
(see Algorithm 2).

2. Subroutine sample samples quantities every nsampth cycle.

Algorithm 2 (Attempt to Displace a Particle)

SUBROUTINE mcmove attempts to displace a particle

o=int(ranf()*npart)+1 select a particle at random
call ener(x(o),eno) energy old configuration
xn=x(o)+(ranf()-0.5)*delx give particle random displacement
call ener(xn,enn) energy new configuration
if (ranf().lt.exp(-beta acceptance rule (2.2.1)
+ *(enn-eno)) x(o)=xn accepted: replace x(o) by xn
return

end

Comments to this algorithm:

1. Subroutine ener calculates the energy of a particle at the given position.
2. Note that, if a configuration is rejected, the old configuration is retained.
3. The ranf() is a random number uniform in [0, 1].

Understanding Molecular Simulation (DRAFT - 3rd edition) Frenkel and Smit (November 7, 2017)
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Questions

• How can we prove that this scheme generates the 
desired distribution of configurations? 

• Why make a random selection of the particle to be 
displaced? 

• Why do we need to take the old configuration again? 
• How large should we take: delx?
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3.Monte Carlo Simulations 

3.4.1 Detailed balance
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canonical ensembles

Questions

• How can we prove that this scheme generates the 
desired distribution of configurations? 

• Why make a random selection of the particle to be 
displaced? 

• Why do we need to take the old configuration again? 
• How large should we take: delx?
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Markov Processes

Markov Process 
• Next step only depends on the current state 
• Ergodic: all possible states can be reached by a set of 

single steps 
• Detailed balance 

Process will approach a limiting distribution
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Ensembles versus probability

• P(o): probability to find the state o 

• Ensemble: take a very large number (M) of identical 
systems: N(o) = M x P(o); the total number of systems 
in the state o
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Markov Processes - Detailed Balance

o n
K(o→n)

• N(o) : total number of systems in our ensemble in state o 

• α(o → n): a priori probability to generate a move o → n 

• acc(o → n): probability to accept the move o → n

K(o → n): total number of systems in our 
ensemble that move o → n

K o→ n( ) = N o( )×α o→ n( )× acc o→ n( )
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Markov Processes - Detailed Balance

o nK(o→n)

K(n→o)

Condition of detailed balance:

K o→ n( ) = N o( )×α o→ n( )× acc o→ n( )
K o→ n( ) = K n→ o( )

K n→ o( ) = N n( )×α n→ o( )× acc n→ o( )
acc o→ n( )
acc n→ o( ) =

N n( )×α n→ o( )
N o( )×α o→ n( )
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NVT-ensemble

In the canonical ensemble the number 
of configurations in state n is given by:

Which gives as condition for 
the acceptance rule: acc o→ n( )

acc n→ o( ) =
e−βU n( )

e−βU o( )

N n( )∝ e−βU n( )

We assume that in our Monte 
Carlo moves the a priori probability 
to perform a move is independent 
of the configuration:

α o→ n( ) =α n→ o( ) =α
acc o→ n( )
acc n→ o( ) =

N n( )×α n→ o( )
N o( )×α o→ n( ) =

N n( )
N o( )
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Metropolis et al.

Many acceptance 
rules that satisfy:

Metropolis et al. introduced:

 ΔUo→n

If:

draw a uniform random number [0;1] 
and accept the new configuration if:  

acc o→ n( )
acc n→ o( ) =

e−βU n( )

e−βU o( )

acc o→ n( ) =min 0,e−β U n( )−U o( )⎡⎣ ⎤⎦( ) =min 0,e−βΔU( )
ΔU < 0 acc(o→ n) = 1

ranf < e−βΔU

ΔU > 0 acc(o→ n) = e−βΔU
accept the move

If:
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3.Monte Carlo Simulation

3.4.2 Particle selection
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Questions

• How can we prove that this scheme generates the 
desired distribution of configurations? 

• Why make a random selection of the particle to be 
displaced? 

• Why do we need to take the old configuration again? 

• How large should we take: delx?
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Detailed 
Balance
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3.Monte Carlo Simulation

3.4.3 Selecting the old configuration
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Questions

• How can we prove that this scheme generates the 
desired distribution of configurations? 

• Why make a random selection of the particle to be 
displaced? 

• Why do we need to take the old configuration 
again? 

• How large should we take: delx?
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Mathematical

Transition probability 
from o → n:

As by definition we 
make a transition:

The probability we do not 
make a move:

π o→ n( ) =α o→ n( )× acc o→ n( )

π o→ n( )n∑ = 1

π o→ o( ) = 1 − π o→ n( )n≠0∑

This term ≠ 0
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Model

Let us take a spin system:
(with energy U↑ = +1 and  U↓ = -1)

If we do not keep the old 
configuration:

(independent of the temperature)

P ↑( ) = e−βU ↑( )Probability to find↑:

A possible configuration:
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Lennard Jones fluid
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3.Monte Carlo Simulation

3.4.4 Particle displacement
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Questions

• How can we prove that this scheme generates the 
desired distribution of configurations? 

• Why make a random selection of the particle to be 
displaced? 

• Why do we need to take the old configuration again? 

