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Rare events

Interesting transitions in complex systems
— solution chemistry F A
— protein folding B
— enzymatic reactions
— complex surface reactions |
— diffusion in porous media
— nucleation

These reactions happen on a long time
scale compared to the molecular timescale

l t
dominated by collective, rare events
Straightforward MD very inefficient Tmol < Tstable




Example: Diffusion in porous material




Phenomenological reaction kinetics

A rare event can be seen as a chemical reaction
between reactant A and product B

A< B

The change in population c(t) is (0<c<1)

de, (t) — ko (t)-l—k c (t) de, (t) =+k, 5C, (t)_kB—>ACB (t)

dt A—B A B—A"B dt
Total number change in population d[cA (1) +c, (t)] 0
o dt -
Equilibrium: (}A(t)zc'B(t)zo

This gives a relation between equilibrium
opulation and reaction rates -
bop <CB> kAeB



Relaxation time
Let us make a perturbation of the equilibrium populations.

The dynamics of such an equilibrium fluctuation gives the desired
information on the response of the system to an external field

For state A ¢, (1) ={c,)+Ac,(?) For state B: ¢, () =(c,)-Ac,(¢)

We can rewrite the kinetics in terms of the perturbation:
1

dAc, (¢
dil[( ) = —kAQBACA (t) — kBeAACA (t) - Ca(t)
Ac, (t)=ACA (O)CXP [_(kAeB +kB%A)t:| % Cpg(t)
= Ac, (0)exp|-#/7] e
With <CB>

v = (kyp + ko) =iy (1) /(cn),

e (t)+e (1)1



Microscopic theory

Microscopic description of the progress of a reaction

9

Reaction coordinate: in this case the z-coordinate of the particle

We need to write the kinetics of the reaction in terms of this
microscopic reaction coordinate q



Reaction coordinate

Reactant A: qg<gqg o

Product B: q>dq *

Transition state: ¢ = (¢ *

Let us introduce the function g,:

g(qg-9%)=1-0(q-9*%)=0(q%-q)

With this function we write for the probability c,(t) the system is in state A:

(ealt))=(e (1)



Microscopic theory

Is going to give us the
macroscopic relaxation in terms of a
microscopic time correlation function

N =<AgA(O)AgA(t)>
A




Perturbed Hamiltonian

Let us consider the effect of a _ _ %
static perturbation: H_HO €84 (q q )

For the equilibrium concentration as a function of ¢:

Ac, = <CA>8 _<CA>0 :<gA>g _<gA>o

We need to compute the ensemble average in the form of :

deAeXp[—/J’HO]

o=t e pi,]




Linear Response theory (static)

The original Hamiltonian (H,) is perturbed by €D:
H=H,—€eD

This gives as change in the expectation value of A:
(M) =(4)-(4),

] dT dexp| -B(H, - D) ]| () - [dCAexp[-pH, ]
[drexp| -B(H,-eD)] 0 deexp[—/J’HO]

with

(4)
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If the perturbation is small we can write <A>




For such a small perturbation <AA> = 8<A>0 €= <%> E
0

it <3A> ] a(4) ] [ dF/J’ADexp[—/o’(HO —gD)] [ dFeXp[z—/a’(HO —gD)]
o€ & {deexp[—/g’(HO —sD)]}
) [ dFAexp[—/J’(HO —gD)] [ dF/g’Dexp[—[J’(Ho —gD)]

{deexp[—/J’(Ho —gD)]}2

Evaluated for e= 0

< > de,BADexp[ ﬁH JdFAeXp[ ﬁH] de,BDexp[ ﬁH]
o€ {deeXp ,BH ]} jdrexp[ ,BH] jdrexp[ ﬂH]

Giving: <§/€1>o = B{{4D), ~(4),(D), |



dA

If we apply this result for c,: <$>O = ﬁ{<AD>o B <A>0 <D>o}

wih H=H,-eg,(q-q%)




Linear Response theory (dynamic)

Let us now switch off the perturbation at t=0

H:HO—ED H:HO at t>0:

Let us see how the system relaxes to equilibrium (dynamical perturbation
(Ad(r))={A(t))~(4), = <A(f)>—

Similar as for the static case for small values of €, we have

A(t)\ | drBA(t) Dexp| -BH, | _alnlo 4,
< € >O {JdFexp[—ﬁHo]} ﬁ< ( ) ()>

Giving: <AA(t)> = ,38<D(0) A(t)>




(aa(e) - e (0) 1)

If we apply this result to D = AgA and A= AgA

We obtain: <ACA (t)> = ﬁ8<AgA (O)AgA (t)>

From static perturbation:

e (1)) < ac. (o) 2540028, (1)
(b ()= 2,097 5

Compare linear response expression with the macroscopic expression

ACA(t)zAc ( )exp[ t/T]



Microscopic rate expression

ex —tr=<AgA(O) .
A

(4(0)B(2))=~{40) ()



We have eXp /T <gA(O)gA( )>
7 R2)
'~

. I c
Using =k ( /c

B

B

For sufficiently short t, we obtain k (t) _ <gA (O)gA (t)>

Using the definition of g, we can write

relates the macroscopic reaction
<c > rate to microscopic properties
A

J 0)—g*
<q’(0) = (q( ) ! )gB (f)> We now have an expression that
(1)=




Let us look at the
different terms in this
equation

Only when the system is in the
product state we get a contributior
to the ensemble average

Only when the system starts at
the transition state, we get a

contribution to the ensemble
average

Velocity at t=0

Concentration of A




Transition state theory
1(0)5(q(0)-q*)8(a(r)-4*)
kAeB(t) - < <9(q>x<_q)> >

Let us consider the limit: t — 0*

im_, =0{a(1)-4°)=0(3(0)
o (i(0)3(a(0)a%)ola)
o <9(q*—q)>

Eyring’s transition state theory




Decay of rate expression

1(0)5(4(0)-4*)6(a(r)-a7)
’%B(f):< (6(q*—q)) >

lower value
because of
recrossings




Transition state theory

1(0)8(4(0)-a*)6(a(t)- a7
k/HB(t):< <0(q*_q)> >

We can rewrite this expression as a product

(0(0)3(a(0)-a7)ola(1)-a%)) (olal0)-4")

k (t) = X
A—B
(8(a(0)=%)) (6(g*-a))
N
Conditional “probability” to find Ratio of probabilities to find
a particle on the top of the particle on top of the barrier
Qaarrier with a positive velocity/ and in the state A




Free energy barrier

<5 (q(O) —q *)> Ratio of the probabilities to find a
particle on top of the barrier and in
<9(q * —q)> the state A

Probability to be on top of the barrier:
(8(g*~4))=C[ dad(q~g*)exp(~BF (g)) = Cexp(-BF (g7))
Probability to be in state A:

<®(q *—q)> = CJa’q@(q— q *)exp(—ﬁF(q)) =C J dqexp(—ﬁF(q))

q<q*

(8(4(0)=4%))  exp(-BF(g%))

This gives: <9(q*—q)> ) J dqexp(—ﬁF(Q))

q<q*
We need to determine the free energy as a function of the order parameter




<q’(0)0(q(t) —g >x<)> Conditional “probability” to find a particle on the
s=¢* top of the barrier with a positive velocity

q(o) Assume that on top of the barrier the particle is in equilibrium:
use Maxwell-Boltzmann distribution to generate this velocity

q’(O)H(q(t) B *) Only particles with a positive velocity end up in the

product state. We assume that once in the product
state they stay there.

q(0)e(4(0))=05/4(0)

K57 —1im {g(0)6(q(z) =g * x<5(q(0)"q*)>
o (d(0)6(4(t)-4 )>q=q* ar

-
i
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)
‘ / dqexp(—/;’F(q)) Eyring’s TST




1-D ideal gas particle on a hill

xp(-AF(g7)

}%757’ _0. 54(?

