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Molecular Simulations

¢ Molecular dynamics: MD
solve equations of
motion J_g
F
—— rr2
MC

¢ Monte Carlo:
importance sampling I




Algorithm 1 (Basic Metropolis Algorithm)

PROGRAM mc

do icycl=1l,ncycl
call mcmove
if (mod(icycl, nsamp) .eq.0)
+ call sample
enddo
end

basic Metropolis algorithm

perform ncycl MC cycles
displace a particle

sample averages

Comments to this algorithm:

1. Subroutine mcmove attempts to displace a randomly selected particle

(see Algorithm 2).

2. Subroutine sample samples quantities every nsampth cycle.




Algorithm 2 (Attempt to Displace a Particle)

SUBROUTINE mcmove attempts to displace a particle
o=int (ranf () *npart) +1 select a particle at random
call ener (x(o),eno) energy old configuration
xn=x (o) +(ranf ()-0.5) *delx  give particle random displacement
call ener (xn,enn) energy new configuration
if (ranf().lt.exp(-beta acceptance rule (3.2.1)

+ * (enn-eno)) x(o)=xn accepted: replace x (o) by xn
return
end

Comments to this algorithm:

1. Subroutine ener calculates the energy of a particle at the given position.
2. Note that, if a configuration is rejected, the old configuration is retained.
3. The ranf () is a random number uniform in [0, 1].
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the particle to be displaced?

Why do we need to take the old
configuration again?

How large should we take: delx?
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Outline

o Atoms first! Thermodynamics last!

Rewrite History

Thermodynamics
e First law: conservation of energy

e Second law: in a closed system entropy increase and takes its
maximum value at equilibrium

System at constant temperature and volume

e Helmholtz free energy decrease and takes its minimum value
at equilibrium

Other ensembles:

e Constant pressure

e grand-canonical ensemble
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A box of particles

O We have given the particles an

° . | .
infermolecular potential
O ® Newton: equations of motion
® F(r) = —-Vu(r)

d?r

Conservation of total energy
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Phase space

Thermodynamics: N,V,E O ® ®

Molecular: ® O
N _ O

I —{rl,rz,...,rN,pl,pz,...,pN} N ®

point in phase space Wi i )

y this one”

PPy Py |
r"(0)

trajectory: classical mechanics
.\K\AFN (1)
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All trajectories with the same initial total energy should
describe the same thermodynamic state

These trajectories define a probability
{Pl,pz,...,pN} density in phase space
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Intermezzo 1: phase rule

e (Question: explain the phase rule?
e Phase rule: F=2-P+C

e F: degrees of freedom
e P: number of phases

e (C: number of components

e Why the 27



Making a gas



Making a gas

O What do we need to specify to

O fully define a thermodynamic system?
O



Making a gas

O What do we need to specify to

O fully define a thermodynamic system?
O 1. Specify the volume V
O



Making a gas

O What do we need to specify to

O fully define a thermodynamic system?
O 1. Specify the volume V
O

2. Specify the number of
particles N



Making a gas

O What do we need to specify to

O fully define a thermodynamic system?
O 1. Specify the volume V
O

O
O
® 2. Specify the number of
particles N
3. Give the particles:
+ initial positions
+ initial velocities



Making a gas

O What do we need to specify to

O fully define a thermodynamic system?
O 1. Specify the volume V
O

O
O
® 2. Specify the number of
particles N
3. Give the particles:
+ initial positions
+ initial velocities

More we cannot do: Newton takes over!



Making a gas

What do we need to specify to
fully define a thermodynamic system?

1. Specify the volume V

2. Specify the number of
particles N

3. Give the particles:
+ initial positions
+ initial velocities

More we cannot do: Newton takes over!
System will be at constant:




Making a gas

What do we need to specify to
fully define a thermodynamic system?

1. Specify the volume V

2. Specify the number of
particles N

3. Give the particles:
+ initial positions
+ initial velocities

More we cannot do: Newton takes over!
System will be at constant: N,V,E




Making a gas

O What do we need to specify to

O fully define a thermodynamic system?
O 1. Specify the volume V
O

O
O
® 2. Specify the number of
particles N
3. Give the particles:
+ initial positions
+ initial velocities
More we cannot do: Newton takes over!

System will be at constant: N,V,E
(micro-canonical ensemble)




Pressure

What is the force | need to apply to
prevent the wall from moving?

:: ¢ ¢

How much work | do?
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Collision with a wall

Elastic collisions:

Does the energy change?

