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Biomolecular simulation, some examples: 



Why a lecture on biomolecular simulation? 

•  Who has worked with a simulation on biomolecules or 
is planning to do so? 

 



My Background 

•  First Degree: Computer Science / Mathematics 
(University of Manchester) 

•  PhD: Structural Bioinformatics / Biochemistry 
(University of Oxford) 

•  PostDoc: Computational (Bio)-Physics 
(Amolf, Amsterdam) 

•  Currently, Assistant Professor Bioinformatics 
(VU University), use all of the above 



Why “Biomolecular Simulation”? 

•  Physical questions: 
–  How stable is this protein 
–  Under which conditions will 

this protein fold? 
–  How strong is the binding to 

a substrate? 

•  Biological questions: 
–  What is the function of this 

protein in the cell? 
–  What happens if we change 

the sequence of the protein? 
–  Where does the substrate 

bind? 
–  Do evolutionary related 

proteins bind the same 
substrate? 



The biological approach or the physical approach? 

TASK: 
Given a protein sequence predict in which 3D structure 
the protein will fold. 
 
Who wins, the physical or biological approach? 



Biomolecular simulation (this afternoon) 

hydrophobic 

polar (hydrophilic) 
negative charge  

positive charge  

-- + + + 
+ 
+ + - 
+ - + 

Sequence Structure 



Let’s have a look at the physical forces first 

•  What are the most important forces that act on a protein? 

•  We stay away from quantum mechanics for now. 



Lets consider the basic protein chemical structure 

•  Identical backbone for each residue (peptide) 

•  Amino acid side chains with 20 different chemical 
structures  

 

“Coil with 20 different beads.” 



What type of forces and effects would be relevant? 

•  Van der Waals 

•  Electrostatics 

•  Hydrogen bonding 

•  Entropic effects 

•  Hydrophobic effect 



Primary Protein Structure 
hydrophobic +ve charge  

-ve charge  

other polar  

δ- δ+ 

Backbone has a hydrogen 
bond donor and acceptor per 
residue 



Proteins live in water 



Hydrophobic Collapse 

Unfolded Molten Globule Folded 



Hydrogen bonds & secondary structure of backbone 

alpha helix beta sheet 

We will ignore this in the practical exercises! 



What are the effects that contribute to a stably folded 
protein? 

1)  Hydrophobicity (oil in water)  
- note this is an effective force that contains 
enthalpic and entropic components 

2) Hydrogen bonds form secondary structure 
  



What forces / effects destabilize a folded protein? 

1)  Chain entropy!   



Questions for you: 

Would secondary structures form / be stable in vacuum? 

What is the influence of water molecules on secondary structure 
formation (does it help, does it hinder formation)?  

How can you explain secondary structure formation in an aqueous 
environment? 

 

 

  



Entropic and enthalpic contributions compensate 
(experimental) 

its magnitude is sufficiently higher than expected for a linear extrapolation of the initial
heat capacity. Thus, the unfolding of myoglobin results in a significant heat capacity
increment. One may therefore surmise that the heat capacity of an unfolded protein is
significantly higher than its compact native state.

A thermodynamic description of myoglobin unfolding may be viewed by invoking the
Kirchhoff equation, which defines the heat capacity increment as follows:

oDH=oT ¼ DCp ð1Þ

The thermodynamic properties of protein unfolding may be evaluated in accordance
with the following standard relations:

DH Tð Þ ¼ DH Ttð Þ $ DCp Tt$Tð Þ ð2Þ

DS Tð Þ ¼ DH Ttð Þ=Tt $ DCpln Tt=Tð Þ ð3Þ

DG Tð Þ ¼ DH Tð Þ $ TDS Tð Þ ð4Þ

Based on the thermodynamics prediction, one might reasonably anticipate that the
enthalpy of protein unfolding increases linearly with temperature. Conversely, the enthalpy
would decrease and might even change sign at sufficiently low temperatures as illustrated
in Fig. 7.

Correspondingly, the entropy factor (TDSunf) is a nearly linear function of temperature.
The difference between DH(T) and TDS(T) is essentially a parabolic function that repre-
sents the Gibbs energy of protein unfolding (DG), which is characterized by a maximum at
approximately 35 !C. The Gibbs energy corresponds with the work required to unfold the
protein at a given temperature and is usually considered a measure of protein stability.
Inspection of the thermodynamic functions presented in Fig. 7 suggests that myoglobin in
sodium acetate buffer (pH 4.0) exhibits a greater stability within the physiological tem-
perature range. Upon increasing the temperature above 35 !C, myoglobin stability de-
creases and the protein undergoes unfolding. In an analogous manner, myoglobin stability
should decrease at temperatures sufficiently below the physiological range.

Assuming that the thermodynamic formalisms are appropriate in describing the protein
folding/unfolding process, myoglobin unfolding upon cooling should proceed with both the
release of heat and a decrease in entropy. Corroboration of the expected behavior is

Fig. 7 Thermodynamic
functions specifying myoglobin
stability: unfolding enthalpy
(DH), entropy factor (TDS) and
Gibbs energy (DG)

J Solution Chem (2015) 44:1141–1161 1149

123Look at the scale of the axis! 



The biological approach or the physical approach? 

TASK: 
Given a protein sequence predict in which 3D structure 
the protein will fold. 
 
Who wins, the physical or biological approach? 



What about the biology?    

The sequence is key to biological understanding 



DNA - RNA – Proteins- function   

folded protein 

function 

The DNA is the source of 
information for a living 
species 

 

The sequence provides a 
specification 

 

 

The sequence encodes  
biological function of the 
protein 

 



Physics & Biology: folding specificity 

Unique characteristic: 
The sequence of a protein determines and specifies its structure 

 

Sequences evolve! 



The biology: an evolutionary tree 



What can evolutionary history tell us? 



Biology: structure is more  
conserved than sequence  

So if we have a protein with a known structure that has a 
similar sequence – we have solved our problem. 



The biological approach or the physical approach? 

TASK: 
Given a protein sequence predict in which 3D structure 
the protein will fold. 
 
Who wins, the physical or biological approach? 



Structural Genomics 



Who wins BIOLOGY or PHYSICS? 



Sequence Structure 'Gap' 

l  Against 65.000 protein structures 

l  If only we could predict structure from sequence... 







What kind of biological data is available? 

Structures   Sequences   Function 

We will use protein structures from the PDB 
in the practical exercises 



PDB 

l  Protein DataBank 
−  X-ray structures 
−  NMR structures 
−  cryo-electron microscopy  

l  Biases in PDB 
−  proteins that we can: 

-  purify 
-  crystalize 
-  stabilize in solution 

−  Sequence bias 

l  Transmembrane proteins 
l  hugely underrepresented 

no filter   65.000 
blast  100% identity  38.974 
blast  95% identity  27.892 
blast  90% identity  26.831 
blast  70% identity  24.204 
blast  50% identity  21.249 
blast  40% identity  19.002 
blast  30% identity  16.388 

 



Dark proteins: no structures available with similar 
sequences 

In this work, we used Aquaria to survey the dark proteome in
unprecedented depth. We found most of the dark proteome
cannot be readily accounted for and shows unexpected features.

Results and Discussion
Mapping the Dark Proteome. We based our survey on 546,000
Swiss-Prot sequences (20). Although smaller than other databases
[e.g., TrEMBL (21), which has >50 million sequences], Swiss-Prot
is meticulously curated; each entry has many annotations and a
high likelihood that it represents a native protein.
Fig. 1A shows how we mapped the dark proteome: for each

Swiss-Prot sequence, each residue was categorized as “not dark” if
it was aligned to a PDB entry in Aquaria (19) and as “dark”
otherwise (SI Methods). This definition partly underestimates the
dark proteome, because Aquaria includes very remote homologies
[found using HHblits (22)] and uses all PDB entries, including
low-quality structures from electron microscopy (EM) or NMR
spectroscopy. We deliberately chose this stringent definition of
“darkness,” so we can be confident that the dark proteome has
completely unknown structure.
Most dark residues occurred in contiguous “dark regions” (Fig.

1); on average, eukaryotic proteins contained eight dark regions,
many very short. In many cases, a single dark region covered the
entire sequence; we call these “dark proteins” (Fig. 1B). Most
nondark residues also occurred in continuous regions: some, called
“PDB regions,” exactly matched to a PDB entry—these residues
accounted for only 2–4% of all Swiss-Prot residues (Fig. 1B). The
remaining nondark residues occurred in “gray regions” (Fig. 1B),
where 3D structure could be predicted based on similarity to at
least one PDB entry.
We found that the dark proteome (i.e., the fraction of residues

in dark proteins or dark regions) for archaea and bacteria was
strikingly small (13–14%; Fig. 1B), implying that structural
knowledge for these organisms approaches a level of complete-
ness. In contrast, in eukaryotes and viruses, about half (44–54%)
of the proteome was dark (Fig. 1B). Of the total dark proteome,
nearly half (34–52%) comprised dark proteins.

We repeated the above analysis using an even more stringent
definition for darkness—combining PMP (2) and Aquaria (SI
Methods)—but this had little effect (Fig. S1).
We also calculated a darkness score for each protein, defined as

the percentage of dark residues (Dataset S1). Thus, dark proteins
have 100% darkness, whereas proteins with 0% darkness are those
where the entire sequence is detectably similar to one or more
PDB entries. The distribution of darkness scores was strongly bi-
modal; most proteins had either low or 100% darkness (density
plots in Fig. 2A and Figs. S2A and S3). For brevity in this work, we
use the term “nondark proteins” to refer to those with <100%
darkness (noting that a small fraction had high darkness scores).

Dark Proteome Is Mostly Not Disordered. Intrinsically disordered
regions are believed to account for much of the dark proteome,
especially in eukaryotes (15). To explore this hypothesis, for each
protein we calculated the percentage of residues predicted to be
disordered [using IUPred (23); SI Methods]. Viewing these disor-
der and darkness scores on a 2D scatter plot, we see that darkness
was greater than disorder for almost all eukaryotic proteins (most
proteins above the diagonal in Fig. 2C), implying that many dark
residues were not disordered. In this 2D plot, dark proteins are
difficult to resolve because they cluster on a line at the top; thus, we
made density plots comparing the disorder distribution for dark vs.
nondark proteins (Fig. 2B). Surprisingly, most dark proteins had
low disorder (median, 10% disorder), not greatly different from
nondark proteins (median, 6% disorder); because both of these
medians were less than half of the median darkness score (28%;
Fig. 2A), this finding implies that most of the dark proteome in
eukaryotes was not disordered.
In bacteria, archaea, and viruses, nondark proteins, surprisingly,

had higher median disorder than dark proteins (Fig. S3). However,
the median darkness was always higher still, implying that in these
organisms as well, much of the dark proteome was not disordered.
For eukaryotic proteins, the pattern seen in the 2D plot (Fig. 2C)

also implies that, as expected, most disordered residues were dark.
However, a fraction of proteins occur below the diagonal, implying
that many disordered residues were not dark. In the corresponding
plots for bacteria, archaea, and viruses, this fraction is even larger
(Fig. S3), implying that as much as half of all disordered residues
were not dark. Many of our colleagues found this last result con-
fusing, often because the distinction between disorder and darkness
was unclear. Thus, to clarify: disordered regions are those with
evidence of structural heterogeneity (23)—but some become well
structured in particular contexts (e.g., most of the 536 Swiss-Prot
proteins with 100% disorder and 0% darkness were ribosomal and
are presumably well structured within the ribosomal complex). To
clarify darkness: these are regions that do not match any PDB
entry—but some PDB entries are highly disordered [often these
are from EM or NMR (24)], and any sequence aligned to a PDB
entry was classified as “not dark” using our stringent definition,
because some structural information is known.

Dark Proteome Is Mostly Not Compositionally Biased.Compositional
bias is also known to confound structure determination (25). To
explore this idea, for each protein we calculated the percentage
of compositionally biased residues (SI Methods). Viewing these
compositional bias and darkness scores on 2D scatter plots, we
see that darkness was greater than compositional bias for almost
all proteins (Fig. 2E and Fig. S3), implying that, as expected,
most compositionally biased residues were dark. Together with
the density plots for compositional bias (Fig. 2D and Fig. S3), it is
clear that most dark residues were not compositionally biased
and that most dark proteins had very low compositional bias.

Dark Proteome Is Mostly Not Transmembrane. Transmembrane re-
gions are also known to confound structure determination (15,
18). To explore this concept, for each protein we calculated the

Eukaryota

Bacteria

Archaea

Viruses

%28%6

42%

4%

4%

5% 8% 85% 2%

15% 29% 52%

8%

snoigeryarGsnietorpkraD PDB
B

N CPDB region

A

28% 26%

Gray region

4%

Dark regions

Fig. 1. Mapping the dark proteome. (A) For all proteins in Swiss-Prot, each
residue was classified into one of four categories: (i) PDB regions—residues
exactly matched to a PDB entry in Aquaria; (ii) gray regions—residues
aligned to at least one PDB entry in Aquaria but always with amino acid
substitutions (dark gray); (iii) dark regions—residues with no matching PDB
entry in Aquaria; and (iv) dark proteins, where a single dark region spans the
entire sequence. (B) We then calculated the total fraction of residues in each
of the above four categories for all proteins in eukaryotes, bacteria, archaea,
and viruses. The dark proteome (i.e., the fraction of residues in dark proteins
or dark regions) varies from 13% (bacteria) to 54% (viruses).

Perdigão et al. PNAS | December 29, 2015 | vol. 112 | no. 52 | 15899
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So is there any role for physics based approaches? 

•  Physical questions: 
–  How stable is this protein 
–  Under which conditions will 

this protein fold? 
–  How strong is the binding to 

a substrate? 

–  Fundamental understanding 
of mechanisms and forces 
involved in folding 

–  Detailed simulation under 
(experimental) constraints. 

 



Why use simple models? 
HP model - minute cubic lattice model - hour 

backbone model - week full atomistic model -  year(s) 

–  Sampling lowest free energy state 
–  Different conditions 
–  Larger systems 



Physics: folding specificity - perfect self assembly 
A
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Experimental curves – can we understand these? 



A very simple model 

 

•  3D for research 

•  2D in practical 



Lattice Model 

hydrophobic 

polar (hydrophilic) 
negative charge  

positive charge  

-- + + + 
+ 
+ + - 
+ - + 

Sequence Structure 



Cubic Lattice Model 

•  Cheap & simple 
–  Use for right purpose 

•  Can model: 
–  General trends  
–  Folding specificity 
–  Heat capacity 
–  Binding and unbinding 
 

•  Not captured: 
–  Secondary structure 
–  Hydrophobic effect   

(cold denaturation) 
–  Specific proteins 

Shakhnovich & Gutin 1993 PNAS 90 

Coluzza et al 2003 Phys Rev E 68 



Lattice Model, Potential, Design & Simulation 

hydrophobic 

polar (hydrophilic) 
negative charge  

positive charge  
+ - + 
- + + 

+ 
+ + + -- 

Folding  Simulation 

Interaction Potential 

Sequence Design 

hydrophobic 

polar (hydrophilic) 
negative charge  

positive charge  



Simulation: Lattice Moves 

corner flip 

crankshaft 

point rotation 



Simulation: interaction potential 

+ - + 
- + + 

+ 
+ + + -- hydrophobic 

polar (hydrophilic) 
negative charge  

positive charge  

contact energy 



Simulation: Monte Carlo 

Monte Carlo: 
–  Choose a residue (or region) 
–  Change its position 
–  Calculate new interaction energy 
–  Accept with Monte Carlo criterion  

Shakhnovich & Gutin 1993 PNAS 90 

Coluzza et al 2003 Phys Rev E 68 

Betancourt & Thirumalai 1999 Protein Sci 8 



Sequence Design 

hydrophobic 

polar (hydrophilic) 
negative charge  

positive charge  
+ - + 
- + + 

+ 
+ + + -- 

Simulation 

Potential 

Design 

hydrophobic 

polar (hydrophilic) 
negative charge  

positive charge  



Problem: how to create a folding sequence? 

? 

In nature evolution ensures folding... 

We cannot take real protein sequences (why not?) 



Solution: energy minimization 

Given a structure, what are sequences with a low 
(potential) energy? 

 

? 

we can simulate evolution by changing the 
sequence with random substitutions 

 



Lattice Model: design 

Design loop: 
–  Choose a residue 
–  Change the amino acid 
–  Calculate new interaction energy 
–  Accept with Monte Carlo criterion 

based on energy and variance 

hydrophobic 

polar (hydrophilic) 
negative charge  

positive charge  

-- + + + 
+ 
+ + - 
+ - + 

Shakhnovich & Gutin 1993 PNAS 90 

Coluzza et al 2003 Phys Rev E 68 

Betancourt & Thirumalai 1999 Protein Sci 8 
Miyazawa & Jernigan 1993 Protein Eng 6 



Sequence design: energy minimization 



Interactions: toy example 2D 



Sequence  Design 

Low energy High variance 

Good folder 



Sequence Variance 



Sequence Variance & Biology 



How to derive a potential? 

+ - + 
- + + 

+ 
+ + + -- hydrophobic 

polar (hydrophilic) 
negative charge  

positive charge  ? 

Can we use experimental biological data? 



“Knowledge Based” Amino Acid Pair Potentials  

-- + + + 

+ - 

+ + - 

+ - + 

- + + + 
+ - 
+ + - 
+ - + 

H2O 

H2O 
Betancourt & Thirumalai 1999 Protein Sci 8 
Miyazawa & Jernigan 1993 Protein Eng 6 

? 

hydrophobic 
polar (hydrophilic) 
negative charge  
positive charge  

observed contacts 

- 

expected contacts 



“Knowledge Based”  Amino Acid Pair Potentials 

+ - + 
- + + 

+ 
+ + + -- 



“Knowledge Based” Amino Acid Pair Potentials 

•  Sample in the PDB 

•  Assumption:  
PDB is a representative 
ensemble of well mixed amino 
acids 

•  How could biology (evolution) 
affect these results? 

•  How could we prevent this? 



Are experimental result captured by the model? 
A
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Folding Specificity on the Lattice 



Temperature 

H
ea

t c
ap

ac
ity

 
Foldable, with high specificity 



Full atom vs coarse grained folding 

61 

an
d
un
fo
ld
in
g
ra
te
s
ar
e
m
ea
su
re
d
fo
r
a
se
rie
s
of

m
ut
an
ts
.T

he
re
su
lts

ar
e
ty
pi
ca
lly

pr
es
en
te
d
as

f
va
lu
es

(3
0)
.A

f
va
lu
e
of

~1
su
gg
es
ts
th
at
th
e

in
te
ra
ct
io
ns

fo
rm

ed
by

a
re
si
du
e
in

th
e
na
tiv
e

st
at
e
ar
e
al
so

pr
es
en
ti
n
th
e
T
SE

,w
he
re
as

a
va
lu
e

cl
os
e
to

ze
ro

in
di
ca
te
s
th
at
th
e
na
tiv
e-
st
at
e
in
te
r-

ac
tio

ns
ar
e
no
tp

re
se
nt

in
th
e
T
SE

.C
om

m
on
ly
,

f
va
lu
es

ar
e
ca
lc
ul
at
ed

fr
om

si
m
ul
at
io
n
by

ap
-

pr
ox
im

at
in
g
th
e
m
ut
at
io
na
l
fr
ee
-e
ne
rg
y
ch
an
ge
s

fr
om

th
e
fr
ac
tio
n
of

na
tiv
e
si
de
-c
ha
in

co
nt
ac
ts

lo
st
up
on

m
ut
at
io
n
(3
1)
.W

e
us
ed

th
is
ap
pr
oa
ch

to
ca
lc
ul
at
e
f
va
lu
es

fo
r
si
de

ch
ai
ns

an
d
a
fr
ee
-

en
er
gy

pe
rtu

rb
at
io
n
ap
pr
oa
ch

(2
5)

fo
r
th
e
ba
ck
-

bo
ne
,a
nd

co
m
pa
re
d
th
e
re
su
lts

to
ex
pe
rim

en
ta
l

m
ea
su
re
m
en
ts

in
a
re
la
te
d
W
W

do
m
ai
n
(F
ig
.

2E
)
(1
7)
.T

he
va
lu
es

ob
ta
in
ed

co
nf
ir
m

th
e
ob
-

se
rv
at
io
n
th
at
th
e
fir
st
ha
irp

in
is
es
se
nt
ia
lly

fu
lly

fo
rm

ed
in

th
e
TS

E,
w
he
re
as

th
e
se
co
nd

ha
irp
in

on
ly
m
ak
es
a
fr
ac
tio
n
of

th
e
co
nt
ac
ts
fo
un
d
in
th
e

na
tiv
e
st
at
e.

A
lth
ou
gh

th
e
ag
re
em

en
t
be
tw
ee
n
si
m
ul
at
io
n

an
d
ex
pe
rim

en
t(
Fi
g.
2E

)
is
en
co
ur
ag
in
g,
it
m
ay

al
so

be
so
m
ew

ha
tf
or
tu
ito

us
,a
s
th
e
nu
m
be
r
of

at
om

ic
co
nt
ac
ts
is
on
ly

a
ro
ug
h
ap
pr
ox
im

at
io
n

fo
r
th
e
fr
ee

en
er
gy

(3
2)
.
W
e
th
us

al
so

ca
lc
u-

la
te
d
f
va
lu
es

di
re
ct
ly

fr
om

th
e
fo
ld
in
g
an
d

un
fo
ld
in
g
ra
te
s
ob
ta
in
ed

fr
om

re
ve
rs
ib
le

fo
ld
-

in
g
si
m
ul
at
io
ns

of
m
ut
an
tp

ro
te
in
s
(3
3,
34
)a
nd

co
m
pa
re
d
th
es
e
re
su
lts

to
f
va
lu
es

ca
lc
ul
at
ed

by
ap
pl
yi
ng

th
e
co
nt
ac
t
ap
pr
ox
im

at
io
n
to

th
e

T
SE

fo
r
Fi
P3

5.
W
e
ch
os
e
to
st
ud
y
th
e
ef
fe
ct
s
of
si
x
m
ut
at
io
ns

th
at
w
e
ex
pe
ct
ed

to
ha
ve

di
ff
er
en
te
ff
ec
ts
on

th
e

fo
ld
in
g
an
d
un
fo
ld
in
g
ra
te
s
(F
ig
.
2E

).
Se
r1
3
→

A
la
,
lo
ca
te
d
in

th
e
tip

of
th
e
fir
st

ha
irp

in
,
an
d

A
rg

11
→

A
la
,l
oc
at
ed

in
th
e
ce
nt
ra
lb

st
ra
nd
,a
re

ex
pe
ct
ed

to
ha
ve

hi
gh

f
va
lu
es
;T
yr

19
→

L
eu

an
d

Ph
e2

1
→

L
eu
,b
ot
h
lo
ca
te
d
in
th
e
ce
nt
ra
lb

st
ra
nd
,

ar
e
ex
pe
ct
ed

to
ha
ve

in
te
rm

ed
ia
te

f
va
lu
es
;a
nd

L
eu

4
→

A
la

an
d
Tr
p8

→
Ph

e,
lo
ca
te
d
in

th
e

hy
dr
op
ho
bi
c
co
re
,
ar
e
ex
pe
ct
ed

to
ha
ve

lo
w

f
va
lu
es
.

A
ll
si
x
m
ut
an
ts
fo
ld
ed

re
ve
rs
ib
ly

to
th
e
na
-

tiv
e
st
at
e,

al
be
it
w
ith

di
ff
er
en
t
ra
te
s
an
d
st
ab
il-

iti
es

(T
ab
le

1)
.
Fo

r
m
os
t
m
ut
an
ts
,
th
e
ch
an
ge
s

in
st
ab
ili
ty

up
on

m
ut
at
io
n
w
er
e
in

go
od

ag
re
e-

m
en
t
w
ith

ex
pe
ri
m
en
ta
l
da
ta
.
M
os
t
of

th
e
f

va
lu
es

ca
lc
ul
at
ed

fr
om

th
e
fo
ld
in
g
an
d
un
fo
ld
-

in
g
ra
te
s
w
er
e
in

re
as
on
ab
le
ag
re
em

en
tw

ith
th
e

m
ag
ni
tu
de

ca
lc
ul
at
ed

fr
om

th
e
T
SE

of
Fi
P3

5
(T
ab
le

1)
,
al
th
ou
gh

ou
r
re
su
lts

su
pp
or
t
th
e
no
-

tio
n
th
at
in
di
vi
du
al
f
va
lu
es

ar
e
be
st
in
te
rp
re
te
d

qu
al
ita
tiv
el
y
(3
5,

36
).

A
no
ta
bl
e
ex
ce
pt
io
n
is
th
e
A
rg

11
→

A
la
m
u-

ta
tio
n,

w
ho
se

lo
w

f
va
lu
e
ca
lc
ul
at
ed

fr
om

th
e

fo
ld
in
g
ki
ne
tic
s
(0
.2
)i
s
su
bs
ta
nt
ia
lly

sm
al
le
rt
ha
n

th
e
hi
gh

va
lu
e
ex
pe
ct
ed

fr
om

th
e
co
nt
ac
t
ap
-

pr
ox
im

at
io
n
(0
.8
).
A
lth
ou
gh

th
e
re
as
on
s
fo
r
th
is

di
sc
re
pa
nc
y
re
m
ai
n
un
cl
ea
r,
ou
r
re
su
lts

ov
er
al
l

su
pp
or
tt
he

us
e
of
ex
pe
rim

en
ta
lly

de
riv

ed
f
va
lu
es

to
in
fe
r
th
e
st
ru
ct
ur
al
pr
op
er
tie
s
of

th
e
T
SE

,w
ith

th
e
ca
ve
at
th
at
th
e
co
nt
ac
ta
pp
ro
xi
m
at
io
n
m
ay

fa
il

in
in
di
vi
du
al

ca
se
s
(3
5)
;
al
l
th
e
ex
pe
rim

en
ta
l
f

va
lu
es

sh
ou
ld

th
us

be
co
ns
id
er
ed

si
m
ul
ta
ne
ou
sl
y

w
he
n
in
fe
rr
in
g
th
e
ov
er
al
ls
tru

ct
ur
al
pr
op
er
tie
s
fo
r

a
T
SE

(3
1)
.F

in
al
ly
,w

e
no
te
th
at
al
lm

ut
an
tp

ro
-

te
in
s
fo
ld
vi
a
th
e
sa
m
e
ov
er
al
lp
at
hw

ay
as

Fi
P3
5,

al
th
ou
gh

so
m
e
of

th
e
m
ut
at
io
ns

ap
pe
ar
to
ca
us
e
a

no
tic
ea
bl
e
H
am

m
on
d-
lik
e
sh
ift

in
th
e
st
ru
ct
ur
e
of

th
e
TS

E
(f
ig
.S

4)
.

It
is

pe
rh
ap
s
w
or
th

no
tin
g
th
at

th
es
e
si
m
u-

la
tio
ns

m
ay

al
so

pr
ov
id
e
a
co
m
pu
ta
tio
na
l
go
ld

st
an
da
rd
fo
rf
ut
ur
e
st
ud
ie
se
xp
lo
rin

g
th
e
ac
cu
ra
cy

an
d
ef
fic
ie
nc
y
of

m
et
ho
ds

fo
r
th
e
pr
ed
ic
tio
n
of

m
ut
at
io
na
l
fr
ee
-e
ne
rg
y
di
ff
er
en
ce
s
an
d
fo
ld
in
g

ra
te
s. FiP

35
fol

ds
acr

oss
as

ma
llf

ree
-en

erg
yb

ar-
rie

r.
W
e
de
te
rm

in
ed

th
e

fr
ee
-e
ne
rg
y

pr
of
ile

an
d
po
si
tio
n-
de
pe
nd
en
td

iff
us
io
n
co
ns
ta
nt

al
on
g

th
e
op
tim

iz
ed

re
ac
tio
n
co
or
di
na
te
(2
5)
.W

e
fo
un
d

th
at

th
e
fr
ee
-e
ne
rg
y
ba
rr
ie
r
fo
r
fo
ld
in
g
is
sm

al
l

(1
.6

kc
al

m
ol
−1

or
~2

k B
T)
,
co
ns
is
te
nt

w
ith

th
e

su
gg
es
tio
n
th
at

Fi
P3

5
is

an
in
ci
pi
en
t
do
w
nh
ill

fo
ld
er

(1
2)
.
T
he

tra
ns
iti
on
-s
ta
te

re
gi
on

is
br
oa
d

an
d
fla
t
(F
ig
.
3A

),
he
lp
in
g
to

ex
pl
ai
n
th
e
lo
ng

co
m
m
itm

en
tt
im

e
ob
se
rv
ed

in
th
e
P
fo
ld
an
al
ys
is
.

L
an
ge
vi
n
si
m
ul
at
io
ns

on
th
e
fr
ee
-e
ne
rg
y
pr
of
ile

(F
ig
.3
B
)a
pp
ro
xi
m
at
e
w
el
lt
he

fo
ld
in
g
dy
na
m
ic
s

ob
se
rv
ed

in
th
e
M
D

si
m
ul
at
io
ns
,
an
d
w
e
ar
e

th
us

ab
le
to

us
e
th
is
ki
ne
tic

m
od
el
to

si
m
ul
at
e
a

te
m
pe
ra
tu
re
-ju

m
p
ex
pe
rim

en
t(
25
).
In

ad
di
tio
n
to

th
e
sl
ow

ph
as
e
as
so
ci
at
ed

w
ith

fo
ld
in
g,

w
e
ob
-

se
rv
ed

a
fa
st
“m

ol
ec
ul
ar
”
ph
as
e
w
ho
se
am

pl
itu
de

an
d
tim

e
co
ns
ta
nt
de
pe
nd

on
bo
th
th
e
si
ze

of
th
e

te
m
pe
ra
tu
re

ju
m
p
an
d
th
e
sp
ec
tro

sc
op
ic

pr
ob
e

us
ed

(2
5)
.S

uc
h
fe
at
ur
es

ar
e
sp
ec
tro

sc
op
ic
in
di
-

ca
tio

ns
of

pr
ot
ei
n
fo
ld
in
g
ac
ro
ss

a
lo
w

fr
ee
-

en
er
gy

ba
rr
ie
r,
an
d
th
ey

su
pp
or
tt
he

no
tio

n
th
at

ex
pe
rim

en
ta
ls
tu
di
es
of
fa
st
-f
ol
di
ng

pr
ot
ei
ns

m
ig
ht

be
us
ed

to
pr
ob
e
di
re
ct
ly

th
e
sp
ec
tro
sc
op
ic
pr
op
-

er
tie
s
of

th
e
T
SE

(3
7)
.

