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Molecular Simulations
◆ Molecular dynamics: 

solve equations of 
motion 

◆ Monte Carlo: 
importance sampling
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Questions
• How can we prove that this scheme 

generates the desired distribution 
of configurations?

• Why make a random selection of 
the particle to be displaced?

• Why do we need to take the old 
configuration again?

• How large should we take: delx?

What is the desired 
distribution?
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Outline
Rewrite History

• Atoms first! Thermodynamics last!

Thermodynamics
• First law: conservation of energy

• Second law: in a closed system entropy increase and takes its 
maximum value at equilibrium

System at constant temperature and volume
• Helmholtz free energy decrease and takes its minimum value 

at equilibrium

Other ensembles:
• Constant pressure

• grand-canonical ensemble



Atoms first  
thermodynamics next
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A box of particles

We have given the particles an 
intermolecular potential

Newton: equations of motion

F(r) = -ru(r)

Conservation of total energy

m
d2r
dt2

= F(r)
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Phase space
Thermodynamics: N,V,E

Molecular: 

 Γ
N = r1,r2 ,…,rN ,p1,p2 ,…,pN{ }
point in phase space

ΓN 0( )
ΓN t( )

trajectory: classical mechanics

 r1,r2 ,…,rN{ }

 p1,p2 ,…,pN{ }
Why this one?
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All trajectories with the same initial total energy should 
describe the same thermodynamic state

 r1,r2 ,…,rN{ }

 p1,p2 ,…,pN{ }
These trajectories define a probability 
density in phase space
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Intermezzo 1: phase rule

• Question: explain the phase rule?
• Phase rule: F=2-P+C

• F: degrees of freedom

• P: number of phases

• C: number of components

• Why the 2?



Making a gas



Making a gas
What do we need to specify to 
fully define a thermodynamic system?



Making a gas
What do we need to specify to 
fully define a thermodynamic system?

1. Specify the volume V



Making a gas
What do we need to specify to 
fully define a thermodynamic system?

1. Specify the volume V

2. Specify the number of
 particles N



Making a gas
What do we need to specify to 
fully define a thermodynamic system?

1. Specify the volume V

2. Specify the number of
 particles N

3. Give the particles:
 initial positions
 initial velocities



Making a gas
What do we need to specify to 
fully define a thermodynamic system?

1. Specify the volume V

2. Specify the number of
 particles N

3. Give the particles:
 initial positions
 initial velocities

More we cannot do: Newton takes over!



Making a gas
What do we need to specify to 
fully define a thermodynamic system?

1. Specify the volume V

2. Specify the number of
 particles N

3. Give the particles:
 initial positions
 initial velocities

More we cannot do: Newton takes over!
System will be at constant:



Making a gas
What do we need to specify to 
fully define a thermodynamic system?

1. Specify the volume V

2. Specify the number of
 particles N

3. Give the particles:
 initial positions
 initial velocities

More we cannot do: Newton takes over!
System will be at constant: N,V,E



Making a gas
What do we need to specify to 
fully define a thermodynamic system?

1. Specify the volume V

2. Specify the number of
 particles N

3. Give the particles:
 initial positions
 initial velocities

More we cannot do: Newton takes over!
System will be at constant: N,V,E

(micro-canonical ensemble)



What is the force I need to apply to 
prevent the wall from moving?

Pressure

How much work I do?
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Collision with a wall

Elastic collisions:

Does the energy change?

What is the force that we 
need to apply on the wall?
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Pressure
• one particle:                            2 m 

vx

• # particles:                             ρ A vx

• 50% is the positive directions: 0.5
• P A = F = ρ A m vx

2

• Kinetic energy: UK = ½ m v2 = ³⁄₂ kB T
• (we define temperature)

• Pressure: P V = N kB T 
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NVE1 NVE2 E1 > E2

What will the moveable wall do?
Now the wall are heavy molecules
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Newton + atoms

• We have a natural formulation of 
the first law

• We have discovered pressure
• We have discovered another 

equilibrium properties related to 
the total energy of the system
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Experiment

NVE1 NVE2 E1 > E2

The wall can move and exchange energy:  
what determines equilibrium ?
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Classical Thermodynamics

