
Introduction 
Statistical Thermodynamics
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Molecular Simulations
◆ Molecular dynamics: 

solve equations of 
motion

◆ Monte Carlo: 
importance sampling

r1

MD

MC

r2rn

r1
r2
rn

2Monday, January 6, 14



3

3Monday, January 6, 14



4

4Monday, January 6, 14



5

Questions
• How can we prove that this scheme 

generates the desired distribution of 
configurations?

• Why make a random selection of the 
particle to be displaced?

• Why do we need to take the old 
configuration again?

• How large should we take: delx?

What is the desired 
distribution?
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Outline
Rewrite History

• Atoms first! Thermodynamics last!

Thermodynamics
• First law: conservation of energy

• Second law: in a closed system entropy increase and takes its 
maximum value at equilibrium

System at constant temperature and volume
• Helmholtz free energy decrease and takes its minimum value at 

equilibrium

Other ensembles:
• Constant pressure

• grand-canonical ensemble
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Atoms first 
thermodynamics next
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A box of particles

We have given the particles an 
intermolecular potential

Newton: equations of motion

F(r) = -ru(r)

Conservation of total energy

m
d2r
dt2

= F(r)
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Phase space
Thermodynamics: N,V,E

Molecular: 

 Γ
N = r1,r2 ,…,rN ,p1,p2 ,…,pN{ }
point in phase space

ΓN 0( )
ΓN t( )

trajectory: classical mechanics

 r1,r2 ,…,rN{ }

 p1,p2 ,…,pN{ }
Why this one?
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All trajectories with the same initial total energy should 
describe the same thermodynamic state

 r1,r2 ,…,rN{ }

 p1,p2 ,…,pN{ }
These trajectories define a probability 
density in phase space
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Intermezzo 1: phase rule

• Question: explain the phase rule?
• Phase rule: F=2-P+C

• F: degrees of freedom

• P: number of phases

• C: number of components

• Why the 2?
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Making a gas
What do we need to specify to 
fully define a thermodynamic system?

1. Specify the volume V

2. Specify the number of
 particles N

3. Give the particles:
 initial positions
 initial velocities

More we cannot do: Newton takes over!
System will be at constant: N,V,E

(micro-canonical ensemble)
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What is the force I need to apply to 
prevent the wall from moving?

Pressure

How much work I do?
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Collision with a wall

Elastic collisions:

Does the energy change?

What is the force that we 
need to apply on the wall?
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Pressure
• one particle:                            2 m vx

• # particles:                             ρ A vx

• 50% is the positive directions: 0.5
• P A = F = ρ A m vx2

• Kinetic energy: UK = ½ m v2 = ³⁄₂ kB T
• (we define temperature)

• Pressure: P V = N kB T 
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Experiment (1)

NVE1 NVE2 E1 > E2

What will the moveable wall do?
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Experiment (2)

NVE1 NVE2 E1 > E2

What will the moveable wall do?
Now the wall are heavy molecules
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Newton + atoms

• We have a natural formulation of the 
first law

• We have discovered pressure
• We have discovered another 

equilibrium properties related to the 
total energy of the system
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Thermodynamics
(classical)
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Experiment

NVE1 NVE2 E1 > E2

The wall can move and exchange 
energy:  

what determines equilibrium ?
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Classical Thermodynamics

• 1st law of Thermodynamics
• Energy is conserved

• 2nd law of Thermodynamics
• Heat spontaneously flows from hot to 

cold 
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Carnot: Entropy difference between two 
states:

�S = SB � SA =

�B

A

dQrev

T

Using the first law we have:

If we carry out a reversible process, we have 
for any point along the path

�U = Q + W

If we have work by a expansion of a fluid

dU = TdS + dW

dU = TdS − pdV

Classical Thermodynamics
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Let us look at the very initial stage

dq is so small that the temperatures of 
the two systems do not change

Hence, for the total system

dSH = �
dq

TH

For system H

For system L
dSL =

dq

TL

dS = dSL + dSH = dq

�
1

TL
⇥

1

TH

⇥

Heat goes from warm to cold: or if dq > 0 then TH > TL

Hence, the entropy increases until the two 
temperatures are equal

dS > 0This gives for the entropy change:
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Question