PR

What is the force that we
need to apply on the wall?
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Pressure

one particle: 2 m
Vx
# particles: 0 A vy

50% is the positive directions: 0.5
PA=F=pAmvV
Kinetic energy: Uk =Yamve =% kg T

e (we define temperature)

Pressure: PV =Nkg T
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® e o ®
® O @ O
O O
O o © O
NVE: NVE> E: > E»>
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Experiment (2)

NVE: E: > E>
Now the wall are heavy molecules
What will the moveable wall do?
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Newton + atoms

We have a natural formulation of
the first law

We have discovered pressure

We have discovered another
equilibrium properties related to
the total energy of the system
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Experiment

o
® o o
O o O° O
NVE; NVE: E: > E>

The wall can move and exchange energy:
what determines equilibrium ?
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Classical Thermodynamics

e Tstlaw of Thermodynamics
e Energy is conserved
e 2nd law of Thermodynamics

e Heat spontaneously flows from hot
to cold
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Classical Thermodynamics

Carnot: Entropy difference between two

states: B 4
AS:SB—SA:J Qrev
AT

Using the first law we have:
AU=Q+W

If we carry out a reversible process, we have
for any point along the path

dU =TdS + dW

If we have work by a expansion of a fluid

T=TE ]
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Let us look at the very initial stage

° A X o
°o® o O - dq is so small that the temperatures of
® o9 ® the two systems do not change
For systemH (S, = _4
TH
For system L dq
dSy = —
Hence, for the total system 1 1 Tr
dS =dS; +dSyy =dq | =— — —
L S : (TL TH)

Heat goes from warm to cold: or if dg > O then Ty> TL

This gives for the entropy change: dS >0

Hence, the entropy increases until the two
temperatures are equal
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Question

e Thermodynamics has a sense of
time, but not Newton’s dynamics

o Look at a water atoms in reverse

o Look at a movie In reverse

e When do molecules know about
the arrow of time?
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Statistical Thermodynamics

Basic assumption

For an isolated system any microscopic
configuration is equally likely

Consequence

All of statistical thermodynamics and
equilibrium thermodynamics
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ldeal gas

Let us again make an ideal gas

We select:
(1) N particles,
(2) Volume V,
(3) initial velocities
+ positions

This fixes; V/n, U/n

Basic assumption

For an isolated system any microscopic
configuration is equally likely
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Question

e |s it safe to be in this room?
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_i;|_|_|: .. lets look at our statistics correctly
o What is the probability to
~ find this configuration?
Basic
- assumption: :
P= total # of configurations

number 1 can be put in M positions, number 2 at M

positions, etc

: Vv
Total number of configurations: MM with M = -

the larger the volume of the gas the more
configurations
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Are we asking the right question?

These are microscopic properties; no irreversibility
Thermodynamic is about macroscopic properties:

©

A

Measure densities: what is the
probability that we have all our
N gas particle in the upper half?

N P(empty)

1 0.5
2 0.5 x 0.5
3 0.5 x 0.5 x 0.5

1000 10 39
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Q ® O @ Let uslook at one of our
® O examples; let us assume
° O O O that the total system is
O O isolate but heat can flow
ONVE, @ @® NVE, @ between1 and 2.

All micro states will be equally likely!

... but the number of micro states that give an
particular energy distribution (E1,E-E1) not ...

... SO, we observe the most likely one ...
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In @ macroscopic system we will observe the most likely one

Ni(Eq) x N2(E—Eq)

P(E1,E2) = —
0 Y £ 2o Ni(Er) x N2 (E—Ey)

The summation only depends on the total energy:
P(E1,E2) = C x Nq(Eq) x M2(E—Eq)

InP(E;,E2) =InC + In N (Eq) —I—lnNz(E —E4)
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We need to find the maximum
dlnN7(E7) +In N2 (E — Eq)]
dE

dIn N7 (Eq) _dlnNz(E—E1)

=0

dEq dEq
As the total energy is constant
E, =E—E;
dE; = —d(E—E;) = —dE,
Which gives as equilibrium condition:

dlnN1 (E] ) - dlnNz(Ez)
dE; - dE;
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(almost S, but not quite) : S = ln‘ﬁ(E)

Equilibrium if: ~ dIn0, (E,) _ dInMN, (E,)

dE, dE,
o o

alz'l N, Y, 8E2 N, .V,
And for the total system: S = Sl* + S;

For a system at constant energy, volume and number of
particles the S” increases until it has reached its maximum
value at equilibrium

What is this magic property S™?
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Defined a property S (that is almost S):
S(E,,E—E)=InXE, E—E)

= InN, (E,)

InN,(E—E))

=S (E)+S,(E—E,)

Why is maximizing S* the same as maximizing N?

The logarithm is a monotonically increasing function.

Why else is the logarithm a convenient function?

Makes S* additive! Leads to extensivity.

Why is S™ not quite entropy?

Units! The logarithm is just a unitless quantity.
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Thermal Equilibrium (Review)

‘ ‘ ‘ ‘ ‘ E1 > Ez

O O ® O Isolated system that
® O O allows heat flow
ONVE, 0 @® NVE: © between 1 and 2.

