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!  Molecular dynamics: solve 
equations of motion 

!  Monte Carlo: importance 
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Molecular Dynamics 

Basics (4.1, 4.2, 4.3) 
Liouville formulation (4.3.3) 

Multiple timesteps (15.3) 
Computer experiments (4.4) 



Outline 
•  Basic MD 

•  Practical MD 

•  Ensembles 
–  MD generates the NVE ensemble 
–  The canonical NVT ensemble: thermostats 

•  Integrating the equations of motion 
–  Verlet or velocity Verlet? 
–  Multiple time steps  

 
•  Computing transport properties 

 
•  Example biomolecules 
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Molecular dynamics 
Is based on Newton's  equations. 
 
 
 
for  i=1 .. N particles 
 
the force F is given by the gradient of the potential 
 
 
 
 
 
given the potential, one can integrate the trajectory x(t) of the whole 
system as a function of time. 
 
 
 

Fi = miai = mi
d2xi(t)

dt2

Fi = −∂V (rN )
∂ri



Numerical integration 
This is an N-body problem, which can only be solved numerically (except in 
very special cases)  
 
 
 
at least, in principle.. 
 
Naïve implementation: truncation of Taylor expansion 
 
 
 
 
 
 
 
 

x(t + ∆t) = x(t) + ẋ(t)∆t +
1
2
ẍ(t)∆t2 +

1
6
...
x (t)∆t3 + . . .

x(t + ∆t) = x(t) + ẋ(t)∆t +
1
2
ẍ(t)∆t2

Wrong!  
The naive “forward Euler” algorithm 
•  is not time reversible  
•  does not conserve volume in phase space  
•  suffers from energy drift  
Better approach: “Verlet” algorithm 



Verlet algorithm 
compute position in next and previous time steps 

 
 
or 
 
 
 
 

x(t + ∆t) = x(t) + ẋ(t)∆t +
1
2
ẍ(t)∆t2 +

1
6
...
x (t)∆t3 +

1
24

....
x (t)∆t4...

x(t−∆t) = x(t)− ẋ(t)∆t +
1
2
ẍ(t)∆t2 − 1

6
...
x (t)∆t3 +

1
24

....
x (t)∆t4...

x(t + ∆t) + x(t−∆t) = 2x(t) + ẍ(t)∆t2 +O(∆t4)...

x(t + ∆t) = 2x(t)− x(t−∆t) + ẍ(t)∆t2

+ 

Verlet 



Verlet algorithm 
–  is time reversible 
–  does  conserve volume in phase space 
–  (is “symplectic”) 
–   does not suffer from energy drift 

...but is it a good algorithm? 
i.e. does it predict the time evolution of the system correctly??? 



Molecular chaos 
Dynamics of “well-behaved” classical many-body system is chaotic. 
 
Consequence: Trajectories that differ very slightly in their initial conditions 

diverge exponentially (“Lyapunov instability”) 



Lyapunov instability 
The Lyapunov disaster in action...  
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Any small error in the numerical integration of the equations of motion, 
will blow up exponentially.... 
 
always... 
 
...and for any algorithm!! 
 
SO: 

 Why should anyone believe Molecular Dynamics simulations ??? 
 
 



Answers: 
1.  In fact, one should not! 

2.  Good MD algorithms (e.g. Verlet) can also be considered as good 
Monte Carlo algorithms –they therefore yield reliable STATIC 
properties (“Hybrid Monte Carlo”) 

3.  What is the point of simulating dynamics, if we cannot trust the resulting 
time-evolution??? 

4.  All is well (probably), because of... 
The Shadow Theorem. 



Shadow theorem 
•  For any realistic many-body system, the shadow theorem is merely a 

hypothesis. 

•  It basically states that Good algorithms generate numerical trajectories 
that are “close to” a REAL trajectory of the many-body system. 

•  Question: Does the Verlet algorithm indeed generate “shadow” 
trajectories? 