• Thermodynamics has a sense of 
time, but not Newton’s dynamics

• Look at a water atoms in reverse

• Look at a movie in reverse

• When do molecules know about the 
arrow of time?
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Thermodynamics
(statistical)
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Statistical Thermodynamics

For an isolated system any microscopic 
configuration is equally likely

Basic assumption

Consequence

All of statistical thermodynamics and 
equilibrium thermodynamics

...
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Ideal gas

Basic assumption

Let us again make an ideal gas

We select: 
(1) N particles, 
(2) Volume V, 
(3) initial velocities
    + positions

This fixes; V/n, U/n

For an isolated system any microscopic 
configuration is equally likely
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What is the probability to find this configuration?

The system has the same kinetic energy!!

Our basic assumption must be seriously wrong! 

... but are we doing the statistics correctly? 
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... lets look at our statistics correctly

Basic 
assumption:

number 1 can be put in M positions, number 2 at M 
positions, etc 

What is the probability to 
find this configuration?

P =
1

total # of configurations

Total number of configurations: with MN

the larger the volume of the gas the more 
configurations

M =
V

dr
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1 2

3

4

5

What is the probability to find the 9 
molecules exactly at these 9 positions?

6

7

8

9

✓
�V

V

◆N
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What is the probability to find the 9 
molecules exactly at these 9 positions?

6

7

8

9

✓
�V

V

◆N
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What is the probability to find the 9 
molecules exactly at these 9 positions?

6

7

8

9

✓
�V

V

◆N
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3

45

What is the probability to find the 9 
molecules exactly at these 9 positions?

6

7

8

9

✓
�V

V

◆N
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Question

• Is it safe to be in this room?
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What is the probability to 
find this configuration?

Are we asking the right question?

exactly equal as to any 
other configuration!!!!!!

This is reflecting the microscopic reversibility of 
Newton’s equations of motion. A microscopic 
system has no “sense” of the direction of time
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Are we asking the right question?

Measure densities: what is the 
probability that we have all our 
N gas particle in the upper half?

N P(empty)
1 0.5

2 0.5 x 0.5

3 0.5 x 0.5 x 0.5

1000 10 -301

These are microscopic properties; no irreversibility
Thermodynamic is about macroscopic properties:
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Summary

• On a microscopic level all configurations are 
equally likely

• On a macroscopic level; as the number of 
particles is extremely large, the probability that 
we have a fluctuation from the average value is 
extremely low

• Let us quantify these statements
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Basic assumption

All micro states will be equally likely!

... but the number of micro states that give an 
particular energy distribution (E1,E-E1) not ...

E1 > E2

Let us look at one of our 
examples; let us assume 
that the total system is 
isolate but heat can flow 
between 1 and 2.NVE1 NVE2

... so, we observe the most likely one ...
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In a macroscopic system we will observe the most likely one

P(E1, E2) =
N1(E1)�N2(E ⇤ E1)

�E1=E
E1=0 N1(E1)�N2(E ⇤ E1)

lnP(E1, E2) = lnC + lnN1(E1) + lnN2(E ⌅ E1)

The summation only depends on the total energy:

We need to find the maximum

P(E1, E2) = C�N1(E1)�N2(E ⇤ E1)

d lnP(E1, E2)

dE1
=

d lnN (E1, E2)

dE1
= 0

d [lnN1(E1) + lnN2(E ⌅ E1)]

dE1
= 0
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We need to find the maximum

As the total energy is constant

dE1 = ⇤d(E ⇤ E1) = ⇤dE2

Which gives as equilibrium condition:

E2 = E � E1

d lnN1(E1)

dE1
=

d lnN2(E2)

dE2

d lnN1(E1)

dE1
= ⇤

d lnN2(E ⇤ E1)

dE1

d [lnN1(E1) + lnN2(E ⌅ E1)]

dE1
= 0
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Let us define a property 
(almost S, but not quite) :

Equilibrium if:

And for the total system:

For a system at constant energy, volume and number of 
particles the S* increases until it has reached its maximum 
value at equilibrium

  S
* = lnN E( )

  

d lnN1 E1( )
dE1

=
d lnN2 E2( )

dE2

 

∂S1
*

∂E1

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
N1 ,V1

=
∂S2

*

∂E2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
N2 ,V2

 S
* = S1

* + S2
*

or

What is this magic property S*?
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Defined a property S* (that is almost S):

 

S*(E1,E−E1)= lnℵ(E1,E−E1)
= lnℵ1(E1)+ lnℵ2 (E−E1)
= S1

*(E1)+ S2
*(E−E1)

Why is maximizing S* the same as maximizing N?
The logarithm is a monotonically increasing function.

Why else is the logarithm a convenient function?
Makes S* additive!  Leads to extensivity.

Why is S* not quite entropy?

Units! The logarithm is just a unitless quantity.
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Thermal Equilibrium (Review) 

Number of micro states that give an particular 
energy distribution (E1,E-E1) is maximized with 
respect to E1.

E1 > E2

Isolated system that 
allows heat flow 
between 1 and 2.NVE1 NVE2

  ℵ(E1,E−E1)=ℵ1(E1)iℵ2 (E−E1)
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For a partitioning of E between 1 and 2, the number 
of accessible states is maximized when:

 

∂S1
*

∂E1

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
N1 ,V1

=
∂S2

*

∂E2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
N2 ,V2

What do these partial derivatives relate to?

Thermal equilibrium --> Temperature!

dE = TdS-pdV + µidNi
i=1

M

∑

T= ∂E
∂S

⎛
⎝⎜

⎞
⎠⎟V ,Ni

Temperature or
1
T
= ∂S

∂E
⎛
⎝⎜

⎞
⎠⎟V ,Ni
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Summary

• Statistical Mechanics:
• basic assumption: 

• all microstates are equally likely

• Applied to NVE
• Definition of Entropy: S = kB ln Ω

• Equilibrium: equal temperatures  
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How large is Ω for a glass of water?
• For macroscopic systems, super-astronomically 

large. 

• For instance, for a glass of water at room 
temperature

• Macroscopic deviations from the second law of 
thermodynamics are not forbidden, but they are 
extremely unlikely.

Question
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Systems at Constant Temperature 
(different ensembles)
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The 2nd law

Entropy of an isolated system can only 
increase; until equilibrium were it takes its 
maximum value

Most systems are at constant temperature 
and volume or pressure?

What is the formulation for these systems?
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Constant  T and V 

We have our box 1 and a bath
Total system is isolated and 
the volume is constant

First law

Box 1:  constant volume and temperature 

fixed volume but can 
exchange energy

Second law dS � 0

1st law:
The bath is so large that the heat flow does not influence the 
temperature of the bath + the process is reversible

dU = dq � pdV = 0

dU1 + dUb = 0 or dU1 = �dUb

2nd law: dS1 + dSb = dS1 +
dUb

T
� 0

TdS1 � dU1 � 0

1

49Monday, January 6, 14



Constant T and V

Total system is isolated and 
the volume is constant
Box 1:  constant volume 
and temperature 
2nd law: TdS1 � dU1 � 0

d(U1 ⇤ TS1) � 0

Let us define the Helmholtz free energy:  A
A � U � TS

For box 1 we can write dA1 � 0

Hence, for a system at constant temperature 
and volume the Helmholtz free energy decreases 
and takes its minimum value at equilibrium 

fixed volume but can 
exchange energy

1
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Canonical ensemble
Consider a small system that can exchange 
heat with a big reservoir

1/kBT

Hence, the probability to find Ei:

Boltzmann distribution
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Thermodynamics
What is the average energy of the system?

