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Molecular Simulations

¢ Molecular dynamics: MD
solve equations of
motion J_g
F
p——
MC

¢ Monte Carlo:
importance sampling S &
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Canonical ensemble 1

b T

E | E-E Consider a small system that can xchange
""""" 5 heat with a big reservoir

aanE.+

mQ(E-E )=InQ(F)- = &

Q(E_Ei)_ Ei

1
"TQE) KT

Hence, the probability to find E;.

_ Q(E-E)  exp(=E /kT)
PE=S E-E;) Y exp(-E, /k,T)

P(E, )< exp(—E,/k,T)
/ Boltzmann distribution
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Summary: Canonical ensemble (N,V,T)
Partition function:

Probability to find a particular configuration:

P ()< exp [—BU (F)}

Ensemble average:
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Numerical Integration
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Ensemble Average

Generate configurations using Monte Carlo moves

N N N N A . N dI'NA I' )PMC(r )
{ M} AZ%;‘L‘(E ) =j [arpe (")
with: _ Jarta(r") e expl -pU (r)

U
[arVche exp|_ [)’U )]
()]

PY (rN) =" exp[—ﬁU(rN)]
jdrNA exp[
(Jdr Yexp| U (r ﬂ
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Importance Sampling
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Algorithm 1 (Basic Metropolis Algorithm)

PROGRAM mc

do icycl=1,ncycl
call mcmove
if (mod(icycl,nsamp) .eq.0)
+ call sample
enddo
end

basic Metropolis algorithm

perform ncycl MC cycles
displace a particle

sample averages

Comments to this algorithm:

1. Subroutine mcmove attempts to displace a randomly selected particle

(see Algorithm 2).

2. Subroutine sample samples quantities every nsampth cycle.
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Algorithm 2 (Attempt to Displace a Particle)

SUBROUTINE mcmove attempts to displace a particle
o=int (ranf () *npart) +1 select a particle at random
call ener(x(o),eno) energy old configuration
xn=x (o) +(ranf ()-0.5) *delx  give particle random displacement
call ener (xn,enn) energy new configuration
if (ranf().lt.exp(-beta acceptance rule (3.2.1)

+ * (enn-eno)) x(o)=xn accepted: replace x (o) by xn
return
end

Comments to this algorithm:

1. Subroutine ener calculates the energy of a particle at the given position.
2. Note that, if a configuration is rejected, the old configuration is retained.
3. The ranf () is a random number uniform in [0, 1].
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Qu es t | OO ¥oesired distribution: NVT

ensemble

e How can we prove that nis scheme
generates the desired distribution of
configurations?

e Why make a random selection of the

partic

e Whyd
config

e to be displaced?

o we need to take the old
uration again?

e How large should we take: del1x?
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Markov Processes

Markov Process

e Next step only depends on the current
state

e Ergodic: all possible states can be
reached by a set of single steps

e Detailed balance

3k Process will approach a limiting
distribution
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Ensemble - probability

e P(o): probability to find the state o

® Ensemble: take a very large number (M)
of identical systems: N(o) = M x P(0); the
total number of systems in the state o
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Markov Processes - Detailed Balance

K(o — n): total number of systems in our
ensemble that move o0 = n

K(o—>n)=N(o)Xa(o— n)XxXacc(o— n)

e N(o): total number of systems in our ensemble in state o
® qa(o— n). a priori probability to generate a move 0 = n

® acc(o— n). probability to accept the move o0 = n
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Markov Processes - Detailed Balance

Condition of detailed
K(O% n): K(na 0)
K(0o— n)= N(0) X a(o— n)xacc(o— n)

K(n— 0) N(n)xoc(n — O)Xacc(n — 0)

acc(o—n) _ N(myxa(n—0) _N(n)|

|

ﬂ acc(n — 0) N(o) X a(o— n) | N()
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NVT-ensemble

In the canonical ensemble the number of
configurations in state nis given by:

N(n) o< exp[—ﬁU(n)]

acc(o—n) N(n)
acc(n — o) - N (o)

Which gives as condition for
the acceptance rule:

acc(o — n)
N acc(n — o)

Monday, January 5, 15

17



Algorithm 2 (Attempt to Displace a Particle)

SUBROUTINE mcmove attempts to displace a particle
o=int (ranf () *npart) +1 select a particle at random
call ener(x(o),eno) energy old configuration

give particle random displacement
energy new configuration

™\, acceptance rule (3.2.1)

' accepted: replace x (o) by xn

xn=x (o) +(ranf () -0.5) *delx

<51l ener (xn,enn) -
if (ranf().lt.exp(-beta

‘ + *{enn—-eno)) x(o)=xn
SSreturn

\ __ 7 _ . S -
end -

Comments to this algorithm:

1. Subroutine ener calculates the energy of a particle at the given position.
2. Note that, if a configuration is rejected, the old configuration is retained.
3. The ranf () is a random number uniform in [0, 1].
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Metropolis et al.

Many acceptance ~ acco—>n) -
rules that satisfy: ﬂacc(neo)_exp[ P [U(” Ufo)

Metropolis et al. introduced:
acc(o > n) = min(l,exp[—ﬁAUO_m ])

If: AUoﬁn <0
acc(o —> n) =1
AUO%I/I > 0
AU : acc(o — n) = exp[—ﬁAUHn]

Draw a uniform random number [0;1]  anf < eXp[—ﬁAU ]
and accept the new configuration if: o=

Monday, January 5, 15 19
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Questions

e How can we prove that this scheme
generates the desired distribution of
configurations?

e Why make a random selection of the
particle to be displaced?

e \Why do we need to take the old
configuration again?

e How large should we take: del1x?