T aaealoria]

Maxwell-Boltzmann: ‘q’ 0 ‘:
mTm

This gives for the hopping rate
ST _ kgT' exp(—ﬁﬂ](q*j)
5N 2mm f dqexp(—ﬁU(q))

q<q*




Ideal gas particle on a not-so-ideal hill

10 —
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T
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For this case transition state theory will overestimate the hopping rate



Transition state theory

One has to know the free energy accurately (MC/MD)
Gives only an upper bound to the reaction rate
Assumptions underlying transition theory should hold: no recrossings

(4(0)3(4(0)-4*)6(q(t)-a*))
kA%B(t): <9(q>x<_q)>
N
Ko lower value
because of
k(t) recrossings

)

L ~exp(tT,)

A
Y

mol
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Free energy barriers in complex systems

- Straightforward MD or MC and then use [BF(q) = —ln<5(q(r) — q)>
is highly inefficient for high barriers

« Many “tricks” have been proposed to overcome and sample barriers

— Temperature enhanced sampling: simulated tempering, parallel
tempering, Temperature accelerated molecular dynamics ...)

— Constraint dynamics: thermodynamic integration, blue moon
sampling....

— Flat histogram sampling: umbrella sampling, hyperdynamics,....

— history dependent search: Wang-Landau, adaptive biasing force,
metadynamics,...

— non-equilibrium methods: steered MD, targeted MD,....

— trajectory-based methods: nudged elastic band, action minimization,
string method, transition path sampling, forward flux sampling,....



Replica exchange/parallel tempering

F W
room tem pe rature

Q

igh temperature
Q




Two replicas

i3 @ ey o BU(Y)
T =360K

Total Boltzmann weight

e~ P Ul(TN)6—52U2("“N)

T = 290K ! , —> €—B1U1(7° )



Switching temperatures

! ] —_— - BiU()
T= 290K

Total Boltzmann weight
o~ B1U2(r") ,=B2U1(r™)

. 36OK ! l e = 6—52U1(7° )



The ratio of the new Boltzmann factor over the old one is:

N _ (g p)[U2(-) U (),
N (o)

the rule for switching temperatures should obey detailed balance
Metropolis Monte Carlo scheme

aCC(l « 2) — min (17 €(ﬁ2_61)[U2('rN)—U1(rN)])



Set of replicas

@ I
T = 360K

T = 293K ! , —> e—BQUZ(T )
T = 290K ! , ——> e_BlUl(r )



Overlap in potential energy

_J > J g < A“

D ——
A4000 150 dA300 SR LY LX)
Eacrgy (V)




Replica Exchange MD (REMD)

—BrUR(TY)

oo 4 B =B = B)W(rY) = U;(r™))
—B1UL(r")

Wk
O
O
! ' _ er
2— € 62 U2( ) Pacc — mm[l, GSEP(—AZ']')]
! 1 l e

Hansmann Chem Phys Lett 1997
Sugita & Okamoto Chem Phys Lett 1999



Replica Exchange

r -

. e
rmsd. (nm)

Exchange as a function of time. Free energy follows from

BF(z,y) = —In P(z,y)

1.5

Advantage: no order parameters needed

Disadvantage: convergence of free energy landscape can be still
slow, especially around phase transition: many replicas needed.



Metadynamics

method to obtain free energy in a single simulation

similar idea as Wang Landau sampling: add history dependent biasing
potential to forcefield

_ (s=s(=(t"))? | |
V( G- t) — W E e 5o Laio and Parrinello, PNAS (2002)
A
F(S) AN
» s = predefined order parameters
- w = height of hills /
* o = width of gaussians S y
/ v
LA TR
« w is reduced every cycle \ " \ "
4

F(s) = — lim V(s:1 ~

* more controlled version: well tempered MetaD
Barducci, Bussi, Parrinello, PRL, (2008).



bernds animation



Sn2 reaction between CI and CH:sCI

Reactant Transition Product
Complex State Complex
® & s S1(R) =rcg
— o (" —
S(R) =rcc = reor T il ¢ e S2(R) =reer

Meta-dynamics can relax the requirement Bernd Ensing, Alessandro Laio, Michele Parrinello and

of choosing a good reaction coordinate gﬂé%agélg}mem’ J. Phys. Chem. B 109 (2005),
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Problem with TST