Compare: 
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Thermodynamics
First law of thermodynamics

Helmholtz Free energy:
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What is the average energy of the system?

Compare: 
Hence: 
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We have assumed that we can count states

Quantum Mechanics: energy discreet

What to do for classical model such as an 
ideal gas, hard spheres, Lennard-Jones?

Energy is continue:
• potential energy
• kinetic energy

Particle in a box:
εn =

nh( )2
8mL2

What are the energy levels for Argon in 
a 1-dimensional box of 1 cm?

Atoms?
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Kinetic energy of Ar at room temperature ≈4.14 × 10-21 J

εn =
nh( )2
8mL2

What are the energy levels for Argon in 
a 1-dimensional box of 1 cm?

Argon: m=40 g/mol=6.63×10-26 kg 
h=6.63×10-34 J s

εn = 5 ×10
−39n2 J( )

Many levels are occupied: only 
at very low temperatures or 
very small volumes one can see 
quantum effect!

qtranslational = e
−

nh( )2
8mL2kBT

n=1

∞

∑

qtranslational = e
−

nh( )2
8mL2kBT dn

0

∞

∫ qtranslational =
2πmkBT

h2
⎛
⎝⎜

⎞
⎠⎟

1
2
L

3D: qtranslational =
2πmkBT

h2
⎛
⎝⎜

⎞
⎠⎟

3
2
V = V

Λ3
De Broglie 
wavelength
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Partition function; 

qtranslational =
2πmkBT

h2
⎛
⎝⎜

⎞
⎠⎟

3
2
V = V

Λ3

q = e−En
n=1

∞

∑ = e−En dn∫

Hamiltonian: H =Ukin +Upot =
pi
2

2mi

+Upot r
N( )i∑

Z1,V ,T = C e
− p2

2m kBT dp3N∫ e
−
Up r( )
kBT dr3N∫

One ideal gas molecule: Up(r)=0

Z1,V ,T
IG = C e

− p2

2m kBT dp∫ dr∫ = CV 2πmkBT( )
3
2

Z1,V ,T
IG = CV 2πmkBT( )

3
2 = V

Λ3
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WRONG!
Particles are 

indistinguishable

N gas molecules:

ZN ,V ,T =
1

h3NN!
e
− p2

2m kBT dpN∫ e
−
U r( )
kBT drN∫

QN ,V ,T =
1

Λ3NN!
e
−
U r( )
kBT drN∫

ZN ,V ,T =
1
h3N

e
− p2

2m kBT dpN∫ e
−
U r( )
kBT drN∫

Configurational part of 
the partition function:

58Monday, January 6, 14



Question

• For an ideal gas, calculate:
• the partition function

• the pressure

• the energy

• the chemical potential
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ideal gas molecules: QN ,V ,T
IG = V N

Λ3NN!

Free energy: FIG = −kBT lnQN ,V ,T
IG = kBTN lnΛ3 − ln V N( )⎡⎣ ⎤⎦

FIG = F0 + kBTN lnρ

All thermodynamics follows from the partition function!

Pressure: p = − ∂F
∂V

⎛
⎝⎜

⎞
⎠⎟ T ,N

= kBTN
1
V

Energy: E = ∂F T
∂1 T

⎛
⎝⎜

⎞
⎠⎟V ,N

= 3kBN
∂lnΛ
∂1 T

⎛
⎝⎜

⎞
⎠⎟V ,N

Λ = h2

2πmkBT
⎛
⎝⎜

⎞
⎠⎟

1
2

E = 3
2
NkBT
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Chemical potential: µi =
∂F
∂Ni

⎛
⎝⎜

⎞
⎠⎟ T ,V ,N j

  
βF = N lnΛ3 + N ln N

V
⎛
⎝⎜

⎞
⎠⎟

 βµ = lnΛ3 + lnρ +1

  βµ
IG = βµ0 + lnρ
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Summary:
Canonical ensemble (N,V,T)

Partition function:

Probability to find a particular configuration

Free energy 
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Summary:
micro-canonical ensemble (N,V,E)

Partition function:

Probability to find a particular configuration

Free energy 
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Other Ensemble
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Other ensembles?
In the thermodynamic limit the thermodynamic properties are
independent of the ensemble: so buy a bigger computer …

However, it is most of the times much better to think and to 
carefully select an appropriate ensemble.