•  Take a different look at the problem. 
–  Do not discretize NEWTON’s equation of motion! 
–  ...but discretize the ACTION 



Lagrangian Classical mechanics 

•  Newton: 

 
•  Lagrange: 

–  Consider a system that is at a point r0 at time t=0 and at point rt at 
time t=t, then the system follows a trajectory r(t) such that: 

is an extremum. The Lagrangian L is defined as: 

Fi = mi
d2xi(t)

dt2

S ≡
� t

0
dt�L(r(t�))

L(r(t)) = K − U(r)

kinetic energy 



Langrangian 
For example, if we use cartesian coordinates: 
 
 
 
What does this mean? 
 
Consider the “true” path R(t), with R(0)=r0 and R(t)=rt. 
Now, consider a path close to the true path: 
 
 
Then the action S is an extremum if  
 
 
 
 
what does this mean? 
 
 

r(t�) = R(t�) + δr(t�)

∂S

∂r(t�)
= 0 for all t

L(r(t)) =
N�

i=1

1
2
miṙ

2
i − U(r1, r2, . . . rN )



Discretized action 

For a one dimensional system this becomes 

Scont =
� t1

t0

dtL(t)

L(ti) = K(ti)− U(ti)Sdisc = ∆t
imax�

i=0

L(ti)

L(ti)∆t =
1
2
m∆t

(xi+1 − xi)2

∆t2
− U(xi)∆t

Sdisc =
imax�

i=1

�
m(xi+1 − xi)2

2∆t
− U(xi)∆t

�



Minimize the action 
Now do the standard thing: Find the extremum for small variations in the 
path, i.e. for small variations in all xi. 
 
 
 
 

∂Sdisc

∂xi
= 0 for all i

This will generate a 
discretized trajectory that 
starts at time t0 at X,  and 
ends at time t at Xt. 
 
 



Minimizing the action 

∂Sdisc

∂xi
=

∂

∂xi

imax�

i=1

�
m(xi+1 − xi)2

2∆t
− U(xi)∆t

�

∂Sdisc

∂xi
=
−m(xi+1 − xi) + m(xi − xi−1)

∆t
−∆t

∂U(xi)
∂xi

0 =
m

∆t

�
2xi − xi+1 − xi−1 −

∆t2

m

∂U(xi)
∂xi

�



 
•  which is the Verlet algorithm! 

•  The Verlet algorithm generates a trajectory that satisfies the boundary 
conditions of a REAL trajectory –both at the beginning and at the 
endpoint. 

•  Hence, if we are interested in statistical information about the dynamics 
(e.g. time-correlation functions, transport coefficients, power spectra...) 
 ...then a “good” MD algorithm (e.g. Verlet) is fine. 

0 = 2xi − xi+1 − xi−1 −
∆t2

m

∂U(xi)
∂xi

xi+1 = 2xi − xi−1 +
∆t2

m
F (xi)



Outline 
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•  Practical MD 

•  Ensembles 
–  MD generates the NVE ensemble 
–  The canonical NVT ensemble: thermostats 
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3
2
kBT =

1
2
mv2
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T =
2K
kB3N
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Lennard Jones potentials 
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• The truncated and shifted Lennard-Jones potential 

• The truncated Lennard-Jones potential 

• The Lennard-Jones potential 
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Phase diagrams of Lennard Jones 
fluids 



Issues related to MD 
•  Initialization 

–  Total momentum should be zero (no external forces) 
–  Temperature rescaling to desired temperature 
–  Particles/atoms/molecules start on a lattice/ or random positions 

•  Force calculations 
–  Periodic boundary conditions 
–  Straightforward force: Order N2 algorithm:  
–  neighbor lists, linked cell: Order N 
–  Truncation and shift of the potential 
–  Electrostatics: Ewald summation O(N1.5) or PME: O(NlogN) 

•  Integrating the equations of motion 
–  Controlling the temperature by a Thermostat 
–  Verlet or velocity Verlet? 
–  Multiple time steps  
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Periodic boundary conditions 



Saving CPU 
•  Cell list      Verlet List 



Outline 
•  Basic MD 

•  Practical MD 

•  Ensembles 
–  MD generates the NVE ensemble 
–  The canonical NVT ensemble: thermostats 

•  Integrating the equations of motion 
–  Verlet or velocity Verlet? 
–  Multiple time steps  

 
•  Computing transport properties 

 
•  Example biomolecules 

MolSim 2012 



Lagrangian approach 
Lagrangian is sum of two terms  

∂L
∂ṙ

=
∂K

∂ṙ
= p

∂L
∂r

= −∂U

∂r
= F

ṗ =
∂L(ṙ, r)

∂r
p =

∂L(ṙ, r)
∂ṙ

L(ṙ, r) = K(ṙ)− U(r) =
mṙ2

2
+ U(r)

Newton : F=ma 



Hamiltonian approach 
The Hamiltonian is defined as  
 
 
 
 
 
Hamilton’s equations are then 
 
 
 
 
 
 
 
Integrating equations of motion (by Verlet) conserves the Hamiltonian  

Han sur Lesse 

H(pN
, r

N ) = U(rN ) +
�

i

p
2
i

2mi

=
p

m

= −∂U(rN )
∂r

H(p, r) = pṙ − L(ṙ, r)



Conservation of Hamiltonian 
 
 
 
 
 
 
 
 
 
 
So a solution to the Hamiltonians equation conserves the  TOTAL energy 

! 

dH( p,r) =
"H
"p

dp +
"H
"r

dr

"H
"p

= ˙ r "H
"r

= # ˙ p 

dH( p,r)
dt

=
"H
"p

˙ p + "H
"r

˙ r = ˙ r ̇  p # ˙ p ̇  r = 0

E = K + U



MD generates NVE ensemble 
In general the MC phase space density is 
 
 
with x= {pN,rN} 
 
Integrating over momenta gives 
 
 
 
N! comes from indistinguishability of particles. 
But MD conserves Hamiltonian H= E = constant (and constant total P). 
 
 
 
with instantaneous temperature    

ρ(x) = e−βH(x)/Z Z =
�

e−βH(x)dx

Z =
1

N !Λ3N

�
e−βU(r)dr

kBT =
N�

i=1

mv2
i

Nf



Thermostat: From NVE to NVT 
Introduce thermostat in MD trajectory: 
•  stochastic thermostats 

–  Andersen 
–  Langevin  
–  Bussi (2007) 

•  deterministic thermostat 
–  Nose-Hoover 

All of these alter the velocities such that the trajectory samples the 
canonical NVT ensemble, and the partition function becomes 

These thermostats differ in how they achieve this 

 

Z =
1

N !Λ3N

�
e−βU(r)dr



Andersen Thermostat 
•  Every particle has a fixed probability 

to collide with the Andersen demon 

•  After collision the particle is give a 
new velocity 

 
 

•  The probabilities to collide are 
uncorrelated (Poisson distribution) 

( )
3 2

2exp 2
2

P v mv
m
!

!
"

# $ % &= '( ) * +, -

( ) [ ]; expP t v vt! = "



goal: compute MD trajectory sampling NVT ensemble. 
Take kinetic energy out of the system and put it back in via a ‘piston’. 
piston can be seen as additional variable s storing kinetic energy 
Approach: extended Lagrangian 
 
 
 
 

Nose Hoover thermostat 

extended variable 

+

effective mass 

constant to be set 



 
 
 
 
 
now define  
 
 
 
then it is possible to show that the partition function Znose is 
 
 
 
for g=3N+1 the system samples the canonical distribution if p’ is 

interpreted as the real momentum  

 

Nose-Hoover Thermostat 

( )
2

Nose 2
1

ln
2 2

N
Ni s

i

p p gU r s
ms Q !=

= + + +"H

Znose ∝
1

N !