21
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Questions

e How can we prove that this scheme
generates the desired distribution of
configurations?

e Why make a random selection of the
particle to be displaced?

e Why do we need to take the old
configuration again?

e How large should we take: del1x?
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Algorithm 2 (Attempt to Displace a Particle)

SUBROUTINE mcmove attempts to displace a particle
o=int (ranf () *npart) +1 select a particle at random
call ener(x(o),eno) energy old configuration
xn=x (o) +(ranf ()-0.5) *delx  give particle random displacement
call ener (xn,enn) energy new configuration
if (ranf().lt.exp , _accentan ,J!J]e\(3-2-1)

+ * (enn-enqfT x(0)=xn accepted: replace xto) by xn
return I —~ BD

end

Comments to this algorithm:

1. Subroutine ener calculates the energy of a particle at the given position.
2. Note that, if a configuration is rejected, the old configuration is retained.
3. The ranf () is a random number uniform in [0, 1].

24
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Mathematical

Transition probability from o = n:

(o — n)=0o(o— n)Xacc(o— n)

As by definition we make a transition:

Zﬂ(a%n)zl

The probability we do not make a move: TR T

s =0
ﬂ(o%o)zl—Zn(()ﬁn)

n%o
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Model

Let us take a spin system

*+ 3

With energy UT =+1 and Ul = -1

P(T)ocexp( UT)

kg T

¥4 ¥4I ¥ 4

If we do not keep the old configuration:
Independent of the
******** temperature
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Lennard Jones fluid

1.0 f 10.0 |
o R
05 | 50 |
a
0.0 - ' - ' : 0.0 - ' -
0.0 0.2 0.4 0.6 0.8 1.0
P P
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Questions

e How can we prove that this scheme
generates the desired distribution of
configurations?

e Why make a random selection of the
particle to be displaced?

e \Why do we need to take the old
configuration again?

e How large should we take: delx?

28
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Not too big Not too small

2
<Al >
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Non—BoItzmann sampling

1 N N
<A>NVT1 Ovr A3NN' Jdr A )exp[—ﬁlU(r )}

Tiis  _ J drNA )exp [_'B IU(rN)] simu\I/Zteio%egto'lr'r:Taz and
ey JdrN exp[— BU (rN )] we determine A at T=T,
- _ J.drNA(rN)eXp[—,BIU(rN)}exp[ﬁzU(rN)— ﬁzU(rN)]

are v?/le IdrN exp[—ﬁlU(rN)]exp[ﬂzU(rN) = ﬁZU(rN)]

noi#izir?g _ IdrNA(rN)eXp[ﬁzU(rN)—ﬁlU(rN)]eXp[—ﬁzU(rN)}
JdrN exp[ﬂzU(rN)— ,BlU(rN)]exp[—ﬂzU(rN)]

<Aexp[([)‘2 — ﬁl)U]>NW We only
- need a single

_ <exp[(ﬁ2 = ﬂl)U]>NVT2 simulations
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P(E)

_—

Overlap becomes very smalD
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Parallel Monte Carlo

How to do a Monte Carlo simulation in parallel?

e (trivial but works best) Use an ensemble of
systems with different seeds for the
random number generator

e |[s it possible to do Monte Carlo in parallel?
e Monte Carlo is sequential!

e We first have to know the fait of the current
move before we can continue!

Monday, January 5, 15 33



Parallel Monte Carlo - algorithm

Naive (and wrong)
1. Generate k trial configurations in parallel

2. Select out of these the one with the
lowest energy

P(n)= exp| -B(U, )]
ZleeXp[_'B(Ufﬂ

3. Accept and reject using normal Monte
Carlo rule:

acc(a —> n) = eXP[_:B(Un B Uo)]
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Conventional acceptance rules

- -6100 -
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10 100 1000

The conventional acceptance rules give a bias
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What went wrong?

Detailed balance!
K(o—>n)y=K(n — o)

K(o—>n)=N(()<ocx(o —> n)><acc(o — n)
K(n—>0)=/Nm)<oa(n — o)><acc(7i~—> 0)
acc(o —>n) N@m)<xo(n—>0) N
acc(nn — o) - NQO)><ox(o — n) - N (o)
/
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Markov Processes - Detailed Balance

Condition of detailed
K(o— n): K(n—s 0)
K(o=n)=N(o)x (o = n)xacc(o = n)
K(n—o0)=N(n)xa(n— 0) X acc(n - 0)
a0 ) Ninx o) N

ace(n—0)  N(o)xmtoiam)  N(o),
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K(o— n)=N(o)Xoa(o— n)Xxacc(o— n)

exp AU, )]

(o> n)= - O
ijlexp[—ﬂ(Uj)} o OOO
(o —n)= =P [V;flf)(]n)]
5 exp[—ﬂ(Uo)
a(n— o) > exp|-B(U,)] <
a(n— o) = exp[—ﬁ(Uo)] 5 ’
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acc(o—n) N(m)Xo(n—o0) N(n)

acc(n—0) N(o)xa(o—n) N(o)

exp [— B, )] eXp [_IB (U, ):I

(o —>n)= W(n) oa(n—o)= W(o)
N () exp[ ,B(U ]

acc(o — n) _ W(O) _ W(n)

acc(n — 0) N(o)x p[ ,B(U ] W (o)

(1)

aaaaaaaaaaaaaaaaaa



Conventional acceptance rules

- -8100 } .

- -'6200 At s aaaszssl bt 2 22221 " 1+
- 1

10 100 1000

Modified ‘acCeb't'é'nce. rules remove the bias exactly
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