
Understanding Molecular Simulation

3. Monte Carlo Simulations

Understanding Molecular Simulation

Molecular Simulations

➡ Molecular dynamics:
solve equations of motion

➡ Monte Carlo: importance
sampling

r1
r2
rn

r1
r2
rn

Understanding Molecular Simulation

Monte Carlo Simulations
3. Monte Carlo

3.1.Introduction
3.2.Statistical Thermodynamics (recall)
3.3.Importance sampling
3.4.Details of the algorithm
3.5.Non-Boltzmann sampling
3.6.Parallel Monte Carlo

Understanding Molecular Simulation

3. Monte Carlo Simulations

3.2 Statistical Thermodynamics

Understanding Molecular Simulation

Canonical ensemble: statistical mechanics

Consider a small system that can exchange energy
with a big reservoir

Hence, the probability to find E1:

E1

lnΩ E1,E − E1() = lnΩ E()− ∂lnΩ
∂E

⎛
⎝⎜

⎞
⎠⎟
E1 +!

=1/kBT

lnΩ E1,E − E1()
lnΩ E() = −

E1
kBT

If the reservoir is very big we can ignore the higher
order terms:

P E1() = Ω E1,E − E1()
Ω Ei ,E − Ei()i∑

=
Ω E1,E − E1() Ω E()
Ω Ei ,E − Ei() Ω E()i∑

= C
Ω E1,E − E1()

Ω E()

P E1()∝ exp −
E1
kBT

⎡

⎣
⎢

⎤

⎦
⎥ ∝ exp −βE1⎡⎣ ⎤⎦

β=1/kBT

Understanding Molecular Simulation

Summary: Canonical ensemble (N,V,T)

Partition function:

Probability to find a particular
configuration:

Free energy:

QN,V ,T =
1

Λ3NN!
e
−
U r()
kBT dr3N∫

P r3N()∝ e−
U r3N()
kBT

βF = − lnQNVT

Ensemble average:

A
N,V ,T

=

1
Λ3NN!

A r()e−βU r()dr3N∫
QN,V ,T

=
A r()e−βU r()dr3N∫
e

−βU r()
dr3N∫

Understanding Molecular Simulation

3.Monte Carlo Simulations

3.3 Importance Sampling

Understanding Molecular Simulation

Numerical Integration

Understanding Molecular Simulation

Monte Carlo simulations

Generate M configurations using
Monte Carlo moves:

r1
3N ,r2

3N ,r3
3N ,r4

3N ,!,rM
3N{ }

We can compute the average:
A = A ri

3N()i=1

M∑
The probability to generate a
configuration in our MC
scheme: PMC

A =
A r3N()PMC r3N()dr3N∫
PMC r3N()dr3N∫

Question: how to chose PMC such that
we sample the canonical ensemble?

Understanding Molecular Simulation

Ensemble Average

A
NVT

= 1
QNVT

1
N!Λ3N

A r3N()e−βU r3N()dr3N∫

We can rewrite this using the
probability to find a particular
configuration

P r3N() = e
−βU r3N()

Λ3NN!QNVT

A
NVT

= A r3N()P r3N()dr3N∫

with

A
NVT

= A r3N()P r3N()dr3N∫ =
A r3N()e−βU r3N()dr3N∫
e
−βU r3N()dr3N∫

Understanding Molecular Simulation

2. No need to know
the partition function

1. No need
to know C

Monte Carlo - canonical ensemble
Canonical ensemble:

P r3N() = e
−βU r3N()

Λ3NN!QNVT

with

A
NVT

= A r3N()P r3N()dr3N∫ =
A r3N()e−βU r3N()dr3N∫
e
−βU r3N()dr3N∫

Monte Carlo: A = A ri
3N()i=1

M∑ A =
A r3N()PMC r3N()dr3N∫
PMC r3N()dr3N∫

Hence, we need
to sample: PMC r3N() = Ce−βU r3N()

A =
C A r3N()e−βU r3N()dr3N∫
C e

−βU r3N()dr3N∫
=
A r3N()e−βU r3N()dr3N∫
e
−βU r3N()dr3N∫

= A
NVT

Understanding Molecular Simulation

Importance Sampling: what got lost?

