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Rare events 
Interesting transitions in complex systems  

–  solution chemistry 
–  protein folding  
–  enzymatic reactions 
–  complex surface reactions 
–  diffusion in porous media 
–  nucleation 

 
 These reactions happen on a long time 
scale compared to the molecular timescale 

  
 
 
 
dominated by collective, rare events 
Straightforward MD very inefficient  
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Example: Diffusion in porous material 



Phenomenological reaction kinetics 

A B↔
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Equilibrium: cA t( ) = cB t( ) = 0
cA
cB

=
kB→A
kA→B

A B
A rare event can be seen as a chemical reaction 
between reactant A and product B 

The change in population c(t) is (0<c<1) 

This gives a relation between equilibrium 
population and reaction rates 
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Let us make a perturbation of the equilibrium populations, e.g by 
applying an external field. 
When releasing the field, the system will relax to the original equilibrium  

For state A For state B: 

We can rewrite the kinetics in terms of the perturbation Δc: 

With relaxation time 

Relaxation time 

cA t( )+ cB t( ) =1



Microscopic theory 
Microscopic description of the progress of a reaction 

q
Reaction coordinate: in this case the z-coordinate of the particle 

We need to write the kinetics of the reaction in terms of this 
microscopic reaction coordinate q 



Reaction coordinate 

*q q<Reactant A: 

Product B: *q q>

( ) ( ) ( )* 1 * *Ag q q q q q qθ θ− = − − = −

cA t( ) = gA t( )

A B

Let us introduce the function gA: 

Heaviside θ-function 

( )
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With this function we write for the probability cA(t) the system is in state A: 

Transition state: q = q*



Microscopic theory 
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Is going to give us the  
macroscopic relaxation in terms of a 
microscopic time correlation function 



Let us consider the effect of a 
static perturbation: 

For the equilibrium concentration as a function of ε: 

( )0 *AH H g q qε= − −

This external potential increases the 
concentration of A 

0A A Ac c c
ε

Δ = − = gA ε
− gA 0

We need to compute the ensemble average in the form of : 
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Perturbed Hamiltonian 



H = H0 − εD

0
A A AΔ = −
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dΓ∫ exp −β H0 − εD( )⎡⎣ ⎤⎦

The original Hamiltonian (H0) is perturbed by εD:  

This gives as change in the expectation value of A: 

with 

Linear Response theory (static) 

If the perturbation is small we can write A = A
0
+
∂ A

0

∂ε
ε



For such a small perturbation ΔA =
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Evaluated for ε= 0 

Giving: 



If we apply this result for cA: 
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Let us now switch off the perturbation at t=0 

Giving: 

Let us see how the system relaxes to equilibrium (dynamical perturbation) 

H = H0 − εD at t>0:    H = H0

ΔA t( ) = A t( ) − A
0
= A t( )

We take <A>0=0 

Similar as for the static case for small values of ε, we have 

  
ΔA t( ) = βε D 0( )A t( )
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Linear Response theory (dynamic) 



If we apply this result to 

Compare linear response expression with the macroscopic expression 

We obtain: 

D = ΔgA    and   A= ΔgA

From static perturbation: 

  
ΔA t( ) = βε D 0( )A t( )

ΔcA t( ) = βε ΔgA 0( )ΔgA t( )
βε =

ΔcA 0( )
cA cB

ΔcA t( ) = ΔcA 0( )
ΔgA 0( )ΔgA t( )
cA cB

ΔcA t( ) = ΔcA 0( )exp − t τ⎡⎣ ⎤⎦
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Derivative 

= −
gA 0( )gA t( )
cA cB

d
dt
A t( )B t +τ( ) = 0

   
A t( ) B t +τ( ) + A t( )B t +τ( ) = 0

   
A 0( ) B τ( ) = − A 0( )B τ( )

Stationary (t is arbitrary, only depends on τ)  

Δ has disappeared because of the 
derivative 

Microscopic rate expression 



kA→B t( ) =
q 0( ) ∂gB q 0( )− q*( )

∂q
gB t( )

cA

For sufficiently short t, we obtain 

1
τ
exp −t τ"# $%=

gA 0( )gA t( )
cA cB

We have 

kA→B t( ) =
gA 0( )gA t( )

cA

gA q − q*( ) = q ∂gA q − q*( )
∂q

= − q
∂gB q − q*( )

∂q

Using 

Using the definition of gA we can write 

We now have an expression that 
relates the macroscopic reaction 
rate to microscopic properties 

τ = kA→B
−1 1+ cA cB( )