It
ha
s
be
en

ar
gu
ed

th
at

th
e
fa
st

m
ol
ec
ul
ar

ph
as
e
pr
ov
id
es

an
es
tim

at
e
of

th
e
tim

e
sc
al
e
fo
r

tra
ns
iti
on

pa
th
s
in

fo
ld
in
g
of

Fi
P3

5
(3
7)
.
T
he

va
lu
e
ob
ta
in
ed

in
th
es
e
ex
pe
rim

en
ts
(≤
0.
7
ms
)
is

in
ag
re
em

en
t
w
ith

th
eo
re
tic
al

es
tim

at
es

(0
.3

ms
)

as
w
el
la
sw

ith
th
e
up
pe
rb
ou
nd

(2
00

ms
)o
bt
ai
ne
d

di
re
ct
ly
th
ro
ug
h
si
ng
le
-m

ol
ec
ul
e
ex
pe
rim

en
ts
(6
).

T
he
se

va
lu
es

al
so

ag
re
e
w
ith

th
e
av
er
ag
e
tra
n-

si
tio
n
pa
th
tim

e
ob
se
rv
ed

in
ou
re
qu
ili
br
iu
m
si
m
-

ul
at
io
ns

(0
.4
T
0.
1
ms
).
T
hu
s,
a
ra
ng
e
of

di
ff
er
en
t

te
ch
ni
qu
es

(s
im

ul
at
io
n,

th
eo
ry
,
en
se
m
bl
e,

an
d

si
ng
le
-m

ol
ec
ul
e
ex
pe
rim

en
ts
)
pr
ov
id
e
in
de
pe
n-

de
nt
ev
id
en
ce

fo
rt
ra
ns
iti
on

pa
th
tim

es
fo
rp
ro
te
in

fo
ld
in
g
on

th
e
or
de
ro

f1
ms
.

Na
tiv
e-s

tat
e

dy
na
mi
cs

of
BP

TI.
D
yn

am
ic

ch
an
ge
s
in

pr
ot
ei
n
st
ru
ct
ur
e
ty
pi
ca
lly

oc
cu
r
no
t

on
ly

du
rin

g
bu
t
al
so

af
te
r
th
e
fo
ld
in
g
pr
oc
es
s.

T
he

58
-r
es
id
ue

pr
ot
ei
n
B
PT

I
w
as

th
e
su
bj
ec
to

f
th
e
fi
rs
t
nu
cl
ea
r
m
ag
ne
tic

re
so
na
nc
e
(N

M
R
)

ex
pe
ri
m
en
ts
of

th
e
in
te
rn
al
m
ot
io
ns

of
pr
ot
ei
ns

(3
8)
.N

M
R
st
ud
ie
s
sh
ow

ed
th
at
on

tim
e
sc
al
es

ra
ng
in
g
fr
om

na
no
se
co
nd
s
to

m
ill
is
ec
on
ds
,
se
v-

er
al

in
te
rn
al

w
at
er

m
ol
ec
ul
es

ex
ch
an
ge

w
ith

th
e

bu
lk
(3
9,
40
),
a
nu
m
be
ro

fa
ro
m
at
ic
ri
ng
s
ro
ta
te

(3
8,
41
),
an
d
a
di
su
lfi
de

br
id
ge

is
om

er
iz
es
(4
2,
43
).

W
e
us
ed

a
1-
m
s
M
D
si
m
ul
at
io
n
at
a
te
m
pe
ra
tu
re

of
30
0
K

to
re
pr
od
uc
e
an
d
in
te
rp
re
tt
he

ki
ne
tic
s

of
fo
ld
ed

B
PT

I.

Ta
bl
e
1.

Co
m
pu
ta
tio
na
lf

-v
al
ue

an
al
ys
is
of

Fi
P3
5.

In
co
lu
m
ns

2
an
d
3,

th
e
f
va
lu
es

fo
r
six

se
le
ct
ed

m
ut
an
ts,

ca
lcu

la
te
d
fro

m
th
e
fo
ld
in
g
an
d
un
fo
ld
in
g
ra
te
s
ob
ta
in
ed

fro
m

re
ve
rs
ib
le
fo
ld
in
g
sim

ul
at
io
ns
,

ar
e
co
m
pa
re
d
wi
th
th
e
va
lu
es
es
tim

at
ed

fro
m
a
co
nt
ac
ta
pp
ro
xi
m
at
io
n.
In
co
lu
m
ns

4
an
d
5,
th
e
ca
lcu

la
te
d

fre
e-
en
er
gy

ch
an
ge
su

po
n
m
ut
at
io
n
ar
e
co
m
pa
re
d
to
th
e
va
lu
es

m
ea
su
re
d
ex
pe
rim

en
ta
lly

at
th
e
m
el
tin
g

te
m
pe
ra
tu
re
of
th
e
hP
in
1
W
W
do
m
ai
n
(4
9)
.