N(E ,E—E,)=N(E)N,(E—E)

Number of micro states that give an particular
energy distribution (Ei,E-E;) is maximized with
respect to Ei.
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For a partitioning of E between 1 and 2, the number
of accessible states is maximized when:

oS’ oS!
OE, OE,

Nl’Vl N2’V2

What do these partial derivatives relate to?

Thermal equilibrium --> Temperature!

M
dE =TdS-pdV + ) u,dN,
i=1

e 1{2) o H{E
emperature E)S - or T E)E -



Summary

Statistical Mechanics:

e basic assumption:
. all microstates are equally likely

e Applied to NVE
. Definition of Entropy: S = kg In Q)

. Equilibrium: equal temperatures
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Question

How large is () for a glass of water?

e For macroscopic systems, super-astronomically
arge.

e For instance, for a glass of water at room

temperature
2x10%°
Q=107

e Macroscopic deviations from the second law of
thermodynamics are not forbidden, but they are
extremely unlikely.
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The 2" law

Entropy of an isolated system can only

iIncrease; until equilibrium were it takes its
maximum value

Most systems are at constant temperature
and volume or pressure?

What is the formulation for these systems?
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fixed volume but can

exchange energy COﬂStant T aﬂd V

We have our box 1 and a bath

Total system is isolated and
the volume is constant

First law dU=dq —pdV =0
Second law dS > 0

Box 1: constant volume and temperature

1st law: dU; +dUp =0 or dU; =-—dUyg

The bath is so large that the heat flow does not influence the

temperature of the bath + the process is reversible

dU
2nd Jaw: dS7 +dSy =dS; + 0 > ()

=
TdS; — dU; > 0
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exchange energy

Total system is isolated and
the volume is constant

Box 1: constant volume
and temperature

2 [gw:  TdS; —dU; >0
d(U; —TS7) <0
Let us define the Helmholtz free energy: A

A=U—-TS
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fixed volume but can C()nstant T aﬂd V

exchange energy

Total system is isolated and
> the volume is constant

Box 1: constant volume
and temperature

2 [gw:  TdS; —dU; >0
d(U; —TS7) <0
Let us define the Helmholtz free energy: A

A=U—-TS
For box 1 we can write dA; <0

Hence, for a system at constant temperature
and volume the Helmholtz free energy decreases
and takes its minimum value at eauilibrium
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Canonical ensemble

E | E-E Consider a small system that can exchange
--------- i heat with a big reservoir

aanE._I_m

mQ(E-E )=InQ(E)- &

Q(E—El.)__ E
Q(E) kT
Hence, the probability to find E:
P(E )= Q(E-E,) _ exp (—E, /k,T)
Q(E-E;) Y exp(-E,/k,T)

P(E, )< exp(—E,/k,T)
/ Boltzmann distribution

In
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Thermodynamics

What is the average energy of the system?

_ - Zl,El. exp(—BE,)
<E>—z,-Ez~P(Ez-)— Zjexp(_BEj)

dln ) exp(-BE,)
— 3
B dlnQ,, ;
B
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Thermodynamics

What is the average energy of the system?

Z-E,-GXP(—BEZ-)
EV=Y EP(E)=%
=S er(e)- 2SR
_alnEiexp(—BEi)
— 3%
__aanN,V,T
Compare: - df

AEIT_,
oYT |

52



Thermodynamics

First law of thermodynamics
dE =T1dS — pdV

53



Thermodynamics

First law of thermodynamics
dE =T1dS — pdV
Helmholtz Free energy:

53



Thermodynamics
First law of thermodynamics
dE =T7dS — pdV
Helmholtz Free energy:
F=E-TS

53



Thermodynamics

First law of thermodynamics
dE =T1dS — pdV
Helmholtz Free energy:

F=E-TS
dFf =-8dT — pdV

53



Thermodynamics

First law of thermodynamics
dE =T7dS — pdV
Helmholtz Free energy:
F=FE-TS
dF =-SdT — pdV
OF/T\_ . 1 oF . _OF
o1/T

+—— =
T olT oT

53



Thermodynamics

First law of thermodynamics
dE =T7dS — pdV
Helmholtz Free energy:
F=FE-TS
dF =-SdT — pdV
OF/T\_ . 1 oF . _OF
o1/T

+—— = —_ —
TolT 0T
=F+TS=F
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exp(—BE,)
exp (—BE )

(£)=Y EP(E)- 2
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What is the average energy of the system?

_ Z exp(—BE,)
<E>_Z, P(E) exp(—ﬁE)

dln ) exp(-BE,)
B
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What is the average energy of the system?