−1
=
cB
kA→B



kA→B t( ) =
q 0( ) ∂gB q 0( )− q*( )

∂q
gB t( )

cA

Let us look at the 
different terms in this 
equation 

  
gB t( ) = θ q t)( )− q*( ) Only when the system is in the 

product state we get a contribution 
to the ensemble average 

  

∂gB q 0( )− q *( )
∂q

=
∂Θ q 0( )− q *( )

∂q

= δ q 0( )− q *( )

Only when the system starts at 
the transition state, we get a 
contribution to the ensemble 
average 

q 0( ) Velocity at t=0 

  
cA = Θ q* − q( ) Concentration of A 

   
kA→B t( ) =

q 0( )δ q 0( )− q *( )θ q t( )− q *( )
θ q *−q( )



   
kA→B t( ) =

q 0( )δ q 0( )− q *( )θ q t( )− q *( )
θ q *−q( )

Let us consider the limit: t → 0+ 

lim
t→0+

=θ q t( )− q*( ) =θ q t( )( )

kA→B
TST =

q 0( )δ q 0( )− q*( )θ q( )
θ q*−q( )

Eyring’s transition state theory 

This gives: 

Transition state theory 



k(t)

t

k
TST

k
AB

~exp(-t/!
rxn
)

!
mol

C(t)

t

Decay of rate expression 

lower value 
because of 
recrossings 

   
kA→B t( ) =

q 0( )δ q 0( )− q *( )θ q t( )− q *( )
θ q *−q( )



kA→B t( ) =
q 0( )δ q 0( )− q*( )θ q t( )− q*( )

θ q*−q( )

kA→B t( ) =
q 0( )δ q 0( )− q*( )θ q t( )− q*( )

δ q 0( )− q*( ) ×
δ q 0( )− q*( )
θ q*−q( )

We can rewrite this expression as a product 

Ratio of probabilities to find 
particle on top of the barrier 
and in the state A 

Conditional “probability” to find 
a particle on the top of the 
barrier with a positive velocity 

Transition state theory 

kA→B t( ) = q 0( )θ q t( )− q*( )
q=q*

×
δ q 0( )− q*( )
θ q*−q( )



  

δ q 0( )− q *( )
θ q *−q( )

Ratio of the probabilities to find a 
particle on top of the barrier and in 
the state A 

δ q*−q( ) =C dqδ q − q*( )exp −βF q( )( )∫ =C exp −βF q*( )( )

  
Θ q *−q( ) = C dqΘ q − q *( )exp −βF q( )( )∫ = C dqexp −βF q( )( )

q<q*
∫

Probability to be on top of the barrier: 

Probability to be in state A: 

We need to determine the free energy as a function of the order parameter 

This gives: 
δ q 0( )− q*( )
θ q*−q( ) =

exp −βF q*( )( )
dqexp −βF q( )( )

q<q*
∫

Free energy barrier 



Conditional “probability” to find a particle on the 
top of the barrier with a positive velocity 

   
q 0( ) Assume that on top of the barrier the particle is in equilibrium: 

use Maxwell-Boltzmann distribution to generate this velocity 

q 0( )θ q t( )− q*( ) Only particles with a positive velocity end up in the 
product state. We assume that once in the product 
state they stay there.  

lim
t→0+
q 0( )θ q t( )− q*( ) = q 0( )θ q 0( )( ) = 0.5 q 0( )

q 0( )θ q t( )− q*( )
q=q*

kTSTA→B = 0.5 q 0( )
exp −βF q*( )( )
dqexp −βF q( )( )

q<q*
∫ Eyring’s TST  

kTSTA→B = limt→0+
q 0( )θ q t( )− q*( )

q=q*
×
δ q 0( )− q*( )
θ q*−q( )



1-D ideal gas particle on a hill 

Maxwell-Boltzmann: 

kTSTA→B = 0.5 q 0( )
exp −βF q*( )( )
dqexp −βF q( )( )

q<q*
∫

kTSTA→B =
kBT
2πm

exp −βU q*( )( )
dqexp −βU q( )( )

q<q*
∫

   
q 0( ) = 2kBT

πm

This gives for the hopping rate 



Ideal gas particle on a not-so-ideal hill 

q1 is the estimated transition state 

q* is the true transition state 



For this case transition state theory will overestimate the hopping rate 
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Transition state theory 

   
kA→B t( ) =

q 0( )δ q 0( )− q *( )θ q t( )− q *( )
θ q *−q( )

•  One has to know the free energy accurately (MC/MD) 
•  Gives only an upper bound to the reaction rate 
•  Assumptions underlying transition theory should hold: no recrossings 

lower value 
because of 
recrossings 
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Free energy barriers in complex systems 
•  Straightforward MD or MC and then use 

is highly inefficient for high barriers 

•  Many “tricks” have been proposed to overcome and sample barriers 

–  Temperature enhanced sampling: simulated tempering, parallel 
tempering, Temperature accelerated molecular dynamics …) 

–  Constraint dynamics: thermodynamic integration,  blue moon 
sampling.... 

