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ADVANCED TECHNIQUES (MC/MD) 

 

A (seemingly) random selection. 

Daan	Frenkel	
U.	Cambridge	
13/01/2017	

But first: beyond Newtonian MD 

 

1.  Langevin dynamics 

2.  Brownian dynamics 

3.  Stokesian dynamics 

4.  Dissipative particle dynamics 

5.  Etc. etc. 

WHY?	
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1.  Can be used to simulate molecular 
motion in a viscous medium, 
without solving the equations of 
motion for the solvent particles. 

2.  Can be used as a thermostat. 

First, consider motion with friction  
alone: 

After a short while, all particles will stop 
moving, due to the friction.. 

Better: 

Conservative 
force 

“random” force 

Friction 
force 
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There is a relation between the 
correlation function of the random force 
and the friction coefficient: 

The derivation is straightforward, but beyond 
the scope of this lecture.  

The KEY point is that the friction force and the 
random force ARE RELATED.  

Limiting case of Langevin dynamics:  

No inertial effects (m=0) 

Becomes: 

“Brownian Dynamics” 
(But still the friction force and the random 
force are related)  
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What is missing in Langevin dynamics 
and Brownian dynamics? 

1. Momentum conservation 

2. Hydrodynamics 

(1 and 2 are not independent). 

Is this serious? 

Not always: it depends on the time 
scales.  

Momentum “diffuses” away in a time 
L2/ν. After that time, a “Brownian” 
picture is OK. 

However: hydrodynamics makes that 
the friction constant depends on the 
positions of all particles (and so do 
the random forces…). 
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Momentum conserving, coarse-grained 
schemes: 

 

•  Dissipative particle dynamics 

•  Stochastic Rotation Dynamics 

 

These schemes represent the solvent 
explicitly (i.e. as particles), but in a highly 
simplified way. 

ADVANCED	MC	SAMPLING 
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Conven=onal	MC	performs	a	random	walk	in	
configura=on	space,	such	that	the	number	of	
=mes	that	each	point	is	visited,	is	propor=onal	
to	its	Boltzmann	weight.	

Is	the	rejec=on	of	Monte	Carlo	trial	moves	wasteful?	

Metropolis,	
Rosenbluth,Rosenbluth,		

Teller	and	Teller	choice:	
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Satisfactory? 

In particular, if: 

Then 

(100% acceptance) 

Solution of conflict: play with the a-priori 
probabilities of trial moves:  
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100%	acceptance	can	be	achieved	in	
special	cases:	e.g.	Swendsen-Wang,	
Wolff,	Luyten,	Whitelam-Geissler,	
Bortz-Kalos-Lebowitz,	Krauth…			

General	idea:	construct	“cluster	moves”	

Simplest	example:	
Swendsen-Wang	

Illustra=on:	2D	Ising	model.	

Snapshot:	some	neighbors	are	parallel,	others	
an=-parallel	
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Number of parallel nearest-neighbor pairs:  Np 

Number of anti-parallel nearest neighbor pairs is:   Na 

Total energy: U = (Na-Np) J 

Make “bonds” between parallel neighbors. The 
probability to have a bond (red line) between 
parallel neighbors is p (as yet undetermined). 
With a probability 1-p, parallel neighbors are not 
connected (blue dashed line).  
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Form clusters of all spins that are connected by 
bonds. Some clusters are all “spin up” others are 
all “spin down”.   

Denote the number of clusters by M. 

Now randomly flip clusters. This yields a new 
cluster configuration with probability P(flip) 
=(1/2)M. 

Then reconnect parallel spins 
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Next: forget about the “bonds”… 

New spin configuration! 
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Moreover, we want 100% acceptance, i.e.: 

Pacc(o→n) = Pacc(n→o) = 1  

Hence: 

But remember: 
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Combining this with: 

we obtain: 

100% acceptance!!! 
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Include “rejected” moves in the sampling 

WASTE RECYCLING MC 

This is the key: 
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This, we can rewrite as: 

Note that <A> is no longer an average 
over “visited” states – we also include 
“rejected” moves in the sampling.   
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Slightly dishonest and slightly trivial example:  
 
Sampling the magnetization of a 2D Ising 

system 

Compare: 

1.  Normal (Swendsen-Wang) MC 
(sample one out of 2n states) 

2.  Idem + “waste 
recycling”         (sample all 2n states) 
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10-4 

10-12 

10-16 

10-8 

P(S) 

Swendsen-Wang 

Waste-recycling MC 

Monte	Carlo	sampling	with	noisy	weight	func=ons.		
	
