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Summary ensembles 

Ensemble	
 Constant 
(Imposed)	


Fluctuating 
(Measured)	


Function	


NVT	
 N,V,T	
 P	
 βF=-lnQ(N,V,T)	


NPT	
 N,P,T	
 V	
 βG=-lnQ(N,P,T)=βF+βPV	


µVT	
 µ,V,T	
 N	
 βΩ=-lnQ(µ,V,T)=-βPV	




Semi grand ensemble 
•  For mixtures an additional ensemble exists: semigrand 
•  Constant NΔµVT or NΔµPT  : 

–  The difference between the chemical potentials of the components 
is fixed 

–  total number of particles is fixed 
–  Pressure or volume fixed 

•  For a binary mixture 
–  N1, N2 are allowed to change, but N1+N2=N 
–  µ2, µ1   are allowed to change, but Δµ = µ2- µ1  

€ 

Ξ =
βP

N!Λ3N
dVV N exp[−βPV ]∫ × exp[βN2Δµ]

identities
∑ × dsN exp[−βU(sN )]∫

In binary mixture just 1,2	
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MC move changes identity 

€ 

Pacc (1→ 2)=min[1,exp[−βU + βΔµ]

Advantage: at high densities still good acceptance	
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Summary ensembles 

Ensemble	
 Constant 
(Imposed)	


Fluctuating 
(Measured)	


Function	


NVT	
 N,V,T	
 P	
 βF=-lnQ(N,V,T)	


NPT	
 N,P,T	
 V	
 βG=-lnQ(N,P,T)=βF+βPV	


µVT	
 µ,V,T	
 N	
 βΩ=-lnQ(µ,V,T)=-βPV	


ΔµVT	
 ΔµVT	
 µi ,Ni	
 βY=-lnΞ(Δµ,V,T)	
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Exotic ensembles 

What to do with a biological membrane?	
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Model membrane: Lipid bilayer 

hydrophilic head group 

two hydrophobic tails 

water 

water 
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Surface Tension γ controls area per lipid 

γ<0 compressed bilayer 

γ=0 tensionless bilayer 

γ>0 stretched bilayer 
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Simulations at imposed surface tension 

 
•  Simulation to a constant surface tension 

–  Simulation box: allow the area of the bilayer to 
change in such a way that the volume is constant. 
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Constant surface tension simulation 

A)]})(A'A);(U)A';(U[exp{min(1, −−−−= γβ NN
accP ss

A A’ 

L L’ 

A L = A’ L’ = V 

( ), exp[ (U( ) A)]N N
N T Aγ β γ∝ − −r rN
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 γ(Ao) =  -0.3 +/- 0.6 

γ(Ao) = 2.5 +/-  0.3 

γ(Ao) = 2.9 +/-  0.3 

Tensionless state: γ= 0  
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Conventional MC performs a random walk 
in configuration space, such that the 
number of times that each point is visited, 
is proportional to its Boltzmann weight. 



Metropolis, 
Rosenbluth,Rosenbluth,  

Teller and Teller choice: 



Satisfactory? 





In particular, if: 

Then 

(100% acceptance) 

Solution of conflict: play with the a-priori probabilities of trial moves:  



100% acceptance can be achieved 
in special cases: e.g. Swendsen-
Wang, Wolff, Luyten, Whitelam-
Geissler, Bortz-Kalos-Lebowitz…   

General idea: construct “cluster moves” 

Simplest example: Swendsen-Wang 



Illustration: 2D Ising model. 

Snapshot: some neighbors are parallel, others anti-
parallel 



Number of parallel nearest-neighbor pairs:  Np 

Number of anti-parallel nearest neighbor pairs is:   Na 

Total energy: U = (Na-Np) J 



Make “bonds” between parallel neighbors. The probability to 
have a bond (red line) between parallel neighbors is p (as yet 
undetermined). With a probability 1-p, parallel neighbors are not 
connected (blue dashed line).  



Form clusters of all spins that are connected by bonds. Some 
clusters are all “spin up” others are all “spin down”.   

Denote the number of clusters by M. 



Now randomly flip clusters. This yields a new cluster 
configuration with probability P(flip) =(1/2)M. 

Then reconnect parallel spins 



Next: forget about the “bonds”… 



New spin configuration! 







Moreover, we want 100% acceptance, i.e.: 

Pacc(o→n) = Pacc(n→o) = 1  



Hence: 

But remember: 



Combining this with: 

we obtain: 



100% acceptance!!! 



ARE YOU HAPPY 
NOW??? 



Yes 
? No

? 
No! 

No! No! 
No! 

No! 

No! 
No! 

No! 
No! 

No! 

No! 
No! 

No! 
No! 



Why not? 

For Swendsen-Wang, we generate very many trial 
states : with n clusters, 2n possible states…) 

…and yet we accept only one! 