• 1st law of Thermodynamics
• Energy is conserved

• 2nd law of Thermodynamics
• Heat spontaneously flows from hot 

to cold 
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Carnot: Entropy difference between two 
states:

�S = SB � SA =

�B

A

dQrev

T

Using the first law we have:

If we carry out a reversible process, we have 
for any point along the path

�U = Q + W

If we have work by a expansion of a fluid

dU = TdS + dW

dU = TdS − pdV

Classical Thermodynamics
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Let us look at the very initial stage

dq is so small that the temperatures of 
the two systems do not change

Hence, for the total system

dSH = �
dq

TH

For system H

For system L
dSL =

dq

TL

dS = dSL + dSH = dq

�
1

TL
⇥

1

TH

⇥

Heat goes from warm to cold: or if dq > 0 then TH > TL

Hence, the entropy increases until the two 
temperatures are equal

dS > 0This gives for the entropy change:

H L
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Question

• Thermodynamics has a sense of 
time, but not Newton’s dynamics

• Look at a water atoms in reverse

• Look at a movie in reverse

• When do molecules know about 
the arrow of time?



Thermodynamics 
(statistical)



Statistical Thermodynamics



Statistical Thermodynamics

Basic assumption



Statistical Thermodynamics

For an isolated system any microscopic 
configuration is equally likely

Basic assumption



Statistical Thermodynamics

For an isolated system any microscopic 
configuration is equally likely

Basic assumption

Consequence



Statistical Thermodynamics

For an isolated system any microscopic 
configuration is equally likely

Basic assumption

Consequence

All of statistical thermodynamics and 
equilibrium thermodynamics



Statistical Thermodynamics

For an isolated system any microscopic 
configuration is equally likely

Basic assumption
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All of statistical thermodynamics and 
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Let us again make an ideal gas

We select: 
(1) N particles, 
(2) Volume V, 
(3) initial velocities
    + positions

This fixes; V/n, U/n

For an isolated system any microscopic 
configuration is equally likely
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The system has the same kinetic energy!!

Our basic assumption must be seriously wrong! 
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Question

• Is it safe to be in this room?
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... lets look at our statistics correctly

Basic 
assumption:

number 1 can be put in M positions, number 2 at M 
positions, etc 

What is the probability to 
find this configuration?

P =
1

total # of configurations

Total number of configurations: with MN

the larger the volume of the gas the more 
configurations

M =
V

dr
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Are we asking the right question?

Measure densities: what is the 
probability that we have all our 
N gas particle in the upper half?

N P(empty)

1 0.5

2 0.5 x 0.5

3 0.5 x 0.5 x 0.5

1000 10 -301

These are microscopic properties; no irreversibility
Thermodynamic is about macroscopic properties:
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• On a microscopic level all configurations are 
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• On a macroscopic level; as the number of 
particles is extremely large, the probability 
that we have a fluctuation from the average 
value is extremely low

• Let us quantify these statements
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Basic assumption

All micro states will be equally likely!

... but the number of micro states that give an 
particular energy distribution (E1,E-E1) not ...

E1 > E2

Let us look at one of our 
examples; let us assume 
that the total system is 
isolate but heat can flow 
between 1 and 2.NVE1 NVE2

... so, we observe the most likely one ...
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Defined a property S* (that is almost S):

 

S*(E1,E−E1)= lnℵ(E1,E−E1)
= lnℵ1(E1)+ lnℵ2 (E−E1)
= S1

*(E1)+ S2
*(E−E1)

Why is maximizing S* the same as maximizing N?
The logarithm is a monotonically increasing function.

Why else is the logarithm a convenient function?
Makes S* additive!  Leads to extensivity.

Why is S* not quite entropy?

Units! The logarithm is just a unitless quantity.



Thermal Equilibrium (Review) 

E1 > E2

Isolated system that 
allows heat flow 
between 1 and 2.NVE1 NVE2



Thermal Equilibrium (Review) 

E1 > E2

Isolated system that 
allows heat flow 
between 1 and 2.NVE1 NVE2

  ℵ(E1,E−E1)=ℵ1(E1)iℵ2 (E−E1)



Thermal Equilibrium (Review) 

Number of micro states that give an particular 
energy distribution (E1,E-E1) is maximized with 
respect to E1.