–  Flat histogram sampling: umbrella sampling,  hyperdynamics,.... 
–  history dependent search: Wang-Landau, adaptive biasing force, 

metadynamics,… 
–  non-equilibrium methods: steered MD, targeted MD,....  

–  trajectory-based methods:  nudged elastic band, action minimization, 
string method, transition path sampling, forward flux sampling,.... 

βF (q) = −ln δ q(r)− q( )



Free energy barriers  
•  Replica exchange 

•  Thermodynamic  integration  

•  Umbrella sampling  

•  Metadynamics 



Replica exchange/parallel tempering 

F	

Q	

room temperature	

F	

high temperature	
Q	



Two replicas 

2

1
T = 290K 

T = 360K 

Total Boltzmann weight	

e��1U1(r
N )

e��2U2(r
N )

e��1U1(r
N )e��2U2(r

N )



Switching temperatures 

2

1
T = 360K 

T = 290K 

Total Boltzmann weight	

e��1U2(r
N )

e��2U1(r
N )

e��1U2(r
N )e��2U1(r

N )



The ratio of the new Boltzmann factor over the old one is: 

the rule for switching temperatures should obey detailed balance  
Metropolis Monte Carlo scheme 
 

N (n)
N (o)

= e(�2��1)[U2(r
N )�U2(r

N )]

acc(1� 2) = min
�
1, e(�2��1)[U2(r

N )�U1(r
N )]

⇥



Set of replicas 

R

2

1
T = 290K 

T = 293K 

T = 360K 

e��1U1(r
N )

e��2U2(r
N )



Overlap in potential energy 



Replica Exchange MD (REMD) 

N

2

1
Hansmann Chem Phys Lett 1997	

Sugita & Okamoto Chem Phys Lett 1999	

e��1U1(r
N )

e��2U2(r
N )



Replica Exchange 

Advantage: no order parameters needed 
Disadvantage: convergence of free energy landscape can be still 
slow, especially around phase transition: many replicas needed. 

Free energy follows from  Exchange as a function of time. 



Free energy barriers  
•  Replica exchange 

•  Thermodynamic  integration  

•  Umbrella sampling  

•  Metadynamics 



Thermodynamic integration 
•  The free energy follows from the derivative 

•  The derivative of the free energy is known as the mean force 

•  compute the force f at λ directly or by adding a constraint to the 
Lagrangian 

•  the constraint force follows from the Lagrange multiplier 

constraint force	



REACTION COORDINATE  Q	

Q = R     -  R	OH HC 

SYSTEM	

32 H2O  + H+  + C2H4	

	
T=300K	

T. Van Erp, E-J Meijer , �
 Angew. Chem, 43, 1660 (2004). 	

Example: Alkene hydration 

C2H4 + H2O  ↔ CH3CH20H	



Example: Alkene hydration 
Reaction Barrier 

CONSTRAINT FORCE	 FREE ENERGY PROFILE	

CPMD-BLYP 	 23	

Exp: Gas Phase	 50-100 	

MP2: Gas Phase	 58	

Exp:  Low Density Acid Solution	 33	

BLYP: Gas Phase + Acid 	 24	

kcal/mol	



Free energy barriers  
•  Replica exchange 

•  Thermodynamic  integration  

•  Umbrella sampling  

•  Metadynamics 



Umbrella sampling 

The regular distribution of an order parameter q is 
 
 
 
 
multiplying both sides with exp(-βVbs(q)) gives 
 
 
 
 
where Vbs (q) is the bias potential 
 
Free energy can be extracted from Pbs(q) by 

Pbs(q) =

R
dx exp [��U(x)� �Vbs(q(x)]�(q � q(x))]R

dx exp [��U(x)� �Vbs(q(x)])

P (q) = h[�(q � q(x))]i =
R
dx exp [��U(x)]�(q � q(x))]R

dx exp [��U(x)])

�F (q) = lnPbs(q)� �Vbs(q) + const- 



Flat sampling 
•  Consider a free energy landscape  

with two minima 

•  taking a biasing potential    

•  results in a flat histogram  

•  This turns out to effectively sample 
the entire free energy barrier 

Vbs(q) = �F (q)