Include “rejected” moves in the sampling 

Why is this heretical?: 

Metropolis “importance” sampling is based on the 
earlier (Ulam/von Neumann) rejection method 

applied to random MC sampling 

HERETICAL MC SAMPLING 



This is the key: 



we can rewrite this using 
X

m

⇢m⇡mn = ⇢n



Note that <A> is no longer an average 
over “visited” states – we also include 
“rejected” moves in the sampling.   



This relation also holds for any set of 
“connected” trial states: i.e. the possible 
final states of a single (decent) MC trial 
move.   



For instance: in conventional MC, there 
would be only two states (the “old” state 
and the “new” state)  



But in other algorithms, there are many. e.g. 
in the Swendsen-Wang algorithm: n clusters 
that can be flipped  ⇒ 2n connected states.  
 

The more parallel the algorithm, the better… 



Note that the transition matrix that is used in 
the averaging need not be the same as the 
one used in sampling the ρm.  

(e.g. one could be “Barker” and the other “Metropolis”) 



How to sample this? 



Slightly dishonest and slightly trivial example:  
 
Sampling the magnetization of a 2D Ising 

system 



Compare: 

1.  Normal (Swendsen-Wang) MC 
(sample one out of 2n states) 

2.  Idem + “waste 
recycling”         (sample all 2n states) 



10-4 

10-12 

10-16 

10-8 
P(S) 

Swendsen-
Wang 

Waste-recycling MC 
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A central quantity in the study of (phase) equilibria is the 
chemical potential µ.   

We have an “intuitive” picture of the temperature T and 
the pressure P.  
 
Can we gain a similar “intuitive” understanding of the 
chemical potential? 

First, look at the formal definition: 

dE = TdS � PdV + µdN

dF = �SdT � PdV + µdN



Hence: 

Using F=-kBT ln Q(N,V,T) we can write: 

For N >> 1 

µ =
✓

@E

@N

◆

S,V

=
✓

@F

@N

◆

T,V

µ =
✓

@F

@N

◆

V,T

= �kBT lim
�N!0

lnQ(N + �N,V, T )� lnQ(N, V, T )
�N

= �kBT ln
✓

Q(N + 1, V, T )
Q(N,V, T )

◆

V,T



Example: ideal gas 

with ρ ≡ (N/V) 

The ideal-gas result, we had obtained before. 
Now, with interacting particles: 



We can there write the “excess” part of the chemical 
potential as: 

Now we use the explicit expression for Q(N,V,T):  



We define: 

Then 

V 



For a homogeneous system, the average does not depend 
on the position rN+1. Hence 

In words: the excess chemical potential is equal to minus the 
logarithm of the average Boltzmann factor associated with the 
random insertion of an additional particle N+1 in an N-
particle system.   



So, finally, we get: 

Interpretation: 

1.  Evaluate ΔU for a random insertion of a 
molecule in a system containing N molecule. 

2.  Compute  

3.  Repeat M times and compute the average 
“Boltzmann factor” 

4.  Then  





This method to evaluate µ is commonly 
known as Widom’s “particle-insertion 
method”. 

Example: excess chemical potential of “hard” particles 

ΔU=∞ ΔU=0 

Ben Widom 



In the case of hard particles, the excess chemical potential is 
related to the probability of a successful random insertion: 

Example of an application: 
We can use the particle-insertion method to derive an 
expression for the second virial coefficient. 



Lennard-Jones fluid 



€ 

βµ = −ln
Q N +1( )
Q N( )

€ 

βµ =
βG N +1)( ) −βG N)( )

N +1− N

€ 

QNPT =
1

Λ3N N!
dV∫ VN exp −βVP( ) dsN∫ exp −βU sN ;L( )[ ]

€ 

βµ = −ln

1
Λ3N +3 N +1( )!

1
Λ3NN!

dV∫ V N +1 exp −βVP( ) dsN +1∫ exp −βU sN +1;L( )[ ]
dV∫ V N exp −βVP( ) dsN∫ exp −βU sN ;L( )[ ]

& 

' 

( 
( 

) 

* 

+ 
+ 

Other ensembles: NPT 

€ 

βG = −ln QNPT( )

€ 

µ ≡
∂F
∂N
$ 

% 
& 

' 

( 
) 
V ,T

€ 

µ ≡
∂G
∂N
$ 

% 
& 

' 

( 
) 
P, T

NPT: Gibbs free energy NVT: Helmholtz free energy 

€ 

βµ = −ln 1
Λ3 N +1( )

dV∫ V N exp −βVP( )V dsN∫ exp −βU sN ;L( )[ ] ds N+1∫ exp −βΔU +( )
dV∫ V N exp −βVP( ) dsN∫ exp −βU sN ;L( )[ ]

' 

( 

) 
) 

* 

+ 

, 
, 

€ 

βµ = ln Λ3βP( ) − ln βP
N +1

dV∫ V N exp −βVP( ) dsN∫ exp −βU sN ;L( )[ ] ds N+1∫ V exp −βΔU +( )
dV∫ V N exp −βVP( ) dsN∫ exp −βU sN ;L( )[ ]

' 

( 

) 
) 

* 

+ 

, 
, 

€ 

βµ = ln Λ3βP( ) − ln βPV
N +1

ds N+1∫ exp −βΔU +( )