Understanding Molecular Simulation

3.Monte Carlo Simulation

3.4 Details of the algorithm

Understanding Molecular Simulation

2.2 A Basic Monte Carlo Algorithm 43

Algorithm 1 (Basic Metropolis Algorithm)

PROGRAM mc basic Metropolis algorithm

do icycl=1,ncycl perform ncycl MC cycles
call mcmove displace a particle
if (mod(icycl,nsamp).eq.0)

+ call sample sample averages
enddo

end

Comments to this algorithm:

1. Subroutine mcmove attempts to displace a randomly selected particle
(see Algorithm 2).

2. Subroutine sample samples quantities every nsampth cycle.

Algorithm 2 (Attempt to Displace a Particle)

SUBROUTINE mcmove attempts to displace a particle

o=int(ranf()*npart)+1 select a particle at random
call ener(x(o),eno) energy old configuration
xn=x(o)+(ranf()-0.5)*delx give particle random displacement
call ener(xn,enn) energy new configuration
if (ranf().lt.exp(-beta acceptance rule (2.2.1)
+ *(enn-eno)) x(o)=xn accepted: replace x(o) by xn
return

end

Comments to this algorithm:

1. Subroutine ener calculates the energy of a particle at the given position.
2. Note that, if a configuration is rejected, the old configuration is retained.
3. The ranf() is a random number uniform in [0, 1].

Understanding Molecular Simulation (DRAFT - 3rd edition) Frenkel and Smit (November 7, 2017)

Understanding Molecular Simulation

2.2 A Basic Monte Carlo Algorithm 43

Algorithm 1 (Basic Metropolis Algorithm)

PROGRAM mc basic Metropolis algorithm

do icycl=1,ncycl perform ncycl MC cycles
call mcmove displace a particle
if (mod(icycl,nsamp).eq.0)

+ call sample sample averages
enddo

end

Comments to this algorithm:

1. Subroutine mcmove attempts to displace a randomly selected particle
(see Algorithm 2).

2. Subroutine sample samples quantities every nsampth cycle.

Algorithm 2 (Attempt to Displace a Particle)

SUBROUTINE mcmove attempts to displace a particle

o=int(ranf()*npart)+1 select a particle at random
call ener(x(o),eno) energy old configuration
xn=x(o)+(ranf()-0.5)*delx give particle random displacement
call ener(xn,enn) energy new configuration
if (ranf().lt.exp(-beta acceptance rule (2.2.1)
+ *(enn-eno)) x(o)=xn accepted: replace x(o) by xn
return

end

Comments to this algorithm:

1. Subroutine ener calculates the energy of a particle at the given position.
2. Note that, if a configuration is rejected, the old configuration is retained.
3. The ranf() is a random number uniform in [0, 1].

Understanding Molecular Simulation (DRAFT - 3rd edition) Frenkel and Smit (November 7, 2017)

Understanding Molecular Simulation

Questions

• How can we prove that this scheme generates the
desired distribution of configurations?

• Why make a random selection of the particle to be
displaced?

• Why do we need to take the old configuration again?
• How large should we take: delx?

Understanding Molecular Simulation

3.Monte Carlo Simulations

3.4.1 Detailed balance

Understanding Molecular Simulation

canonical ensembles

Questions

• How can we prove that this scheme generates the
desired distribution of configurations?

• Why make a random selection of the particle to be
displaced?

• Why do we need to take the old configuration again?
• How large should we take: delx?

Understanding Molecular Simulation

Markov Processes

Markov Process
• Next step only depends on the current state
• Ergodic: all possible states can be reached by a set of

single steps
• Detailed balance

Process will approach a limiting distribution

Understanding Molecular Simulation

Ensembles versus probability

• P(o): probability to find the state o

• Ensemble: take a very large number (M) of identical
systems: N(o) = M x P(o); the total number of systems
in the state o

Understanding Molecular Simulation

Markov Processes - Detailed Balance

o n
K(o→n)

• N(o) : total number of systems in our ensemble in state o

• α(o → n): a priori probability to generate a move o → n

• acc(o → n): probability to accept the move o → n

K(o → n): total number of systems in our
ensemble that move o → n

K o→ n() = N o()×α o→ n()× acc o→ n()

Understanding Molecular Simulation

Markov Processes - Detailed Balance

o nK(o→n)

K(n→o)

Condition of detailed balance:

K o→ n() = N o()×α o→ n()× acc o→ n()
K o→ n() = K n→ o()

K n→ o() = N n()×α n→ o()× acc n→ o()
acc o→ n()
acc n→ o() =

N n()×α n→ o()
N o()×α o→ n()