• How large should we take: delx?
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Not too big Not too small
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3.Monte Carlo Simulation

3.5 Non-Boltzmann sampling 
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Non-Boltzmann sampling

A
NVT1

=
A r( )e−β1U r( )dr∫
e−β1U r( )dr∫

β1=1/kBT1

A
NVT1

=
A r( )e−β1U r( )dr∫
e−β1U r( )dr∫

× 1
1 1 = e−β2 U r( )−U r( )⎡⎣ ⎤⎦

A
NVT1

=
A r( )e−β1U r( )e−β2 U r( )−U r( )⎡⎣ ⎤⎦ dr∫
e−β1U r( )e−β2 U r( )−U r( )⎡⎣ ⎤⎦ dr∫

A
NVT1

=
A r( )e− β1U r( )−β2U r( )⎡⎣ ⎤⎦e−β2U r( )dr∫
e− β1U r( )−β2U r( )⎡⎣ ⎤⎦e−β2U r( )dr∫ =

e−β2U r( )dr∫ A r( )e− β1U r( )−β2U r( )⎡⎣ ⎤⎦e−β2U r( )dr∫
e− β1U r( )−β2U r( )⎡⎣ ⎤⎦e−β2U r( )dr e−β2U r( )dr∫∫

A
NVT1

=
Ae− β1−β2( )U

NVT2

e− β1−β2( )U
NVT2

Ensemble average of A at 
temperature T1:

with

again multiply with 1/1:

This gives us:
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Non-Boltzmann sampling

A
NVT1

=
A r( )e−β1U r( )dr∫
e−β1U r( )dr∫

A
NVT1

=
A r( )e−β1U r( )dr∫
e−β1U r( )dr∫

× 1
1 1 = e−β2 U r( )−U r( )⎡⎣ ⎤⎦

A
NVT1

=
A r( )e−β1U r( )e−β2 U r( )−U r( )⎡⎣ ⎤⎦ dr∫
e−β1U r( )e−β2 U r( )−U r( )⎡⎣ ⎤⎦ dr∫

A
NVT1

=
A r( )e− β1U r( )−β2U r( )⎡⎣ ⎤⎦e−β2U r( )dr∫
e− β1U r( )−β2U r( )⎡⎣ ⎤⎦e−β2U r( )dr∫

=
e−β2U r( )dr∫ A r( )e− β1U r( )−β2U r( )⎡⎣ ⎤⎦e−β2U r( )dr∫
e− β1U r( )−β2U r( )⎡⎣ ⎤⎦e−β2U r( )dr e−β2U r( )dr∫∫

Ensemble average of A at 
temperature T1:

with

again multiply with 1/1:

Why are we not 
using this?

T1 is arbitrary, we can 
use any value

and only 1 
simulation …

We perform a 
simulation at T2

But obtain an ensemble 
average at T1

A
NVT1

=
Ae− β1−β2( )U

NVT2

e− β1−β2( )U
NVT2
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T1

T2

T5

T3

T4

E

P(
E)

Overlap becomes very small
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3. Monte Carlo Simulation

3.6 Parallel Monte Carlo
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Parallel Monte Carlo

How to do a Monte Carlo simulation in parallel? 
• (trivial but works best) Use an ensemble of systems with 

different seeds for the random number generator 
• Is it possible to do Monte Carlo in parallel? 

• Monte Carlo is sequential! 
• We first have to know the fait of the current move 

before we can continue!
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Parallel Monte Carlo - algorithm

Naive (and wrong) 
1. Generate k trial configurations in parallel 
2. Select out of these the one with the lowest energy 

3. Accept and reject using normal Monte Carlo rule:

P n( ) = e−βU n( )

e−βU j( )
j=1

g∑

acc o→ n( ) = e−β U n( )−U o( )⎡⎣ ⎤⎦
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Conventional acceptance rules

The conventional acceptance rules give a bias
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What went wrong?

Detailed balance! 

acc( ) ( ) ( ) ( )
acc( ) ( ) ( ) ( )

o n N n n o N n
n o N o o n N o

α
α

→ × →= =
→ × →

( ) ( )K o n K n o→ = →
( ) ( ) ( ) acc( )K o n N o o n o nα→ = × → × →
( ) ( ) ( ) acc( )K n o N n n o n oα→ = × → × →
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Markov Processes - Detailed Balance

o nK(o→n)

K(n→o)

Condition of detailed balance:

K o→ n( ) = N o( )×α o→ n( )× acc o→ n( )
K o→ n( ) = K n→ o( )

K n→ o( ) = N n( )×α n→ o( )× acc n→ o( )
acc o→ n( )
acc n→ o( ) =

N n( )×α n→ o( )
N o( )×α o→ n( ) =

N n( )
N o( )?
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K o→ n( ) = N o( )×α o→ n( )× acc o→ n( )

α o→ n( ) = e−βU n( )

e−βU j( )
j=1

g∑
W n( ) = e−βU j( )

j=1

g∑
Rosenbluth factor 
configuration n:

α o→ n( ) = e
−βU n( )

W n( )

α n→ o( ) = e−βU o( )

e−βU j( )
j=1

g∑
W o( ) = e−βU o( ) + e−βU j( )

j=1

g−1∑
Rosenbluth factor 
configuration o:

A priori probability to generate 
configuration n:

A priori probability to generate 
configuration o:

α n→ o( ) = e
−βU o( )

W o( )
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acc o→ n( )
acc n→ o( ) =

N n( )×α n→ o( )
N o( )×α o→ n( )

Now with the correct a priori 
probabilities to generate a configuration:

α o→ n( ) = e
−βU n( )

W n( )

α n→ o( ) = e
−βU o( )

W o( )

acc o→ n( )
acc n→ o( ) =

e−βU n( ) × e
−βU o( )

W o( )
e−βU o( ) × e

−βU n( )

W n( )
=
W n( )
W o( )

This gives as acceptance rules:
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Conventional acceptance rules

Modified acceptance rules remove the bias exactly