For this it is important to know how to simulate in the various
ensembles.

But for doing this wee need to know the Statistical 
Thermodynamics of the various ensembles.

COURSE: 
MD and MC different 

ensembles

65Monday, January 6, 14



66

Example (1):
 vapour-liquid equilibrium mixture

Measure the composition of 
the coexisting vapour and 
liquid phases if we start 
with a homogeneous liquid 
of two different 
compositions:

• How to mimic this with 
the N,V,T ensemble?

• What is a better 
ensemble?

composition

T

L

V
L+V
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Example (2): swelling of clays

Deep in the earth clay layers 
can swell upon adsorption 
of water:

• How to mimic this in the 
N,V,T ensemble?

• What is a better ensemble 
to use?
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Ensembles

• Micro-canonical ensemble: E,V,N

• Canonical ensemble: T,V,N

• Constant pressure ensemble: T,P,N

• Grand-canonical ensemble: T,V,µ
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Constant pressure
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Experimental Example

Phase equilibria

x

T G

L

L+G

x1 x2

How to mimic this 
experiment in NVT 
conditions?

P

How do we measure 
vapor-liquid equilibria 
for a mixture?

Better solution: NPT 
ensemble
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We have our box 1 and a bath
Total system is isolated and 
the volume is constant

First law

Box 1:  constant pressure and temperature 
Second law dS � 0

1st law:

The bath is very large and the small changes do not 
change P or T; in addition the process is reversible

dU = dq � pdV = 0

or dU1 = �dUb

2nd law:

dU1 + dUb = 0
dV1 + dVb = 0 or dV1 = �dVb

TdS1 � dU1 � pdV1 � 0

dS1 + dSb = dS1 +
dUb

T
+

p

T
dVb � 0

fixed N but can exchange 
energy + volume

1
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Total system is isolated and 
the volume is constant
Box 1:  constant pressure 
and temperature 
2nd law:

Let us define the 
Gibbs free energy:  G
For box 1 we can write

Hence, for a system at constant temperature and 
pressure the Gibbs free energy decreases and 
takes its minimum value at equilibrium 

d(U1 ⌅ TS1 + pV1) � 0

G � U ⇥ TS + pV

dG1 � 0

TdS1 � dU1 � pdV1 � 0

fixed N but can exchange 
energy + volume

1
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N,P,T ensemble

Consider a small system that 
can exchange volume and 
energy  with a big reservoir

S = kB lnΩ
The terms in the expansion follow from 
the connection with Thermodynamics:

dS = 1
T
dU + p

T
dV − µi

T
dNi∑We have:

∂S
∂U

⎛
⎝⎜

⎞
⎠⎟V ,Ni

= 1
T

∂S
∂V

⎛
⎝⎜

⎞
⎠⎟ E ,Ni

= p
T

and
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Hence, the probability to find Ei,Vi:

lnΩ V −Vi ,E − Ei( ) = lnΩ V ,E( )− Ei

kBT
− p
kBT

Vi

 
lnΩ V −Vi ,E − Ei( ) = lnΩ V ,E( )− ∂ lnΩ

∂E
⎛
⎝⎜

⎞
⎠⎟V ,N

Ei −
∂ lnΩ
∂V

⎛
⎝⎜

⎞
⎠⎟ E ,N

Vi +!
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Partition function: Δ N ,P,T( ) = exp
i, j∑ − Ei