E1 > E2

Isolated system that 
allows heat flow 
between 1 and 2.NVE1 NVE2

  ℵ(E1,E−E1)=ℵ1(E1)iℵ2 (E−E1)



For a partitioning of E between 1 and 2, the number 
of accessible states is maximized when:

 

∂S1
*

∂E1

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
N1 ,V1

=
∂S2

*

∂E2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
N2 ,V2



For a partitioning of E between 1 and 2, the number 
of accessible states is maximized when:

 

∂S1
*

∂E1

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
N1 ,V1

=
∂S2

*

∂E2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
N2 ,V2

What do these partial derivatives relate to?



For a partitioning of E between 1 and 2, the number 
of accessible states is maximized when:

 

∂S1
*

∂E1

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
N1 ,V1

=
∂S2

*

∂E2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
N2 ,V2

What do these partial derivatives relate to?

Thermal equilibrium --> Temperature!



For a partitioning of E between 1 and 2, the number 
of accessible states is maximized when:

 

∂S1
*

∂E1

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
N1 ,V1

=
∂S2

*

∂E2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
N2 ,V2

What do these partial derivatives relate to?

Thermal equilibrium --> Temperature!

dE = TdS-pdV + µidNi
i=1

M

∑



For a partitioning of E between 1 and 2, the number 
of accessible states is maximized when:

 

∂S1
*

∂E1

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
N1 ,V1

=
∂S2

*

∂E2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
N2 ,V2

What do these partial derivatives relate to?

Thermal equilibrium --> Temperature!

dE = TdS-pdV + µidNi
i=1

M

∑

T= ∂E
∂S

⎛
⎝⎜

⎞
⎠⎟V ,Ni

Temperature



For a partitioning of E between 1 and 2, the number 
of accessible states is maximized when:

 

∂S1
*

∂E1

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
N1 ,V1

=
∂S2

*

∂E2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
N2 ,V2

What do these partial derivatives relate to?

Thermal equilibrium --> Temperature!

dE = TdS-pdV + µidNi
i=1

M

∑

T= ∂E
∂S

⎛
⎝⎜

⎞
⎠⎟V ,Ni

Temperature or
1
T
= ∂S

∂E
⎛
⎝⎜

⎞
⎠⎟V ,Ni



Summary

• Statistical Mechanics:
• basic assumption: 

• all microstates are equally likely

• Applied to NVE
• Definition of Entropy: S = kB ln Ω

• Equilibrium: equal temperatures  
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How large is Ω for a glass of water?
• For macroscopic systems, super-astronomically 

large. 

• For instance, for a glass of water at room 
temperature

• Macroscopic deviations from the second law of 
thermodynamics are not forbidden, but they are 
extremely unlikely.
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Constant T and V

Total system is isolated and 
the volume is constant
Box 1:  constant volume 
and temperature 
2nd law: TdS1 � dU1 � 0

d(U1 ⇤ TS1) � 0

Let us define the Helmholtz free energy:  A
A � U � TS

For box 1 we can write dA1 � 0

Hence, for a system at constant temperature 
and volume the Helmholtz free energy decreases 
and takes its minimum value at equilibrium 

fixed volume but can 
exchange energy

1
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Question

• For an ideal gas, calculate:
• the partition function

• the pressure

• the energy

• the chemical potential
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Example (2): swelling of clays

Deep in the earth clay layers 
can swell upon adsorption 
of water:

• How to mimic this in 
the N,V,T ensemble?

• What is a better 
ensemble to use?
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Ensembles

• Micro-canonical ensemble: E,V,N

• Canonical ensemble: T,V,N

• Constant pressure ensemble: 
T,P,N

• Grand-canonical ensemble: T,V,µ
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Grand-canonical ensemble

Classical

• A small system that can exchange heat and 

particles with a large bath


Statistical

• Taylor expansion of a small reservoir
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P Ei ,N j( ) = Ω E − Ei ,N − N j( )
Ω E − Ek ,N − Nl( )k ,l∑ ∝ exp − Ei

kBT
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kBT
⎡

⎣
⎢

⎤

⎦
⎥
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μ,V,T ensemble (2)
In the classical limit, the partition 
function becomes
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μ,V,T ensemble (2)
In the classical limit, the partition 
function becomes

The probability to find a particular 
configuration:


