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Different Ensembles

Ensemble | Name Constant Fluctuating
(Imposed) (Measured)

NVT Canonical N,V, T P

NPT Isobaric-1sothermal N,P, T \Y%

uVT Grand-canonical u,V,T N




Statistical Thermodynamics

Partition function

Ensemble averagm:Ome back to tD

< >NVT in A3NN‘de'NA(I'N)CXPI:_[)’U(I’N)].

Probability to find a particular configuration

N( ) QNVT AWNJdrN(S(r —1 )exp[ /3U( )]ocexp[ /3U( )]

Free energy

pr = - 1n(QNVT ) 3



Detailed balance

el e

K(o —=n)=K(n — o)

K(o —=n)=N(o)xa(o—=n)xacc(o — n)
K(n—=0)=N(n)xa(n—o)xacc(n — o)
acc(o —n) N(m)xa(n—=0) N(n)
acc(n —0) N(o)xa(o—n) N(0)




NV T-ensemble

N(n) « exp [—/)’U(n)]

acc(o —>n) N(n)
acc(n —0)  N(0)

acc(o — n)

= exp [—/3’ [U(n)—U(o)]]

acc(n — o)



NPT ensemble

We control the
* Temperature (T)
* Pressure (P)

 Number of particles

(N)




Scaled coordinates

Partition function
Oy = A3N]\”fdr exp[ /3U( )]

Scaled coordinates
S, =Y,/ L

The energy depends on
the real coordinates

This gives for the partition function




N in volume V

M in volume V-V



Qurr =A3NN'de exp[ [J’U( L)]

(V-7
QMV NV.T A3(M -N) (M N)

=

N

xfdsN exp[—/a’U(sN;L)]



M-N

"-7)
QMVO,NV,T A3M-N) (M N)' ASNN'

feenl sl

To get the Partition Function of this system, we have to
integrate over all possible volumes:

vo-v) v
Oy w deA3((M N)(]\)4 N)'AZVN'de exp[ ﬁU( N. L)]

Now let us take the following limits:

= — —> constant
%

As the particles 1n the reservoir are an i1deal gas, we have:

p=pP 10

Meoo} M

Voeoo



(V,-V
M0 (M - N)'A3NN'

=

Oyyr = [V Jas" exp[-pu(s"s)]
We have

Vo=V )" =R (=v/r) " =V exp[-(M = N)V[V,]
(V=¥ )" =¥V exp[-p¥ ]=¥," " exp[-B PV ]

This gives:

Qupr = 'A3Ndeexp[ [J’PV]VNfds exp[ ﬁU( L)]
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NPT Ensemble

Partition function:

pPr

O, = deexp[ —BPV VNfds exp[ ~BU (s"; L)]

'A3N

Probability to find a particular configuration:

N o7 (V,sN )oc V" exp|-BPV lexp [—/J’U(SN;L)]

Samp!
° Cl
° Cl

e a particular configuration:

hange of volume

nange of reduced coordinates

Acceptance rules ??
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Detailed balance

el e

K(o —=n)=K(n — o)

K(o —=n)=N(o)xa(o—=n)xacc(o — n)
K(n—=0)=N(n)xa(n—o)xacc(n — o)
acc(o —n) N(m)xa(n—=0) N(n)
acc(n —0) N(o)xa(o—n) N(0)




NP T-ensemble
N7 (V,SN )oc V" exp[-BPV lexp [—ﬁU(SN;L)]
acc(o —=n) N(n)
acc(n —o0) N(o)

Suppose we change the position of a randomly selected particle

acc(o = n) _ VW]GXP -_ﬁU(SIIj;L)-
acc(n — o) VW]GXP -—ﬁU(sf;L)-
eXp -—ﬁU(sf;L)_ - -

- =exp{-B[U(n)-U(0)]}

eXp -—/J’U(sf;L)_
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NP T-ensemble
N7 (V,SN )oc V" exp[-BPV lexp [—ﬁU(SN;L)]
acc(o —=n) N(n)
acc(n —o0) N(o)

Suppose we change the volume of the system

acc(o —=n) v eXp[—ﬁPVn]exp -—ﬁU(SN;Ln )
acc(n — o) VON exp[—ﬁPVO]exp -—/J)U(SN;LO )

) (%) exp[-P(7, -7, )] expy-B [U(n)-U (0]}
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Algorithm: NPT

 Randomly change the position of a
particle

 Randomly change the volume
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Algorithm 10 (Basic NPT-Ensemble Simulation)

+

PROGEAM mcmnpt

do level=1,ncvel
ran=ranf () *(npart+1)+1
if (ran.le.npart) then
call momove
else
call moevol
endif
1f (mod{icvel, nsamp) .eq.0)
call sample
enddo
end

basic NPT ensemble simulation

perform ncevel MC cycles

perform particle displacement

perform volume change

sample averages
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Algorithm 2 (Attempt to Displace a Particle)

SUBROUTINE mcmove attempts to displace a particle
o=int (ranf () *npart) +1 select a particle at random
call ener (x (o), eno) energy old configuration
xn=x (o) + (ranf () -0.5) *delx give particle random displacement
call ener (xn, enn) energy new configuration
if (ranf().lt.exp(-beta acceptance rule (3.2.1)

+ * (enn—eno)) x({(o)=xn accepted: replace x (o) by xn
return
end

Comments to this algorithm:

1. Subroutine ener calculates the energy of a particle at the given position.
2. Note that, if a configuration is rejected, the old configuration is retained.
3. The ranf () is a random number uniform in [0, 1].
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Algorithm 11 (Attempt to Change the Volume)

SUBROUTINE mcvol attempts to change
the volume

call toterg(box, ena) total energy old conf.

vo=bhox**3 determine old volume

Invn=log(vo)+(ranf () -0.5) *vmax perform random walk in In'V
vn=exp(lnvn)

boxn=vn**(1/3) new box length

do 1=1,npart
¥(i1l)=x(1)*boxn/box rescale center of mass

enddo

call toterg(boxn,enn) total energy new conf.

arg=-beta* | (enn-enc)+p* (vn-vao)

+ - (npart+l)*log(vn/veo) /beta) appropriate weight function!

if (ranf().gt.exp(arg)) then acceptance rule (5.2.3)

do 1=1,npart REJECTED
¥iil)=x(1)*hox/boxn restore the old positions

enddo

endif

return

end




Measured and Imposed
Pressure

* |Imposed pressure P
 Measured pressure <P> from

virial
_ N -jBPV N -pUsM) E
(P)=— (aF) _ Jawrer(faste )(av)m
oV NT deVN ﬁPVdeN ~BU(s™)
(V) — exp|-B(F(V)+PV)]

QNPT
Oy = /J’PdeeXp[—/g’(F(VHPV)]
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(P)- _Qﬁ N fdv(%)m expl-B(F(V)+PV)

<P>= BP de exp[—ﬁPV] 8exp[—/3F(V)]
Q(NPT) B oV




Measured and Imposed
Pressure

» Partial integration ffdg [f2] fgdf

* For V=0 and V=« exp[— ﬁ(F(V)+ PV)]= 0

 Therefore,

_  €xpl /3PV]a expl- BF (V)]
Q(NPT)f Y%

(P) = Q(ﬁfi . dePeXp[— BFW)+PV)]-P
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Grand-canonical ensemble

RS BEN LW _/’\/-\_/x

BYEYa Y W\/

ANl AN

What are the equilibrium conditions?
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Grand-canonical ensemble

We impose:

. AN ,_{‘\,; — Temperature (T)
X)i K / \ — Chemical potential
=== d ZTh

awavwcH — Volume (V)
’_\/'-\_./ .-\\_//—4

— But NOT pressure
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System in reservoir

\"’.3 —\T .
@ &
‘ -
o Here they don’t }
L \"' & ®
L
4. { ")V e
L Here particles interaﬂ T~ . ¢ p
el .
. . .
&

What 1s the statistical thermodynamics of this ensemble?
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Qurr =A3NN'de exp[ [J’U( L)]

(V,-¥
QMV NVT A3(M -N) (M N)

=

N
Jost gl )|

xfdsN exp[—/a’U(sN;L)]
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=

(VO ad v N N
QMVO,NV,T = A3(M_N) (M—N)' A3NN!de CXP[_ﬁU(S ,L):|
To get the Partition Function of this system, we have to
sum over all possible number of particles

M-N

N=0
Now let us take the following limits:
M — oo)] M

L 0 = — —> constant
VO —> 00 V

As the particles are an 1deal gas 1n the big reservoir we have:
u=k,Tln (A3p)

QMVT = ]]S(j =P E\/igx')l/ deN exp [—ﬁU (SN;L)] 07




Qtot — QR(M — N)sts (N) — 6_5FR(M_N)QSyS (N)

Expand Fj
OF
Fr(M — N) = Fr(M) — (a—]\;>N+-~
But: % — And h :
. ) ) nd hence:

Qtot — QR(M T N)sts (N) — G_BFR(M)GBMNQS?JS (N)
Sum over all N:

v exp (/BMN)VN
QMVT = ];) A3V AT

fdsN exp[—ﬁU(sN;L)] 28



UVT Ensemble

Partition function:

= exp (BuN V"

O r = Z Y fdsN exp [—ﬁU(sN;L)]

Probability to find a particular configuration:

exp (BuN V'™
AV N!

N r (V,SN)OC exp[—ﬁU(sN;L)]

Sample a particular configuration:
* Change of the number of particles
* Change of reduced coordinates

Acceptance rules ??
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Detailed balance

el e

K(o —=n)=K(n — o)

K(o —=n)=N(o)xa(o—=n)xacc(o — n)
K(n—=0)=N(n)xa(n—o)xacc(n — o)
acc(o —n) N(m)xa(n—=0) N(n)
acc(n —0) N(o)xa(o—n) N(0)




uVT-ensemble

N r (V,sN)oc expfgﬁx!)VN exXp [—[J’U(SN;L)]

acc(o —=n) N(n)
acc(n — o) N (0)

Suppose we change the position of a randomly selected particle

acc(o = n) _ W CXP [_ﬁU(SE;L)]
acc(n —0) GW exp [—/J)U(SF;L)]

AV N

=exp{-B[U(n)-U(0)] }
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uVT-ensemble

N r (V,sN)oc expfgﬁx')VN exXp [—[J’U(SN;L)]
acc(o —=n) N(n)

acc(n —0) N(0)

Suppose we change the number of particles of the system
exp(/g’u(N -1) |k
N exp[—[J’U(sN“;L)]
acc(o—=n) _ (AN)'

ace(n—o0) “AP\"”’“JW exp[‘ﬁU (SN;L)]

- eXp([)’ )V
A (N +1) eXp[_ﬁAU] i




Algorithm 12 (Basic Grand-Canonical Ensemble Simulation)

PROGRAM mec_gco

do icyel=1,ncvel
ran=int (ranf () * (npav+nexc) ) +1
if (ran.le.npart) then
call momove
elae
call mecexc
endif
1f (mod(icyvel, nsamp) .eq.0)
+ call sample
enddo
end

basic uVT ensemble
simulation
perform navel MC cycles

displace a particle

exchange a particle
with the reservoir

sample averages

Comments to this algorithm:

1. This algorithm ensures that, after each MC step, detailed balance is obeyed
Per cycle we perform on average npav attempts® to displace particles and
nexc attempts to exchange particles with the reservoir.