The volume fluctuates! 
( ) ( )++ Δ−

+
≠Δ−

+ ∫∫ ++ U
N
PVU

N
PV

NN β
β

β
β

expds
1

expds
1
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Widom particle insertion 

NVT: 

€ 

βµ = β ln ρ( ) − ln ds N+1∫ exp −βΔU +[ ]
NVT

NPT: 

€ 

βµ = ln Λ3βP( ) − ln βPV
N +1

ds N+1∫ exp −βΔU +( )



ACCEPTANCE OF RANDOM INSERTION DEPENDS ON SIZE 



ACCEPTANCE OF RANDOM INSERTION DEPENDS ON SIZE 



ACCEPTANCE OF RANDOM INSERTION DEPENDS ON DENSITY 

Insertion easy Insertion difficult 



Particle insertion continued…. 

therefore 

But also 

Interpreted as particle removal 



As before: 

With s a scaled coordinate: 0≤s<1 

r = L s   (is box size)  



However, now write 



And therefore 

Positive sign! 



Interpretation: 

1.  Evaluate ΔU for a random REMOVAL of a 
molecule in a system containing N+1 
molecule. 

2.  Compute  

3.  Repeat M times and compute the average 
“Boltzmann factor” 

4.  Then  

This approach DOES NOT WORK 



What is wrong? 

 
is not bounded. The average that we 
compute can be dominated by INFINITE 
contributions from points that are 
NEVER sampled. 

What to do? 

Consider the energy distribution upon insertion: 



And also consider the energy distribution for removal 

p0 and p1 are related: 



( ) ( ) ( )UpUFUp Δ+Δ−Δ=Δ 01 lnln β

( ) ( ) UUpUf Δ−Δ≡Δ β5.0ln 00

( ) ( ) UUpUf Δ+Δ≡Δ β5.0ln 11

( ) ( )UfUfF Δ−Δ=Δ 01β

( ) 32
11 UcUbUaCUf Δ+Δ+Δ+≡Δ

( ) 32
00 UcUbUaCUf Δ+Δ+Δ+≡Δ

01 CCF −=Δβ

Simulate system 0: compute f0 
Simulate system 1: compute f1 

Fit f0 and f1 to two polynomials that only 
differ by a constant. 

This is known as the overlapping 
distribution method (sec 7.2.3) 



µ from overlapping distributions 
System 1: N, V,T, U System 0: N-1, V,T, U + 1 ideal gas  

exFFF βµβββ ≡−=Δ 01

( ) ( )UfUfex Δ−Δ= 01βµ
System 0: test particle energy System 1: real particle energy 

01 UUU −=Δ

Widom 



Does it work for hard 
spheres? 

consider ΔU=0 

YES! 
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The function               is an example of a histogram 
where                  plays the role of the coordinate. We 
can consider other coordinates Q(rN) . Examples… 

The probability that Q(rN) has a value Q is given by 

From this probability we can derive (`define’)  the variation 
of the free energy with Q: 

p(�U)
�U(rN )

From histograms to free-energy landscapes 



Free energy landscapes are interesting in many different 
contexts (phase transitions, protein folding, …) 

Sampling a free energy landscape is easy near the 
minima, and difficult near the maxima because P(Q) is 
small where F(Q) is large.. 
 

From histograms to free-energy landscapes 



Naively, we could sample determine F(Q) by 
accumulating a histogram of the spontaneous 
fluctuations of Q.  

P(Q) 

Q 

F(Q) 

Problem: F(Q) is very noisy, except near its minimum. 



METROPOLIS 
SAMPLING 

exp(-βU(r)) 

BIASED  
SAMPLING 

W(r) exp(-βU(r)) 

Biased sampling 



Application of biased MC  simulation to determine Pw(Q) 

But this we can rewrite as 

Ideally, we should choose w(Q) = -F(Q), because then the 
biased histogram would be flat.  
But, of course, we don’t know F(Q) a priori… 



Once we know the biased histogram 

we can reconstruct the unbiased histogram – up to a constant 

In summary: We can choose the bias w(Q) such that any 
desired range of Q-values is sampled. 

And we can correct for the bias. 

For obscure reasons this is often called umbrella sampling 



The only remaining problem is that the different 
parts of F(Q) are shifted with respect to each 
other. 



Solutions: 

1.  Fit to a single curve (not very elegant, but effective) 

2.  Use `Ferrenberg-Swendsen’ scheme to combine 
different parts of the histogram (more elegant, but 
more sensitive to noise) 

3.  Use the WHAM method of Kumar et al. or MBAR 
from Chodera et al. 

Result: 





FINALLY… 





Solutions: 

1.  Wait until there is enough computer power 



When to start a major calculation? 

Either start now, or wait a time  Δt and use the 
computers that are available then: 



Optimum? Compute extremum: 

Hence 



In that case: start right away! 

Otherwise: 



Solutions: 

1.  Wait until there is enough computer power 

2.  Use cheaper models/ more efficient 
algorithms. 