Two	possible	cases:	

1.   The	calculaGon	of	the	energy	funcGon	is	
subject	to	staGsGcal	error		(Ceperley,	Dewing,	J.	Chem.	
Phys.	110,	9812	(1999).)	

u
computed

= u
real

+ �u

with:	
We	will	assume	that	
the	fluctua=ons	in	u	
are	Gaussian.	Then:	

< �u >= 0
< (�u)2 >= �2

s
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P
n

(x
n

)
P

o

(x
o

) = exp[���u]

Now	consider	that	we	do	Monte	Carlo	with	this	noisy	
energy	func=on:	

�u = u
n

+ �u
n

� u
o

� �u
o

with	

Then:	D
P

n

P
o

E
= exp[��h�ui+ (��)2/2]

With:		�2 = 2�2
s

As	a	consequence,	we	sample	the	states	
with	the	wrong	weight.	

However,	we	can	use	another	acceptance	
rule:	
	Pacc = Min{1, exp[���u� (��)2/2]}

In	that	case:	D
P

n

P
o

E
= exp[��h�ui+ (��)2/2]⇥ exp[�(��)2/2]

= exp[��h�ui]
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In	other	words:		
	
If	the	sta=s=cal	noise	in	the	energy	is	Gaussian,		
	
and	its	variance	is	constant,		
	
then	we	can	perform	rigorous	sampling,	even	when	
the	energy	func=on	is	noisy	

2. 	The	weight	funcGon	is	noisy,	but	its	average	is	
correct	(not	so	common	in	molecular	simula=on,	but	
quite	common	in	other	sampling	problems)	

(can	also	be	sampled	rigorously	–	but	
outside	the	scope	of	this	lecture)	
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Recursive sampling 

Outline: 

1.  Recursive enumeration 

a)  Polymer statistics (simulation) 

b)  .. 

2.  Molecular Motors (experiments!) 

(well, actually, simulated experiments) 
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Lattice polymers: 



17/01/17	

23	



17/01/17	

24	



17/01/17	

25	

This method is exact for non-self-avoiding, non-
interacting lattice polymers. 

 

It can be used to speed up MC sampling of 
(self)interacting polymers  

B. Bozorgui and DF, Phys. Rev. E 75, 036708 (2007))   

NOTE:	`MFOLD’	also	uses	recursive	sampling	to	predict	RNA	secondary	
structures.	

Recursive analysis of Molecular Motors… 
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Kinesin motor steps along micro-tubules 
with a step size of 8nm 

 

Experimentally, the step size is 
measured by fitting the (noisy) data. 
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Example:  noisy “synthetic data”  

: “true” trace 

Example:  noisy “synthetic data”  
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Best practice: “fit steps to data” 

J.W.J. Kerssemakers et al. , Nature 442,709 (2006) 

How well does it perform? 

1.  It can be used if the noise is less than 60% of the 
step size. 

2.  It yields a distribution of step sizes (even if the 
underlying process has only one step size) 



17/01/17	

29	

Observation: 

We want to know the step size and the step frequency but… 

We do not care which trace is the “correct” trace. 

Bayesian approach:  compute the partition function Q of non-
reversing polymer in a rough potential energy landscape 

 “true” trace Other directed walks 



17/01/17	

30	

As shown before: we can enumerate Q exactly (and 
cheaply). 

