MOLECULAR SINULATION From Algorithms to Applications

Introduction

Daan Frenkel & Berend Smit

Monday, January 6, 14

seconc

Introduction

- Why to use a simulation
- Some examples of questions we can address

Molecular Simulations

3

- Molecular dynamics: solve equations of motion
- Monte Carlo: importance sampling
- Calculate thermodynamic and transport properties for a given intermolecular potential

Use: Exact= in the limit of *infinitely* long simulations the error bars can be made *infinitely* sm⁻¹

If one could envision an experimental system of these N particles that interact with the potential.

4

Pressure Heat capacity Heat of adsorption Structure

Why Molecular Simulations

Paul Dirac, after completing his formalism of

quantum mechanics: "The rest is chemistry....".

This is a heavy burden the shoulders of "chemistry":

Intermolecular potential

The intermolecular potential can:

- Mimic the experimental system as accurate as possible:
 - Replace experiments (dangerous, impossible to measure, expensive, ...)
- Make a model system:
 - Test theories that can not directly be tested with experiment

If we know/guess the "true" intermolecular potential

Example 1: Mimic the "real world" Critical properties of long chain hydrocarbons

To *predict* the thermodynamic properties (boiling points) of the hydrocarbon mixtures it is convenient (=Engineering models use them) to know the critical points of the hydrocarbons.

Critical points of long chain hydrocarbons

Hydrocarbons: intermolecular potential

United-atom model Fixed bond length Bond-bending Torsion

• Non-bonded: Lennard-Jones

$$u(r) = 4\varepsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r} \right)^{12} - \left(\frac{\sigma_{ij}}{r} \right)^{6} \right]$$

But my system is extremely small, is the statistic reliable?

Computational issue

- How to compute vapour-liquid equilibrium?
- How to deal with long chain

But C48 moves much slower than methane (C1). Do I have enough CPU time

Critical Temperature and Density

Example 2: Computational Carbon Capture

Monday, January 6, 14

Carbon Capture and Sequestration

Metal Organic Frameworks

Zn₄O(1,4-benzenedicarboxylate)₃ MOF-5

- BET surface areas up to 6200 m²/g
- Density as low as 0.22 g/cm³
- Tunable pore sizes up to 5 nm
- Channels connected in 1-, 2-, or 3-D
- Internal surface can be functionalized
- BASF production on ton scale

Computation Challenge

Chemical Flexibility of MOFs

- We can change the metal: Fe, Mg, Ca, Zn, Cu, etc
- We can change the linker
- We can change the pore topology

Out of these many many millions of structures, which one is the best for Carbon Capture?

Working capacity & Henry coefficient

Increasing the working capacity: temperature

Increasing the working capacity: pressure

We can increase the working capacity, but at which cost?

Performance metric: parasitic energy

Energy penalty for Carbon Capture and Sequestration: compression work and the heating energy:

- Heating energy (Q): heat necessary to regenerate a given sorbent:
 - Sensible heat: heats and cools bed. Provides driving force to produce CO₂
 - Desorption heat: desorbs CO_2 (equal to heat of adsorption, Δh).

$$Q = \underbrace{(C_p \rho_{sorbent} \Delta T + \Delta h_{CO2} \Delta q_{CO2} + \Delta h_{N2} \Delta q_{N2})}_{\text{Sensible heat requirement}} / CO_{2 \text{Produced}}$$

- Compressor work (W_{comp}): Work to compress CO₂ to 150 bar (for transport) $W_{eq} = \left(0.75 Q \cdot \eta_{carnot} + W_{comp}\right)$
- Parasitic energy calculated by discounting the heat requirement by the Carnot efficiency to simulate the effect of taking steam from a steam cycle

Zeolites

- 180 Known structures
- >3.000,000hypothetical structures
- Which is the best for carbon capture?

Zeolites for Carbon Capture

Equivalent Energy for those all silica structures with experimental data

What is the best structure?

What is the lowest energy?

Zeolites (MFI)

Monday, January 6, 14

All known zeolites

What is the best zeolite structure?

Hypothetical zeolites

~2.7 10^6 unique structures were enumerated, with roughly 10% within the +30 kJ/mol Si energetic band above R-quartz in which the known zeolites lie

Deem et al. J. Phys. Chem. C 2009, 113, 21353.

How to predict 1 million isotherms? CPU: one isotherm 5-10 days

- Less than 20 cores
- Designed for general programming

GPU

trade-off between memory, # threads, and work load

- Energy calculation in parallel
- Monte Carlo in parallel for different pressures

J. Kim and B. Smit, J. Chem. Theory Comput. 8 (7), 2336 (2012) GPU: one isotherm in 1 minute

GPU

DRAM

- Optimized for SIMD (same-

instruction-multiple-data) problems

- More than 500 cores

Screening: zeolites

Screening: > 300,000 structures Identified many structures with a significantly lower parasitic energy compared to the current technology L.-C. Lin, et al, *In silico screening of carbon-capture materials* Nat Mater **II** (7), 633 (2012)

Monday, January 6, 14

Example 3: make a mode'

?

Your theory is WRONG it disagrees with the experiments

> Attrac forces ar liquid equin.

My theory is **RIGHT**: tive int but this experimentalist refuses to use molecules that do not have any attractive interactions

- Theories predict the
- **BUT**:
 - There no molecules with only attractive interactions

How to test the theory?

But we can simulate hard spheres ..

- Bernie Alder carried out Molecular Dynamics simulations of the freezing of hard spheres
- But, did the scientific community accept this computer results as experimental evidence ...
 - ... during a Gordon conference it was proposed to vote on it
 - ... and it was voted against the results of Alder

Experiments are now possible

... But not on molecules

but on colloids:

From the following article:

A colloidal model system with an interaction tunable from hard sphere to soft and dipolar Anand Yethiraj and Alfons van Blaaderen Nature 421, 513-517 (30 January 2003)

- Compute the forces on the particles
- Solve the equations of motion
- Sample after some timesteps

Monte Carlo

What is the correct probability? Statistical Thermodynamics

 Generate a set of configurations with the correct probability

How to compute these

properties from a simulation?

 Compute the thermodynamic and transport properties as averages over all configurations

Classical and Statistical Thermodynamics

Problem: we have a set of coordinates and velocities -what to do with it?

- Statistical Thermodynamics
 - The probability to find a particular configuration
 - Properties are expressed in term of averages
 - Free energies
- Thermodynamics: relation of the free energies to thermodynamic properties