F(q) 

Vbs(q) 

Pbs(q) 



Biasing potential can take any functional form to force system into unlikely 
region 

Umbrella sampling 

F(λ) 

λ	

quadratic bias	

λ	

F(λ) 

hard window bias	



Histograms 
Suppose we perform a hard window simulation 



Weighted Histogram Analysis Method  
Joins multiple overlapping histograms using an 
maximum likelihood criterion  
For Nsims histograms ni(x) the best estimate for the 
joint histogram is   
 
 
 
 
 
where Ni is the total number of measurements in the 
histogram and Zi is a “partition function” determined 
by 
 
 
 
 
the two equations have to be solved iteratively  
 
 

Ferrenberg & Swendsen 1986, Kumar et al 1992 	



Free energy barriers  
•  Replica exchange 

•  Thermodynamic  integration  

•  Umbrella sampling  

•  Metadynamics 



Metadynamics 
•  method to obtain  free energy in a single simulation 
•  similar idea as Wang Landau sampling: add history dependent biasing 

potential to forcefield  

•  s  = predefined order parameters 
•  w = height of hills 
•  σ = width of gaussians 

•  w is reduced every cycle 

s 

F(s) 

F (s) = � lim
t�⇥

V (s; t)

	
Barducci,  Bussi,  Parrinello,  PRL, (2008).	

Laio and Parrinello, PNAS (2002)	

•  more controlled version: well tempered MetaD	



Link to bernds animation 
 



SN2 reaction between Cl- and CH3Cl 

S(R) = rC-Cl – rC-Cl ̀

Reactant                Transition                  Product 
Complex                  State                       Complex 

Bernd Ensing, Alessandro Laio, Michele Parrinello and 
Michael L. Klein, J. Phys. Chem. B 109 (2005), 
6676-6687 

Meta-dynamics can relax the requirement 
of choosing a good reaction coordinate 

S1(R) = rC-Cl   
S2(R) = rC-Cl` 
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Problem with TST 
There are recrossings that cause overestimation of the rate constant 
 
trajectories that seem to overcome the barrier but in fact bounce back 



Bennett-Chandler approach 

kA→B t( ) =
q 0( )δ q 0( )− q*( )θ q t( )− q*( )

θ q*−q( )

kA→B t( ) =
q 0( )δ q 0( )− q*( )θ q t( )− q*( )

δ q 0( )− q*( ) ×
δ q 0( )− q*( )
θ q*−q( )

Computational scheme: 

1.  Determine the probability from the free energy using 
MC or MD, e.g. by umbrella sampling, thermodynamic 
integration or other free energy methods 

2.  Compute the conditional average from a MD simulation 



kA→B
TST t( ) =

q 0( )δ q 0( )− q1( )θ q( )
δ q 0( )− q1( ) ×

δ q 0( )− q1( )
θ q1 − q( )

MD simulation to correct the 
transition state result! 

kA→B t( ) =
q 0( )δ q 0( )− q1( )θ q t( )− q1( )

δ q 0( )− q1( ) ×
δ q 0( )− q1( )
θ q1 − q( )

Transmission coefficient 

κ t( ) ≡
kA→B t( )
kA→B
TST

=
q 0( )δ q 0( )− q1( )θ q t( )− q1( )

0.5 q 0( )
MD simulation: 
1.  At t=0 q=q1 
2.  Determine fraction at product state weighted with initial velocity 

Bennett-Chandler approach 



Example diffusion in zeolite 
•  Zeolites important class of 

materials 

•  Diffusion of alkanes in matrix is 
poorly described 

•  Approach 
–  molecular simulation of 

alkanes in fixed zeolite frame 
–  Unified atom FF by Dubbeldam 

et al. 

D. Dubbeldam, et al., J. Phys. Chem. B, 108, 12301, 2004 



q 0( )δ q 0( )− q*( )θ q t( )− q*( )

Low value of κ 

t→∞: θ=1 
For both  
q 0( )  and − q 0( )



cage      window     cage 

βF
(q

) 

q 

q* 

cage      window     cage 

βF
(q

) 

q 

q* 

Reaction coordinate 
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Barriers on smooth and rough energy landscapes 

•  # saddle points limited 
•  determined by potential energy 
•  use eigenvectors or Hessian to find 

them   
 

•  # saddle points uncountable 
•  entropy important, many pathways 
•  determined by free energy 
•  exploring requires sampling schemes 

Dellago logoTM 

•  Clearly, barrier is most important for rare event 
•  But how to obtain this barrier? 
•  In multidimensional energy landscapes barrier is saddle point 



 Breakdown of BC approach 

If the reaction coordinate is not known, the 
wrong order parameter can lead to wrong 
transition states, mechanism and rates 

∫ "−"−= )},(exp{ln)( qqEqdkTqW β

kappa can become immeasurable low if the reaction coordinate is 
at the wrong value the reaction coordinate is wrongly chosen 



Two ended methods 

Methods that take the entire path 
and fix the begin and end point 

 
Many methods proposed: 

Action minimization 
Nudged elastic band  
String method  
Path metadynamics 
Milestoning  
Transition path sampling 
.... 