2. Subroutine memove attempts to displace a particle (Algorithm 2), subroutine
mcexa attempts to exchange a particle with a reservoir (Algorithm 13), and
subroutine sample samples quantities every nsamp cvcle.
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Algorithm 13 (Attempt to Exchange a Particle with a Reservoir)

SUBROUTINE mcexa

1f (ranf().lt.0.5) then
1f (npart.eq.0) return
o=int (npart*ranf () )+1
call ener(xi(c),eno)
arg=npart*exp (beta*ena)
- flzz*vol)
1f (ranf().lt.arg) then
X{o)=xX(npart)
npart=npart-1
endif
elae
¥xn=ranf () *box
call ener(xn,enn)
arg=zz*vol*exp(-beta*enn)
+ S (npart+1)
i1f (ranf().lt.arg) then
X(npart+l)=xn
npart=npart+1
endif
endif
return

end

attempt to exchange a particle
with a reservoir

decide to remove or add a particle
test whether there is a particle
select a particle to be removed
energy particle o

acceptance rule (5.6.9)

accepted: remove particle o

new particle at a random position
energy new particle
acceptance rule (5.6.8)

accepted: add new particle
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Application: equation of state of
Lennard-Jones

10.0

P Or .llffl:

0.0 ¢
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Application: adsorption in zeolites
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Summary

Ensemble | Constant Fluctuating | Function
(Imposed) (Measured)
NVT N,V,T P BF=-InQ(N,V,T)
NPT N,P, T \Y BG=-InQ(N,P,T)
LV WV, T N BQ=-InQ(1,V, T)=-BPV
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Studying phase coexistence:

The Gibbs “Ensemble”



NVT Ensemble

Fluid Fluid




NVT Ensemble




Gibbs Ensemble

Equilibrium!



0 5000 10000



Vi,Nj

*Distribute n, particles over two volumes
*Change the volume V,
*Displace the particles



Vi,Nj

N
— 1
QG (N,V,T) = En1=0 VA (N =-n)!

Distribute n, particles over two volumes:

NY N
(nl)_ nl!(N—nl)!




Vi,Nj

N 4 n -
QG (N’ V’ T) = Enl=0 VA3Nn1!1(N—n1)!J;) dl/l I/l (V B I/I)N

Integrate volume V,



Vi,Nj

N 4 n -
QG (N’ V’ T) = En1=0 VA3Nn1!1(N_n1)!J; dl/l I/l (V - I/I)N

Jds; exp[-pU(s; )1 dsy " exp[-BU (s} )]

Displace the particles in box 1 and box2



Vi,Nj

N 4 n -
QG (N’ V’ T) = En1=0 VA3Nn1!1(N_n1)!J; dl/l I/l (V - I/I)N

Jds; exp[-pU sy )1 dsy " exp[-BU (s} )]

Probability distribution

I/lnl (V . V;)N_nl
nI(N -n,)!

n N-n
N(n,V,s',s, ")

exp{-BLU(s!) +U(s) )1}



O o
0 8OC> O O Particle displacement

O OO O O Volume change

O .
OO ® O Particle exchange




Acceptance rules

I/lnl (V _ V;)N—nl

N(n,V,s ,S;V_nl) o
n(N -n,)!

exp{-BLUG!) +U(s) ™)}
Detailed Balance:
K(o—=n)=K(n—o0)

N(o)xa(o —=n)xacc(o = n)= N(n)xa(n — o)xacc(n — 0)

acc(o —>n) N(n)xoa(n—>o0)
acc(n — o) B N(o)xa(o — n)

acc(o —=n) N(n)
acc(n —o0) N(0)




Displacement of a particle in box
1

I/lnl (V _ V;)N—nl
nI(N -n)!

n N-n
N(n,V,s',s, ")

exp{-BLUG!) +U(s) ™)}

O QO’
exp{-BLU(m+UGs) ™1} O 00

OHF,

Vi =)
nI(N -n,)

pw =r)"
nl(N -n,)!

I/lnl (V _/I/awl g /.
ccto—en) ¥y P TALO+UBNY

ace(n — o) Vig%%fﬁﬂwp—ﬁmmm+€kﬁqﬂ}

N(n) o

N(o) x

exp{-BLU, (0) +U(s) "1}




Displacement of a particle in box
1

I/lnl (V _ I/I)N_nl
n(N -n,)!

n N-n
N(n,V,s',s, ")

exp{-BLU(s!) +U(s) )1}

O O=:
exp {—/S[U1 (n)+U(s, ™" )]} O OO

OHF,

Vi =)
nI(N -n,)

pw =r)"
nI(N -n)!