There are recrossings that cause overestimation of the rate constant

trajectories that seem to overcome the barrier but in fact bounce back

!

time steps A



Bennett-Chandler approach

< ( <0 q*—)Q)E
. N (O) q*|0

Computational scheme:

ko ,(t)=

1. Determine the probability from the free energy using
MC or MD, e.g. by umbrella sampling, thermodynamic
integration or other free energy methods

2. Compute the conditional average from a MD simulation



Bennett-Chandler approach
o (9= 0(4(0) =)ol (3(a(0)-a)
< <5((q(0)—%)> <9(%—q)€
+_(a(0)o(af0)-4,
kA%B( ) <5(q(0 _q1)>

Transmission coefficient
A ki)
K( )= 15T
A—B

((0)5(a(0)-a)o(a(1)-4.)

0.5/¢(0)

|
B
N—
>
P
<
—_
~
N—
|
o
N—
~— —
—
@)
<
—_—
-
|
BN
N—
~— —

MD simulation:
1. Att=0 g=q;,
2. Determine fraction at product state weighted with initial velocity



Example diffusion in zeolite

Zeolites important class of
materials

Diffusion of alkanes in matrix is
poorly described

Approach

— molecular simulation of
alkanes in fixed zeolite frame

— Unified atom FF by Dubbeldam
et al.

D. Dubbeldam, et al., J. Phys. Chem. B, 108, 12301, 2004






Reaction coordinate

cage cage window cage




k(t)/k™

0.0

q

0.0

2.0

4.0

0.0

3.0
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Barriers on smooth and rough energy landscapes

» Clearly, barrier is most important for rare event
« But how to obtain this barrier?
* In multidimensional energy landscapes barrier is saddle point

» # saddle points limited
« determined by potential energy

* use eigenvectors or Hessian to find
them

» # saddle points uncountable

* entropy important, many pathways

» determined by free energy

» exploring requires sampling schemes

Dellago logo™



Breakdown of BC approach

kappa can become immeasurable low if the reaction coordinate is
at the wrong value the reaction coordinate is wrongly chosen

q 7 )

Wiq)

an 9+ ap 4

W(q)=-kTn [dq' exp{-BE(q,q")} |If the reaction coordinate is not known, the
wrong order parameter can lead to wrong
transition states, mechanism and rates




Two ended methods

Methods that take the entire path
and fix the begin and end point

Many methods proposed:
Action minimization
Nudged elastic band
String method
Path metadynamics
Milestoning
Transition path sampling



Transition path sampling

Samples the path ensemble:
all trajectories that lead over barrier

« Sampling by Monte Carlo
* Requires definition of stable states A,B only
« Results in ensemble of pathways

» Reaction coordinate is a result of simulation not an input
« Allows for calculation of rate constants

C. Dellago, P.G. Bolhuis, P.L. Geissler
Adv. Chem. Phys. 123, 1 2002

Apply when process of interest

— is arare event

— is complex and reaction coordinate is not known
Examples: nucleation, reactions in solution, protein folding



Path probability density

z(7) = {0, TAt, T2AE, - - -, TT } Path = Sequence of states

p
p(zo) :
Xiae v /
/ —
q At
T /At—1

Plz(T)] = p(@o) H P(Tint = T(i+1)At)

1=0



Transition path ensemble

Pas[z(T)] = ha(zo)Plz(T)hs(zr)/Zas(T)

Zap(T) = / Da(T) ha(zo)Plz(T)hs(z1)

/Da:(T) E/---/d:}:odetdx2At---de



Metropolis MC of pathways

old
1. Generate new path from old one Q”%
CC(O) (T) CC(n) (T) — I‘ new

2. Accept new path according to detailed balance:

Pasla®(DIrla(T) — o(T)] = Pasle® (Dnlz™ (T) — 2 (T)

z((T) = &(T)] = Paen[2'(T) = &™(T)] X Pace[a'(T) — z12(T))]

3. Satisfy detailed balance with the Metropolis rule:

Pz (T)] Pyen [2™(T) — 2'(T)] }

Pacle(T) = (D)) = halefplef) min {1, ST ZE) = 20



Shooting moves

accept

reject

" 1 if x,€4
P (1) = ) (T)] = (5§ Yy (1) s {o i x¢A



Standard TPS algorithm

take existing path

choose random time slice t

change momenta slightly at ¢

integrate forward and backward in time to create new path of length L
accept if A and B are connected, otherwise reject and retain old path
calculate averages

repeat

/



Definition of the stable states




Classical nucleation (1926)

Liquid

—How does the crystal form?