Mu
tat

ion
f
Va

lue
D
D
G m

ut
(kc

al
mo

l−1
)

MD
Co

nta
ct

ap
pro

x.
MD

(±S
EM

)
Ex
pe
rim

en
t

Le
u4

→
Al
a

−0
.6

−0
.1

0.
5
(0
.4
)

1.
5

Tr
p8

→
Ph
e

−0
.1

0.
4

1.
6
(0
.4
)

1.
8

Ar
g1

1
→

Al
a

0.
2

0.
8

1.
8
(0
.5
)

1.
7

Se
r1
3
→

Al
a

1.
1

0.
9

0.
4
(0
.5
)

n/
a

Ty
r1
9
→

Le
u

0.
3

0.
7

1.
1
(0
.4
)

1.
1

Ph
e2

1
→

Le
u

0.
4

0.
5

2.
4
(0
.5
)

1.
4

Fi
g.

3.
Fo
ld
in
g

ki
ne
tic
s

ac
ro
ss
a
lo
w
en
er
gy

ba
rr
ie
r.

(A
)F
re
e-
en
er
gy

pr
of
ile

al
on
g

an
op
tim

ize
d
re
ac
tio
n
co
or
-

di
na
te
.T
he

pr
of
ile

ex
hi
bi
ts

tw
o
m
in
im
a,
ce
nt
er
ed

at
0.
1

an
d
0.
7,
co
rre
sp
on
di
ng

to
th
e

fo
ld
ed

an
d
un
fo
ld
ed

ba
sin

s,
re
sp
ec
tiv
el
y.
Th
e
fo
ld
in
g
an
d

un
fo
ld
in
g

fre
e-
en
er
gy

ba
r-

rie
rs

ar
e
2k

BT
an
d
3.
5k

BT
,

re
sp
ec
tiv
ely
.(
B)
La
ng
ev
in
sim

-
ul
at
io
n
of

W
W

fo
ld
in
g
in

a
on
e-
di
m
en
sio
na
lm

od
el
.T
he

sim
ul
at
io
n
wa

s
ba
se
d
on

th
e
on
e-
di
m
en
sio

na
l
fre
e-
en
er
gy

pr
of
ile

in
(A
)
an
d
a
po
sit
io
n-
de
pe
nd
en
t

di
ffu

sio
n
co
ef
fic
ie
nt
,b
ot
h
de
riv
ed

fro
m
th
e
M
D
sim

ul
at
io
n
da
ta
.

0
2

F
re

e 
en

er
gy

 (
k B

T)
Ti

m
e 

(µ
s)

0

0.
2

0.
4

0.
6

0.
8

Reaction coordinate

0 
 

20
 

 
 4

0 
 

  6
0 

 
   

80
10

0

A
B

1
3

15
O
C
TO

BE
R
20

10
VO

L
33

0
SC

IE
N
C
E

w
w
w
.s
ci
en

ce
m
ag

.o
rg

34
4

RE
SE

A
RC

H
A
RT

IC
LE

S

 on June 20, 2011 www.sciencemag.org Downloaded from 

Shaw, D. E., et al. (2010) Science, 330 

0 10 20 30 40 50
2

4
6

8
x$V1

−l
og
(x
$V
2)

number of native contacts 

fre
e 

en
er

gy
 (k

T)
 



Full atom vs coarse grained folding 
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MC steps 
N
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e 
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on
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(thanks to Erik van Dijk) Shaw, D. E., et al. (2010) Science, 330 



Cubic Lattice Model 

•  Cheap & simple 
–  Use for right purpose 

•  Can model: 
–  General trends  
–  Folding specificity 
–  Heat capacity 
–  Binding and unbinding 
 

•  Not captured: 
–  Secondary structure 
–  Hydrophobic effect   

(cold denaturation) 
–  Specific proteins 

Shakhnovich & Gutin 1993 PNAS 90 

Coluzza et al 2003 Phys Rev E 68 



Emergent behaviour (entropy & enthalpy) 

64 
Widom 2003, Phys. Chem. Chem. Phys., 2003, 

Gallagher 2003, JACS 

Huang and Chandler PNAS 2000 

Hydrophobic force has a maximum around 70 - 80 °C  
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Use a lattice model to investigate cold denaturation  



Impact of understanding hydrophobicity 

We can explain cold denaturation 

 

 
 

Predict total hydrophobic surface area 
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Figure 11: Performance comparison of several ASA models and the three-
feature model. The performance of a sequence length derived formula is
used as a reference. A range of di↵erent error thresholds are used get the
ratio of correctly predicted HSAs. The performance comparison was run on
the test set. For 11(b) the evaluation was performed on 97 proteins, that
were deposited after 2011 to the PDB.
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Measure hydrophobic temperature dependence 

We can understand heat capacity curves 



Model can reproduce formation of fibres 

•  Fibres 
–  Formation depends on 

sequence properties 
–  Hydrophobic inner 

layers 
–  Fast simulation 
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hydrophobic 

polar (hydrophilic) 
beta-strand  

Abeln, S., Vendruscolo, M., Dobson, C. M., & Frenkel, D. (2014). A Simple Lattice Model That Captures Protein 
Folding, Aggregation and Amyloid Formation. PLoS ONE, 9(1), e85185 



Biology & Physics: 

•  What consequences does the biology have for our 
physical questions? 

•  How can the biological context help to answer our 
questions? 



Lessons for full atomistic simulations - 
 do not forget about evolution 

•  Try your simulation on a homologue (closely related 
sequence, with same function) - do your results hold? 

•  Make a sequence profile from homologues - are there 
any conserved residues? They may be important! 

•  Do not overtrust your potentials - most atomistic 
potentials are still “knowledge based” 
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