 

From Q we can compute a “free energy”  

Compute the “excess free energy” with respect to reference data  
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Method	to	obtain	the	best	es=mate	of	free-	
energy	differences	from	umbrella	sampling	

(Mul=state	Bennem	Acceptance	Ra=o)	

Shirts,	M.	R.,	and	Chodera,	J.	D.	(2008)	Sta=s=cally	
op=mal	analysis	of	samples	from	mul=ple	
equilibrium	states.	J.	Chem.	Phys.	129,	129105.	

Umbrella	sampling	

METROPOLIS	
SAMPLING	

exp(-βU(r))	

UMBRELLA		
SAMPLING	

W(r)	exp(-βU(r))	
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COMBINING	HISTOGRAMS:	
HOW?	

Problems:	
1. What	is	the	`best’	bin	width	
2.  How	do	we	s=tch	histograms	

together?	

We	start	from:	

Z =

Z
dRN

exp[��U(RN
)]

F = �kBT lnZ

Suppose we have k di↵erent samples (e.g. in umbrella sampling), biased with

potentials Vk(R
N
). Assume that we have Nk points for sample k We can then

define ‘partition functions Zk for the biased systems as

and	

MBAR:	No	binning	and	`opGmal’	sGtching.	
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Zk ⌘
Z

dRN
exp(��[U(RN

) + Vk(R
N
)])

Fk ⌘ �kBT lnZk

�Fk ⌘ Fk � F = kBT ln(Z/Zk)

and	

In	what	follows,	we	will	use:	

The	key	assump=on	of	MBAR	is	that	the	true	(as	
opposed	to	the	sampled)	distribu=on	func=on	is	
a	weighted	set	of	delta-func=ons	at	the	points	
that	have	been	sampled.	

In	words:	we	do	not	assume	anything	
about	points	that	we	have	not	sampled.		
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P (RN ) = Z�1
KX

j=1

NkX

n=1

pj,n�
�
RN �RN

j,n

�

Z ⌘
KX

j=1

NkX

n=1

pj,n

The	distribu=on	func=on	is	then	of	the	form:		

Where	the	pj,n	are	(as	yet)	unknown.	
	
The	normaliza=on	factor	is	defined	as:		

Zk ⌘
KX

j=1

NkX

n=1

pj,n exp(��Vk(R
N
))

Pk(R
N
) = Z�1

k

KX

j=1

NkX

n=1

pj,n exp(��Vk(R
N
))�

�
RN �RN

j,n

�

Once	the	full	distribu=on	is	known,	the	biased	
distribu=ons	follow:	

The	normaliza=on	factor	Zk	is	defined	as:		
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Now	we	must	compute	the	unknown	
weights	pj,n	

We	do	this,	using	`maximum	likelihood’.	
	
That	is:	we	impose	that	the	values	of	the	
pj,n	should	be	such	that	the	probability	of	
obtaining	the	observed	histograms	is	
maximised		

L ⌘
KY

j=1

"
NkY

n=1

Pk(R
N
j,n))

#
We	define	the	likelihood	L:	

L	depends	on	all	pj,n		

We	determine	pj,n	by	imposing	that	L,	or	
equivalently	ln	L	is	maximal.	
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If	we	look	at	ln	L	

We	see	that		ln	pj,n		and	Zk	depend	on	pj,n		
But	the	Boltzmann	factor	does	not.	

lnL ⌘
KX

j=1

NjX

n=1

ln

pj,n
Zj

exp(��Vj(R
N
j,n))

Therefore:	

Now,	we	can	differen=ate	with	respect	to	pj,n		
The	constant	yields	zero.	
The	second	term:	1/pj,n	
The	third	term	follows	if	we	use:	

lnL = constant +

KX

j=1

NjX

n=1

[ln pj,n � lnZj ]

= constant +

KX

j=1

NjX

n=1

ln pj,n �
KX

j=1

Nj lnZj (1)

Zk ⌘
KX

j=1

NjX

n=1

pj,n exp(��Vk(R
N
j,n))
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0 =

1

pj,n
�

KX

k=1

Nk
exp[��Vk(R

N
j,n))]

Zk

Our	condi=on	for	maximum	likelihood	is	then	

Or:	

pj,n/Z =
1

PK
k=1

Nk
exp[��Vk(RN

j,n))]