kBT
−
pVj

kBT
⎡

⎣
⎢

⎤

⎦
⎥

V =
Vj expi, j∑ − Ei

kBT
−
pVj

kBT
⎡

⎣
⎢

⎤

⎦
⎥

Δ N , p,T( ) = −kBT
∂ lnΔ
∂p

⎛
⎝⎜

⎞
⎠⎟ T ,N

Ensemble average:

dG = −SdT +Vdp + µidNi∑Thermodynamics

V = ∂G
∂p

⎛
⎝⎜

⎞
⎠⎟ T ,NHence:

G
kBT

= − lnΔ N , p,T( )
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Summary
In the classical limit, the partition 
function becomes

The probability to find a particular 
configuration:
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grand-canonical ensemble
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Grand-canonical ensemble

Classical
• A small system that can exchange heat and 

particles with a large bath

Statistical
• Taylor expansion of a small reservoir
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Constant  T and μ 

Total system is isolated 
and the volume is constant
First law

Box 1:  constant chemical potential and temperature 

Second law dS � 0

1st law:

The bath is very large and the small changes do not 
change μ or T; in addition the process is reversible

or dU1 = �dUb

2nd law:

dU1 + dUb = 0
or 

dU = TdS − pdV + µdN = 0

dN1 + dNb = 0 dNb = −dN1

dS1 + dSb = dS1 +
1
Tb
dUb −

µb

Tb
dNb ≥ 0

1

exchange energy and 
particles
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dS1 + dSb = dS1 +
1
Tb
dUb −

µb

Tb
dNb ≥ 0

We can express the changes of the bath in terms of 
properties of the system

dS1 −
1
T
dU1 +

µ
T
dN1 ≥ 0 d TS1 −U1 + µN1( ) ≥ 0
d U −TS − µN( ) ≤ 0

G ≡U −TS + pV
G = µN

For the Gibbs free energy we can write:

− pV =U −TS − µN

d − pV( ) ≤ 0

or

or

Hence, for a system at constant temperature 
and chemical potential pV increases and 
takes its maximum value at equilibrium 

d pV( ) ≥ 0
Giving:
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µ,V,T ensemble

Consider a small system that can 
exchange particles and energy 
with a big reservoir

 
lnΩ E − Ei ,N − N j ,( ) = lnΩ E,N( )− ∂ lnΩ

∂E
⎛
⎝⎜

⎞
⎠⎟V ,N

Ei −
∂ lnΩ
∂N

⎛
⎝⎜

⎞
⎠⎟ E ,V

N j +!

S = kB lnΩ
The terms in the expansion follow from 
the connection with Thermodynamics:

dS = 1
T
dU + p

T
dV − µ

T
dN

∂S
∂U

⎛
⎝⎜

⎞
⎠⎟V ,N

= 1
T

∂S
∂N

⎛
⎝⎜

⎞
⎠⎟ E ,V

= − µ
T
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Hence, the probability to find Ei,Nj:

lnΩ E − Ei ,N − N j( ) = lnΩ E,N( )− Ei

kBT
+ µ
kBT

N j

 
lnΩ E − Ei ,N − N j ,( ) = lnΩ E,N( )− ∂ lnΩ

∂E
⎛
⎝⎜

⎞
⎠⎟V ,N

Ei −
∂ lnΩ
∂N

⎛
⎝⎜

⎞
⎠⎟ E ,V

N j +!

ln
Ω E − Ei ,N − N j( )

Ω E,N( ) = − Ei

kBT
+ µ
kBT

N j

P Ei ,N j( ) = Ω E − Ei ,N − N j( )
Ω E − Ek ,N − Nl( )k ,l∑ ∝ exp − Ei

kBT
+ µNi

kBT
⎡

⎣
⎢

⎤

⎦
⎥
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μ,V,T ensemble (2)
In the classical limit, the partition 
function becomes

The probability to find a particular 
configuration:
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