AG

surface

AG = 4aR’y - %nR3pAuls

40,

R* /

bulk

—What is the structure of the critical nucleus

—Is classical nucleation theory correct?
*What is the barrier?

*Rate constant

Crystal nucleus

v . surface tension
Au : chem. pot difference
p: density




Path sampling of nucleation

TIS in NPH ensemble, as density and temperature change
N=10000, P=5.68 H=1.41 (25 % undercooling)

2000 pr———1" T TR —
1500 TN o 1
= e 2 .
1000 =~ P -4
- » - “
00 - - N
2 .;—«——.M-—’/ y ‘.A_~.

o s,.Emm” N\\ M{” \\ \\ f,W\)\MMW
mMW“‘“‘“”’“‘
- S

D. Moroni, P. R. ten Wolde, and P. G. Bolhuis, Phys. Rev. Lett. 94, 235703 (2005)



Sampling paths is only the beginning

 Eugene Wigner: "It is nice to know that the computer understands
the problem. But | would like to understand it too.”

« Path ensemble needs to be further explored to obtain:
— Rate constants
— Free energy
— Transition state ensembles
— Mechanistic picture
— Reaction coordinate

» lllustrative example: crystal nucleation



Transition interface sampling

A directly coming from A

Overall states in phase space:
B directly coming from B

(ha(zo)hs(xt)) kg — (ha(zo)hp(x0)) _ (PaB)

(ha) (ha) (ha)

C(t) =

T. S. van Erp, D. Moroni and P. G. Bolhuis, J. Chem. Phys. 118 , 7762 (2003)
T. S. van Erp and P. G. Bolhuis, J. Comp. Phys. 205, 157 (2005)



5
A //

\
/

/

/

| )‘v)= probability that path crossing i for first time after leaving A reaches i+1 before A

A1 Nt

P, (A

1+1

TIS <¢AB > <¢AB > B =
kAB = = PA ()\‘i+1 | )\’i) = (I)A PA ()\’i+1 | )\‘i)
) (L L]

i=1 i=



crossing probability

-In P(n)

BF

* PPTIS
== TIS

20
10

0

0

TIS results for

nucleation
Pa(BI1) = ﬁPA(i +1[i) =8 x 107
(Pa1)
<h.A> =1.29

Free energy follows directly
Moroni, van Erp, Bolhuis, PRE, 2005

Structural analysis?



Committor
(aka p-fold, splitting probability)

pe(r,t) = Probability that a trajectory initiated at » relaxes into B

S~—
§\§
A o = I Da(®) Pla(®)]6(ro —r)hs(z:)
Pe(s) = T Daft) Pl(®l6(ra — 1)
B(r,t) ~ Zh () U:\/<(p§3N)_pB)2>:\/pB(lj\;pB)

L. Onsager, Phys. Rev. 54, 554 (1938).
M. M. Klosek, B. J. Matkowsky, Z. Schuss, Ber. Bunsenges. Phys. Chem. 95, 331 (1991)
V. Pande, A. Y. Grosberg, T. Tanaka, E. I. Shaknovich, J. Chem. Phys. 108, 334 (1998)



Transition state ensemble

ris a transition state (TS) if py(r) =p (r) =0.5

PB A
{V
00 — —
TSE:
» Intersections of transition
pathways with the

pg=1/2 surface




KIGH |

PB PB




| i | Sl | i 1 i L i L g--t]