�
dp�NdrN exp

�
−β

3N + 1
g

H(p�, r)
�

H(p�, r) =
N�

i=1

p�
i
2

2mi
+ U(rN ) p� = p/s



 

equations of motion follow from Hamilton's equations. 
 

Nose-Hoover Thermostat 
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2

Nose 2
1

ln
2 2

N
Ni s

i

p p gU r s
ms Q !=

= + + +"H

Nose
2

d
d
i i

i

r p
t p ms

!
= =

!

H ( )Nosed
d

N
i

i i

U rp
t r r

!!
= " = "

! !

H

Nosed
d

s

s
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t p Q

!
= =

!

H 2
Nose

2

d 1
d
s ip p g
t s s ms !

" #$
= % = %& '$ ( )

*
H



Effect of mass Q 
Lennard-Jones fluid 
 
 
 
 
 
 
 
 
 
 
 
 
 
mean square displacement   temperature relaxation 
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Verlet vs Velocity Verlet 
Verlet algorithm 
 
 
Downside regular verlet algorithm: velocity is not known. 
 
Velocity verlet (Andersen 1983):  
 
 
 
 
 
 
(Is based on Trotter decomposition of Liouville operator formulation, 

also basis of Multiple time steps).  

( ) ( ) ( ) ( )
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m
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t
m
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!
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!
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2

r t + !t( ) " 2r t( ) # r t # !t( ) + !t
2

m
f t( )



f pN ,rN( )

p
p

r
r

!
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!
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iL ! !
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! !
r p
r p

! !

( ) ( ) ( )exp i 0f t Lt f=

Depends implicitly on t 

Liouville operator d i
d
f Lf
t
=

Solution 

Beware: this solution 
is equally useless as 

the differential 
equation! 

Liouville formulation 
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iL ! iLr + iLp = !r

"

"r
+ !p "

"p

f t( ) = exp iLrt( ) f 0( )

 
= exp !r 0( )t !

!r
"
#$

%
&'
f 0( )

 
=

!r 0( )t( )n

n!
!n

!rnn=0

"

# f 0( )

 
= f pN 0( ), r 0( ) + !r 0( )t( )N( )

( ) ( ) ( )0iexp ftLtf p=

 
= exp !p 0( )t !

!p
"

#$
%

&'
f 0( )

 
=

!p 0( )t( )n

n!
!n

!pnn=0

"

# f 0( )

 
= f p 0( ) + !p 0( )t( )N ,rN 0( )( )

Shift of coordinates Shift of momenta 

 p 0( )! p 0( ) + !p 0( )t

Expand exponential 

Let us look at them 
separately 

 r 0( )! r 0( ) + !r 0( )t

Taylor expansion of f 
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f pN t( ),rN t( )( ) = e iLp!t 2( )e iLr!t( )e iLp!t 2( )( )P f pN 0( ),rN 0( )( )

f pN t( ),rN t( )( ) = e iLt( ) f pN 0( ),rN 0( )( )

 iLr ! r 0( )" r 0( ) + !r 0( )t

 iLp ! p 0( )" p 0( ) + !p 0( )t

= e iLr t+ iLpt( ) f pN 0( ),rN 0( )( )
! e iLr t( )e iLpt( ) f pN 0( ),rN 0( )( )

We have noncommuting operators! 

Trotter identity 
BABA eee !+

( )PPAPBPA
P

BA eeee 2/2lim !"
+ =

( )PPAPBPABA eeee 2/2!+

P
tL

P
A pi=

P
tL

P
B ri=

P
tt =!
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2
!p 0( ) + !p "t( )#$ %&

r 0( )! r 0( ) + "t!r "t 2( ) = r 0( ) + "t!r 0( ) + "t
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2m
F(0)

Velocity Verlet! 
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( ) ( ) ( )i 2 i 2ip prL t L tL te e e! !!