Transition path sampling 

 

 
 
 
 
 
•  Sampling by Monte Carlo 
•  Requires definition of stable states  A,B only 
•  Results in ensemble of pathways 
•  Reaction coordinate is a result of simulation not an input 
•  Allows for calculation of rate constants 

Apply when process of interest  
–  is a rare event  
–  is complex and reaction coordinate is not known 

Examples: nucleation, reactions in solution, protein folding 
 

C. Dellago, P.G. Bolhuis, P.L. Geissler 

Adv. Chem. Phys. 123, 1 2002 

Samples the path ensemble:  
all trajectories that lead over barrier 



Path probability density 

    Path = Sequence of states  

xiΔt 



Transition path ensemble 

hA=1 hB=1 



1.  Generate new path from old one   

2.  Accept new path according to detailed balance: 

3.  Satisfy detailed balance with the Metropolis rule: 
 
 

Metropolis MC of pathways  



•    

Shooting moves 
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Shooting algorithm  



Standard TPS algorithm 

•  take existing path 
•  choose random time slice t 
•  change momenta slightly at t 
•  integrate forward and backward in time to create new path of length L 
•  accept if A and B are connected, otherwise reject and retain old path 
•  calculate averages 
•  repeat 



Definition of the stable states 



Classical nucleation (1926) 

GΔ

0 

R R* 
Liquid 

R 

Crystal nucleus 

surface bulk 

€ 

ΔG = 4πR2γ − 4
3
πR3ρΔµls

γ :  surface tension 
Δµ : chem. pot difference 
ρ: density 
 

– How does the crystal form? 
– What is the structure of the critical nucleus 
– Is classical nucleation theory correct? 

• What is the barrier? 
• Rate constant 



Path sampling of nucleation 
TIS in NPH ensemble, as density and temperature change  
N=10000, P=5.68 H=1.41 (25 % undercooling) 
 

D. Moroni, P. R. ten Wolde, and P. G. Bolhuis, Phys. Rev. Lett. 94, 235703 (2005)  



Sampling paths is only the beginning 

•  Eugene Wigner: "It is nice to know that the computer understands 
the problem. But I would like to understand it too.”  

•  Path ensemble needs to be further explored to obtain: 
–  Rate constants 
–  Free energy 
–  Transition state ensembles 
–  Mechanistic picture 
–  Reaction coordinate 

•  Illustrative example: crystal nucleation 



Transition interface sampling 

T. S. van Erp, D. Moroni and P. G. Bolhuis, J. Chem. Phys. 118 , 7762 (2003) 
T. S. van Erp and P. G. Bolhuis, J. Comp. Phys. 205, 157 (2005) 
  

A 

B 

Overall states in phase space: 
directly coming from A 

directly coming from B 



A 
B 

= probability that path crossing i for first time after leaving A reaches i+1 before A 
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 TIS results for 
nucleation 

Free energy follows directly  
Moroni, van Erp, Bolhuis, PRE, 2005 
 
 
Structural analysis? 



Committor 
(aka p-fold, splitting probability) 

A 

B 
r 

Probability that a trajectory initiated at r relaxes into B 

L. Onsager, Phys. Rev. 54, 554 (1938).  
M. M. Klosek, B. J. Matkowsky, Z. Schuss, Ber. Bunsenges. Phys. Chem. 95, 331 (1991) 
V. Pande, A. Y. Grosberg, T. Tanaka, E. I. Shaknovich, J. Chem. Phys. 108, 334 (1998)  



Transition state ensemble 

 r is a transition state (TS) if pB(r) = pA(r) =0.5 

A 

B 
1.0 

0.5 

0.0 

A 

B 
TSE:  
 

Intersections of transition  
pathways with the  
pB=1/2 surface  



Committor distributions 



Committor distribution 

N=243 

Clearly, n is not entire story 



Structure  
Small and structured 

Big and unstructured 

Committor analysis gives valuable insight 



The end 