600 800 1000 1200

Clearly, n is not entire story




Structure

Small and structured

Big and unstructured

0 200 0 & 0 1000 1200

n
Committor analysis gives valuable insight



Outline

« Part1
— Rare event and reaction kinetics
— Linear Response theory
— Transition state theory
— Free energy methods
— Bennet Chandler approach
— Example zeolites

« Part2
— Two ended methods
— Transition path sampling
— Rate constants
— Reaction coordinate analysis
— Application to biomolecules



All-atom force fields for biomolecules

Potential energy for protein

V)= Yk (r-r,)+ Yk (60-6,)+ Y %vn(1+cos(n¢—¢o)

bonds angles dihedrals

a. b. q .
+E( i _ z_l_qzq])

i<j rij rij grij

‘_\6‘ ; 2,3 >(|)

S

4

vdW interactions only between non-bonded |i-j|>4



Currently available empirical force fields

« CHARMmM (MacKerrel et 96)

- AMBER (Cornell et al. 95)

« GROMOS (Berendsen et al 87)
« OPLS-AA (Jorgensen et al 95)
« ENCAD (Levitt et al 83)

» Subtle differences in improper torsions, scale factors 1-4 bonds, united
atom rep.

« Partial charges based on empirical fits to small molecular systems
* Amber & Charmm also include ab-initio calculations
* Not clear which FF is best : top 4 mostly used

« Water models also included in description
— TIP3P, TIP4P
— SPC/E

« Current limit: 108 atoms, microseconds ( with Anton ms)




Folding of Trp-cage

20-residue protein NLYIQ WLKDG GPSSG RPPPS

2-state folder, experimental rate 4 us
(Andersen et al, Nature 2002, Zhou et al. PNAS 2004, others)

System:
1L2Y in 2800 waters
OPLSAA, PME, Nose-Hoover, GROMACS

one time per 4 Us

»

What is folding mechanism and kinetics in explicit
water at 300K?

Strategy: EE:*Z)'

- Stable states by replica exchange MD

- Mechanism by path sampling

- Rate calculation

about equal population
of unfolded and folded



TPS of Trp-cage folding

Rates by TIS
loop-helix 0
-2
=
L
£
E -
o0
£
6
;
=}
helix-loop -8F .
i 20% unfolding
: 0. 0.15 02
rmsd rmsd,,
Rates |[TIS exp
Keor 02 us' |[0.24 us'
J. Juraszek, PGB PNAS 2006
Jarek Juraszek Biophys. J. 95 4246 (2008) Kynf 0.8 us' 10.08 us!




Advanced path sampling results

Very recent single replica multiple state transition interface sampling

revealed much more complex network with many short-lived
intermediates

Committor

W.Du & PGB, J. Chem. Phys 2014



Photoactive Yellow Protein

“bacterial blue-light sensor

N-terminal domain PAS domain

Absorption of a blue-light photon triggers the photo cycle
J. Vreede et al. Biophys. J. 2005



Partial unfolding

eLoss of a-helical structure
*Exposure of hydrophobic groups
sIncreased flexibility in parts of the protein backbone

H,O OH



Partial unfolding: REMD free energy

Unfolding happens on millisecond timescale
(1000 times longer than possible by direct MD)

| . I
0.4
/
_ 03 Av” N
g Helix 43-51 unfolded
= Chromophore and Glu46 are solvent exp
2 Agreement with experiment
E 0.2} a
0.1F -
pB’
I . I !
1 2 3
dXE [nm] Vreede et al. Biophys. J. 2005

Vreede et al. Proteins 2008
Bernard et al. Structure 2005



rmsdOt [nm]

Partial unfolding: REMD free energy

Unfolding happens on sub-millisecond

timescale (1000 times longer than possible by
rlirn'r\i' NN

A

Helix 43-51

" ,
unfolded

Chromophore and Glu46 are solvent exp
Agreement with experiment

it al. Biophys. J. 2005
Vreede et al. Proteins 2008
Bernard et al. Structure 2005




Transitions in the partial unfolding




Solvent exposure transitions

PR e . !l e
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“Mr. Osborne, may | be excused? My brain is full.”