N(n) =

N(o) x

exp{-BLU, (0) +U(s) "1}

acc(o —>n) _ eXp {—ﬁ[Ul(”)]}
acc(n —0)  exp{-p[U,(0)]}




Acceptance rules

I/lnl (V _ I/I)N_nl

N,V s)',s, ")
nI(N -n)!

exp{-BLU(s!) +U(s) )1}

Adding a particle to box 2
Vlnl_l (V _ Vl )N_(nl_l)
(n, = DIN = (n, = 1))!

I/’lnl (V . I/l)N—n1
Ay SPTAU@+ U 0N

N(n) « exp{-BlU,(n) +U,(n)]}

N(o) x



Moving a particle from box 1 to box 2

ARSI AN
(n, = DIN = (n, =1))!
AR

nI(N -n,)!

et -yt
acc(o —n)  (m—DI(N-(n-1))

—> Vlnl V-V o
acc(n — o) nl(!(N - n)l)! eXp {— plU, (o) + U, (0)]}

N(n) o

exp{-BlU,(n) +U,(n)]}

N(o) x

exp{-BlU,(0) +U,(0)]}

exp{-BlU,(n) +U,(n)]}




Moving a particle from box 1 to box 2

I/lnl_l (V _ I/I)N_(nl_l)
(n, - DYN = (n, =1))!
I/i”l (V _ I/I)N—n1

nI(N -n,)!

Vlnl_l (V _ I/I)N—(nl—l)
—_ (]1 U2
acc(o — n) _M(N _ (n1 ~ 1)): GXP{ pLU,(n) + (n)]}
acc(n — 0) - v - Vl)N-n1
n}{(N—-nl)!

N(n) o

exp{-BlU,(n) +U,(n)]}

N(o) x

exp{-BlU,(0) +U,(0)]}

exp{-B[U,(0) +U,(0)]}



Moving a particle from box 1 to box 2

Vlnl_l(V _ I/I)N—(nl—l)
(n, - DI(N = (n, 1))
I/i”l V — I/l N-n

nl(!(N - n)l)! xp1-FlU,(0) + U, ()]}

W -y )T
1 | _BIU .
aCC(O — n) _M(N—(nl _1))’ CXP{ [5[ 1(n) + 2(1/1)]}
acc(n — o) - VPW

n?{(N i1y )!

N(n) o

exp{-BlU,(n) +U,(n)]}

N(o) x

~exp{-BlU,(0) + U,(0)]}



Moving a particle from box 1 to box 2

Vvlnl—l(V _ I/I)N—(nl—l)
(n, = DI(N =(n, -1))!
-1

nI(N -n)!

Vs
acc(o—=n) n,+1

N(n) o

exp{-BlU,(n) + U, (n)]}

N (o) =

exp{-BlU,(0) +U,(0)]}

ooy Vo {~BIAU, + AU, 1}

n,



1.50

1.25

1.00

@ critical point
equation of state
O simulations




Particle displacements
(to sample
configuration space)

Volume exchanges
(to impose equality
of pressures)

Particle exchanges
(to impose equality
of chemical potetials)



N! and the Gibbs Paradox



Onvr = A3NN'fdr eXP[ ﬁU( )]

QUESTION:

Can we use this expression for systems
of distinguishable particles — e.g. colloidal
suspensions?
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Thus, it seems that the 1/N! term is absolutely necessary— to resolve the paradox. This means that
only a correct quantum mechanical treatment of the ideal gas gives rise to a consistent entropy.

could only later be identified with Planck’s constant h. The indistinguisha-
bility of particles of the same kind, which had to be introduced in order to
avoid the Gibbs’ paradoz,! got a firm logical basis only after the invention of

quantum theory. The observed distribution of black-body radiation could

FL . .. . ~ e s

least one nucleon mass). Hence the distinction between identical and non-
identical molecules is completely unambiguous in a quantum-mechanieal
description. The Gibbs paradox thus foreshadowed already in the last
century conceptual difficulties that were resolved satisfactorily only by the
advent of quantum mechanics.