(Zk/Z)

pj,n/Z =

1

PK
k=1 Nk exp[��(Vk(R

N
j,n)��Fk)]

The	probability	to	observe	a	given	point	(j,n)	
given	the	op=mal	pj,n	is	then	

Where	we	have	used	

�Fk ⌘ Fk � F = kBT ln(Z/Zk)
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�Fi = �kBT ln

KX

j=1

NjX

n=1

exp[��(Vi(R
N
j,n)]PK

k=1 Nk exp[��(Vk(RN
j,n)��Fk)]

We	can	rewrite	our	result	as	an	implicit	
equa=on	for	the	ΔFi	:	

These	are	the	MBAR	equa=ons	that	
must	be	solved	self-consistently	

•  	It	does	not	use	bins.	
•  	it	makes	no	assump=on	about	the	form	of	
the	distribu=on	func=on	where	it	has	not	
been	sampled.	

•  different	biased	runs	may	sample	different	
points	in	parameter	space	

•  the	method	yields	the		best	(in	the	sense	of	
`the	most	likely’)	es=mate	for	the	histograms	
and	the	free	energy	differences.		

Advantages	of	MBAR	over	all	earlier	
schemes	(except	Bennem)	
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First	ques=on:	
What	IS	a	free-energy	landscape?	

Simpler	ques=on:	
What	is	an	energy	landscape?	

U(x)	

x	

Poten=al-energy	
“landscape”	of	a	1-
dimensional	harmonic	
oscillator	
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2-dimensional	poten=al	energy	landscape	(e.g.	
surface	poten=al	experienced	by	an	adsorbate	
atom)	

x	

y	

General	poten=al	energy	landscape:	

High	dimensional	-	not	easy	to	visualise.	

Visual	aid:	“disconnec=vity	graphs”	
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U	

“tree”	of	energy	
minima.	

X?	

Topology	-	
not	distance	

Free	energy	landscape?	

But	what	are	the	landscape	coordinates?	
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In	order	to	define	a	free	energy	it	is	
necessary	to	specify	the	coordinates	of	
the	landscape.	
	
Other	coordinates	=>	other	free-energy	
landscape”	

Sta=s=cal	mechanics:	Boltzmann	weight.	

What	is	the	probability	that	the	center	of	
mass	of	the	system	is	at	a	coordinate	X?	

We	now	define	the	free	energy	
associated	with	center-of-mass	
coordinate	X	as:	
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The	free	energy	is	to	the	“collec=ve”	
coordinate	X,	what	the	poten=al	energy	is	
to	the	individual	coordinates.	

They	may	be	complicated	func=ons	of	rN,	
and	they	may	be	discrete.	
e.g.		
X	=	radius	of	gyra=on	of	a	protein	
Y	=	number	of	na=ve	contacts	

In	general,	there	may	be	several	
coordinates,	X,	Y,	Z	etc.	

One	message:	
	
There	is	no	such	thing	as	the	free	energy	
landscape	of	a	system.	
	
We	can	only	define	F(X,Y,…)	a7er	choosing	the	
relevant	coordinates	X,Y,…	
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Note:	there	may	be	a	landscape	but	not	a	road…	

Integrate	over	y	=>	F(x):	no	barrier	but…	

F(x)	

x	

No	road!	

1	 2	y	

x	

Par=cle	in	a	box	
with	a	wall.	

Thin,	hard	wall	

A	“funnel”	may,	or	may	not	contain	a	“road”.	

Usually,	it	does.	

Disconnec=vity	graphs	always	contain	a	road	(but	
no	distance).	
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SoluGons:	

1. 	Wait	unGl	there	is	enough	computer	power	
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When	to	start	a	major	calculaGon?	

Either	start	now,	or	wait	a	Gme		Δt	and	use	the	computers	that	are	
available	then: 

Optimum? Compute extremum: 

Hence 
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In	that	case:	start	right	away!	

Otherwise: 

Solutions: 

1.  Wait until there is enough computer power 

2.  Use cheaper models/ more efficient 
algorithms. 