Understanding Molecular Simulation

NVT-ensemble

In the canonical ensemble the number
of configurations in state n is given by:

Which gives as condition for
the acceptance rule: acc o→ n()

acc n→ o() =
e−βU n()

e−βU o()

N n()∝ e−βU n()

We assume that in our Monte
Carlo moves the a priori probability
to perform a move is independent
of the configuration:

α o→ n() =α n→ o() =α
acc o→ n()
acc n→ o() =

N n()×α n→ o()
N o()×α o→ n() =

N n()
N o()

Understanding Molecular Simulation

Understanding Molecular Simulation

Metropolis et al.

Many acceptance
rules that satisfy:

Metropolis et al. introduced:

 ΔUo→n

If:

draw a uniform random number [0;1]
and accept the new configuration if:

acc o→ n()
acc n→ o() =

e−βU n()

e−βU o()

acc o→ n() =min 0,e−β U n()−U o()⎡⎣ ⎤⎦() =min 0,e−βΔU()
ΔU < 0 acc(o→ n) = 1

ranf < e−βΔU

ΔU > 0 acc(o→ n) = e−βΔU
accept the move

If:

Understanding Molecular Simulation

3.Monte Carlo Simulation

3.4.2 Particle selection

Understanding Molecular Simulation

Questions

• How can we prove that this scheme generates the
desired distribution of configurations?

• Why make a random selection of the particle to be
displaced?

• Why do we need to take the old configuration again?

• How large should we take: delx?

Understanding Molecular Simulation

Detailed
Balance

Understanding Molecular Simulation

3.Monte Carlo Simulation

3.4.3 Selecting the old configuration

Understanding Molecular Simulation

Questions

• How can we prove that this scheme generates the
desired distribution of configurations?

• Why make a random selection of the particle to be
displaced?

• Why do we need to take the old configuration
again?

• How large should we take: delx?

Understanding Molecular Simulation

Understanding Molecular Simulation

Mathematical

Transition probability
from o → n:

As by definition we
make a transition:

The probability we do not
make a move:

π o→ n() =α o→ n()× acc o→ n()

π o→ n()n∑ = 1

π o→ o() = 1 − π o→ n()n≠0∑

This term ≠ 0

Understanding Molecular Simulation

Model

Let us take a spin system:
(with energy U↑ = +1 and U↓ = -1)

If we do not keep the old
configuration:

(independent of the temperature)

P ↑() = e−βU ↑()Probability to find↑:

A possible configuration:

Understanding Molecular Simulation

Lennard Jones fluid

Understanding Molecular Simulation

3.Monte Carlo Simulation

3.4.4 Particle displacement

Understanding Molecular Simulation

Questions

• How can we prove that this scheme generates the
desired distribution of configurations?

• Why make a random selection of the particle to be
displaced?

• Why do we need to take the old configuration again?

• How large should we take: delx?

Understanding Molecular Simulation

Not too big Not too small

Understanding Molecular Simulation

3.Monte Carlo Simulation

3.5 Non-Boltzmann sampling

Understanding Molecular Simulation

Non-Boltzmann sampling

A
NVT1

=
A r()e−β1U r()dr∫
e−β1U r()dr∫

β1=1/kBT1

A
NVT1

=
A r()e−β1U r()dr∫
e−β1U r()dr∫

× 1
1 1 = e−β2 U r()−U r()⎡⎣ ⎤⎦

A
NVT1

=
A r()e−β1U r()e−β2 U r()−U r()⎡⎣ ⎤⎦ dr∫
e−β1U r()e−β2 U r()−U r()⎡⎣ ⎤⎦ dr∫

A
NVT1

=
A r()e− β1U r()−β2U r()⎡⎣ ⎤⎦e−β2U r()dr∫
e− β1U r()−β2U r()⎡⎣ ⎤⎦e−β2U r()dr∫ =

e−β2U r()dr∫ A r()e− β1U r()−β2U r()⎡⎣ ⎤⎦e−β2U r()dr∫
e− β1U r()−β2U r()⎡⎣ ⎤⎦e−β2U r()dr e−β2U r()dr∫∫

A
NVT1

=
Ae− β1−β2()U

NVT2

e− β1−β2()U
NVT2

Ensemble average of A at
temperature T1:

with

again multiply with 1/1:

This gives us:

Understanding Molecular Simulation

Non-Boltzmann sampling

A
NVT1

=
A r()e−β1U r()dr∫
e−β1U r()dr∫

A
NVT1

=
A r()e−β1U r()dr∫
e−β1U r()dr∫

× 1
1 1 = e−β2 U r()−U r()⎡⎣ ⎤⎦

A
NVT1

=
A r()e−β1U r()e−β2 U r()−U r()⎡⎣ ⎤⎦ dr∫
e−β1U r()e−β2 U r()−U r()⎡⎣ ⎤⎦ dr∫

A
NVT1

=
A r()e− β1U r()−β2U r()⎡⎣ ⎤⎦e−β2U r()dr∫
e− β1U r()−β2U r()⎡⎣ ⎤⎦e−β2U r()dr∫

=
e−β2U r()dr∫ A r()e− β1U r()−β2U r()⎡⎣ ⎤⎦e−β2U r()dr∫
e− β1U r()−β2U r()⎡⎣ ⎤⎦e−β2U r()dr e−β2U r()dr∫∫

Ensemble average of A at
temperature T1:

with

again multiply with 1/1:

Why are we not
using this?

T1 is arbitrary, we can
use any value

and only 1
simulation …

We perform a
simulation at T2

But obtain an ensemble
average at T1

A
NVT1

=
Ae− β1−β2()U

NVT2

e− β1−β2()U
NVT2

Understanding Molecular Simulation

T1

T2

T5

T3

T4

E

P(
E)

Overlap becomes very small

Understanding Molecular Simulation

3. Monte Carlo Simulation

3.6 Parallel Monte Carlo

Understanding Molecular Simulation

Parallel Monte Carlo

How to do a Monte Carlo simulation in parallel?
• (trivial but works best) Use an ensemble of systems with

different seeds for the random number generator
• Is it possible to do Monte Carlo in parallel?

• Monte Carlo is sequential!
• We first have to know the fait of the current move

before we can continue!

Understanding Molecular Simulation

Parallel Monte Carlo - algorithm

Naive (and wrong)
1. Generate k trial configurations in parallel
2. Select out of these the one with the lowest energy

3. Accept and reject using normal Monte Carlo rule:

P n() = e−βU n()

e−βU j()
j=1

g∑

acc o→ n() = e−β U n()−U o()⎡⎣ ⎤⎦

Understanding Molecular Simulation

Conventional acceptance rules

The conventional acceptance rules give a bias

Understanding Molecular Simulation

What went wrong?

Detailed balance!

acc() () () ()
acc() () () ()

o n N n n o N n
n o N o o n N o

α
α

→ × →= =
→ × →

() ()K o n K n o→ = →
() () () acc()K o n N o o n o nα→ = × → × →
() () () acc()K n o N n n o n oα→ = × → × →

Understanding Molecular Simulation

Markov Processes - Detailed Balance

o nK(o→n)

K(n→o)

Condition of detailed balance:

K o→ n() = N o()×α o→ n()× acc o→ n()
K o→ n() = K n→ o()

K n→ o() = N n()×α n→ o()× acc n→ o()
acc o→ n()
acc n→ o() =

N n()×α n→ o()
N o()×α o→ n() =

N n()
N o()?

Understanding Molecular Simulation

K o→ n() = N o()×α o→ n()× acc o→ n()

α o→ n() = e−βU n()

e−βU j()
j=1

g∑
W n() = e−βU j()

j=1

g∑
Rosenbluth factor
configuration n:

α o→ n() = e
−βU n()

W n()

α n→ o() = e−βU o()

e−βU j()
j=1

g∑
W o() = e−βU o() + e−βU j()

j=1

g−1∑
Rosenbluth factor
configuration o:

A priori probability to generate
configuration n:

A priori probability to generate
configuration o:

α n→ o() = e
−βU o()

W o()

Understanding Molecular Simulation

acc o→ n()
acc n→ o() =

N n()×α n→ o()
N o()×α o→ n()

Now with the correct a priori
probabilities to generate a configuration:

α o→ n() = e
−βU n()

W n()

α n→ o() = e
−βU o()

W o()

acc o→ n()
acc n→ o() =

e−βU n() × e
−βU o()

W o()
e−βU o() × e

−βU n()

W n()
=
W n()
W o()

This gives as acceptance rules:

Understanding Molecular Simulation

Conventional acceptance rules

Modified acceptance rules remove the bias exactly