_ Z exp(—BE,)
<E>_Z, P(E) exp(—ﬁE)

dln ) exp(-BE,)
Jp
dIn Ovyr
Jp
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Z exp(—BE,)
E)= P(E,
(=5 er(e)- SRS
dln ) exp(-BE,)
— 5
_ aanN,V,T
Compare: - df
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What is the average energy of the system?

2 exp(—BE,)
E)= P(E,
(=5 er(e)- SRS
dln ) exp(-BE,)
— 5
_ aanN,V,T
Compare: - df

OF/T Hence: | F !
or/t \_ g ence: I __j
[ 1T ) kT 7 nQyyr
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Atoms?

We have assumed that we can count states

Quantum Mechanics: energy discreet

What to do for classical model such as an ’; ) ;’;
ideal gas, hard spheres, Lennard-Jones? |

Energy is continue:
« potential energy

« kinetic energy 4 T 16

Particle in a box: (nh)’

E =

" 8ml’ 3 . 9

2 y 4

i |

Figure 11.4 Molecular Driving Forces 2/e (© Garland Science 2011)
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Quantum Mechanics: energy discreet
What to do for classical model such as an
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What are the energy levels for Argon in (nh)’
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Question

e For an ideal gas, calculate:
e the partition function
e the pressure
e the energy

e the chemical potential
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Summary:
Canonical ensemble (N,V,T)

Partition function:

Probability to find a particular configuration

P (T")o< exp [—[3 U (F)]

BF=-InQ,,,
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Summary:
micro-canonical ensemble (N,V,E)

Partition function:

Probability to find a particular configuration

P(T)e< 1
Free energy
BS=In QN,V,E
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Example (2): swelling of clays

Deep in the earth clay layers
can swell upon adsorption
~ .’*{Ngﬁb‘ - of water:

- ° e ° How to mimic this in
DTHE R0 RIS he N,V.T ensemble?
Lﬁ; (i'u@-p; the N,V, T ensemb

. What is a better
ensemble to use?
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Ensembles

Micro-canonical ensemble: E,V,N
Canonical ensemble: TV,N

Constant pressure ensemble:
LEN

Grand-canonical ensemble: T,V,u
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Box 1: constant pressure and temperature
1st law: dU; +dUy =0 or dU; = —dUy
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The bath is very large and the small changes do not

change P or T; in addition the process is reversible

dUu
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Total system is isolated and
the volume is constant

Box 1: constant pressure
and temperature

2" law: TdS7 — dU; —pdV; >0

Let us define the d(U; =T51 +pVi) <0
Gibbs free energy: G G=U—-TS+pV

For box 1 we can write dGj <0



fixed N but can exchange
energy + volume

P Total system is isolated and
the volume is constant

Box 1: constant pressure
and temperature

2" law: TdS7 — dU; —pdV; >0

Let us define the d(U; =T51 +pVi) <0
Gibbs free energy: G G=U—-TS+pV

For box 1 we can write dG1 <0
Hence, for a system at constant temperature and

pressure the Gibbs free energy decreases and
takes its minimum value at equilibrium
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Hence, the probability to find E V.
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Summary

In the classical limit, the partition
function becomes

Q(N,P,T)= JdVexp( BPV)Jdr exp[ BU( )]

A3NN'

The probability to find a particular
configuration:

P(r",V )e eXp[—B (Pr+U (- ))}

',V
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Grand-canonical ensemble

Classical

A small system that can exchange heat and
particles with a large bath

Statistical

Taylor expansion of a small reservoir
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1
s, +ds, = dS, + -dU, BN >0

b b

We can express the changes of the bath in terms of
properties of the system

1
s, ~—dU, +%le >0  d(TS,—U, +uN,)=0

d(U-TS—uN)<0
For the Gibbs free energy we can write:

GEU—TS+pV or —pV:U—TS—‘UN
G =UuN
Giving:

d(-pV)<0 or d(pV)=0

Hence, for a system at constant temperature
and chemical potential pV increases and
takes its maximum value at equilibrium
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The terms in the expansion follow from
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\ E- u,V, T ensemble

Consider a small system that can
exchange particles and energy
with a big reservoir

an(E—Ei,N—N.,):an(E,N)—(aan) Ei_(aan) N+
’ oE ), » ON Jp, '’
The terms in the expansion follow from
the connection with Thermodynamics: S =k,InL2
1

dS=—au+Zav-Ean
T T T

(B) L (B) s
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Hence, the probability fo find E;N;:

In

P(EN,)= Q(E-E.N-N,) |
A ZMQ(E—E,C,N—N,) P

Ei 4+ ‘LLNl
k,T kT
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w,V,T ensemble (2)

In the classical limit, the partition
function becomes

Q(H,V,T)z ; exiﬁ?;tf]!v)jdr]v exp [—BU(FN )}

The probability to find a particular

. . N,r"
configuration:

P(N,rN )oc exp[BuN— BU(rN )]
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