It is not possible to understand classically why we must divide ) (E) by N!

to obtain the correct counting of states. The reason is inherently quantum
mechanical. Quantum mechanically,atoms are inherently indistinguishablen the
following sense: A state of the gas is described by an N-particle wave function,
which is either symmetric or antisymmetric with respect to the interchange of any




t This becomes particularly evident if we consider the classical partition function (integral
over states) as the limit of the quantum partition function. In the latter the summation is
over all the different quantum states, and there is no problem (remembering that, because
of the principle of symmetry of wave functions in quantum mechanics, the quantum state
is unaffected by interchanges of identical particles).

From the purely classical viewpoint the need for this interpretation of the statistical
integration arises because otherwise the statistical weight would no longer be multiplicative,
and so the entropy and the other thermodynamic quantities would no longer be additive.




In statistical mechanics this dependence is obtained by inserting a
factor 1/N! in the partition function. Quantum mechanically this factor

enters automatically and in many textbooks that is the way in which

it is justified, My point is that this is irrelevant: even in classical
statistical mechanics it can be derived by logic — rather than by the somewhat

3, Specifically I take exception

mystical arguments of Gibbs ° and Planck.
to such statements as: "It is not possible to understand classically why we

must divide by N1 to obtain the correct counting of states"",5 and: "Classical
statistics thus leads to a contradiction with experience even in the range in

which quantum effects in the proper sense can be completely neglected”.




ENTER JAYNES:

“Usually, Gibbs’ prose style conveys his meaning in
a sufficiently clear way...”

“... using no more than twice as many words as
Poincaré or Einstein would have used to say the

same thing”

“But occasionally he delivers a sentence with
a ponderous unintelligibility that seems to
challenge us to make sense out of it...”



GIBBS’s SENTENCE:

“Again, when such gases have been mixed,
there is no more impossibility of the
separation of the two kinds of molecules in
virtue of their ordinary motion in the gaseous
mass without any especial external
influence, than there is of the separation of a
homogeneous gas into the same two parts
iInto which it has once been divided, after
these have these have once been mixed”



Elsewhere, Gibbs says:

As long as the number of particles is
kept fixed, inclusion of the factor N! is

optional.

However, when comparing systems
with different number of particles,
you MUST include N! to obtain an

extensive entropy.



N,V,,T N,,V,, T

Two systems of "identical’ dilute colloidal
solutions in equilibrium (low-fat milk).




In Z is not
extensive

Treat as gas of N labeled but otherwise ider*

Zdz'st(N) — VN

Now: two such systems with N, and N, particles. In
equilibrium, we can distribute the particles over the two

systems in any way we choose (with fixed N, and N,).

(N1 4+ No)!
N1INs!

Zcombined(Nla Vla N27 VQ) — VlNl V2N2 X

NOTE:
1. all particles are different (they just have identical properties

— e.g. monodisperse colloidal spheres)
IS not extensive. Not even in guantum mechanics.

2' Zcombined



When the two systems are in equilibrium, the partition function
Is maximal with respect to variations in N, (dN,=-dN,).

811120 _ aanl/Nl' 81HZQ/N2'
ON1 )~ 0N ON>

= 0

Therefore, as soon as we are computing the chemical
potential, we MUST include the factor N!, also for labeled
particles.



Conveniently, the partition function of the
combined system then factorizes

ZC(N17V17N27V2) _ Zl ZQ
(N, + Ny)! Ny NS

and hence the free energy is extensive.

In ZC(N17V17N27V2) — 1In é —|—1H é
(N, + Ny)! N,! No!




“Quantum” indistinguishability of identical particles
is true, but usually irrelevant (as any colloid
scientist knows).

Reference:

Why colloidal systems can be described by
statistical mechanics: some not very original
comments on the Gibbs paradox

D. Frenkel, Mol. Phys. 112, 2325-2329 (2014)