Velocity Verlet: 

( ) ( ) ( ) ( )i 2 : 2
2

pL t te t t t t t t
m

! !
+ ! " + ! + + !v v f

( ) ( ) ( )i 2 :
2 2

pL t t te t t t
m

! ! !" #+ $ +% &
' (
v v f

( ) ( ) ( ) ( )i : 2rL te t t t t t t! + ! " + ! + !r r v
vx=vx+delt*fx/2 

x=x+delt*vx 
Call force(fx) 

vx=vx+delt*fx/2 

Call force(fx) 
Do while (t<tmax) 

enddo 
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Liouville Formulation 
Velocity Verlet algorithm: 
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Three subsequent coordinate transformations in either r or p of  
which the Jacobian is one: Area preserving 

Other Trotter decompositions are possible! 
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Multiple time steps 
•  What to use for stiff potentials: 

–  Fixed bond-length: constraints (Shake) 
–  Very small time step 
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Multiple  
Time steps iL ! iLr + iLp = v

"

"r
+
F
m

"

"v

F = Fshort + Flong

v
F

!

!
=
m

L short
shorti

v
F

!

!
=
m

L long
longi

iLp = iLshort + iLlong

Trotter expansion: 
( ) ( ) 2ii2ii longshortlongshortlong eeee tLtLLtLtLLL rr !!+!!++ "

Introduce: !t=!t/n 

ei Llong +Lshort +Lr( )!t " eiLlong !t 2 eiLshort # t 2eiLr# teiLshort # t 2$% &'
n
eiLlong !t 2
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eiLlong !t 2 f r 0( ),v(0)"# $% = f r 0( ),v 0( ) + Flong 0( )!t 2m"# $%

ei Llong +Lshort +Lr( )!t " eiLlong !t 2 eiLshort # t 2eiLr# teiLshort # t 2$% &'
n
eiLlong !t 2

  

iLlong !t 2" v # v + Flong !t 2m

iLshort $t 2" v # v + Fshort $t 2m
iLr$t " r # r + v$t

Now n times: 

eiLshort ! t 2eiLr! teiLshort ! t 2"# $%
n
f r 0( ),v 0( ) + Flong 0( )&t 2m"# $%

First 
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( ) ( ) ( )Longi 2
long:

2 2
pL t t te t t t

m
! ! !" #+ $ +% &

' (
v v f

( ) ( )Shorti 2
Short:

2 2 2 2
pL t t t t te t t t t t

m
! ! !

! !
" "# $ # $+ + % + + + +& ' & '

( ) ( )
v v f

( ) ( )Shorti 2
Short:

2 2 2 2
pL t t t t te t t t

m
! ! !" "# $ # $+ + % + +& ' & '

( ) ( )
v v f

( ) ( ) ( ) ( )i : 2 2rL te t t t t t t t! ! ! !+ " + + # +r r v

vx=vx+ddelt*fx_short/2 

x=x+ddelt*vx 
Call force_short(fx_short) 

vx=vx+ddelt*fx_short/2 

Call force(fx_long,f_short) 

Do ddt=1,n 

enddo 

vx=vx+delt*fx_long/2 

long long

short short

i 2 2

i 2 2
i r

L t v v F t m
L t v v F t m

L t r r v t
! !

! !

" # $ + "

# $ +

# $ +

long longshort short
ni 2 i 2i 2 i 2ie e e e erL t L tL t L tL t! !!" "# $% &

long long

short short

i 2 2

i 2 2
i r

L t v v F t m
L t v v F t m

L t r r v t
! !

! !

" # $ + "

# $ +

# $ +

long longshort short
ni 2 i 2i 2 i 2ie e e e erL t L tL t L tL t! !!" "# $% &
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Ensemble averages by ergodicity 
time  averages over a NVT MD trajectory 
 
 
 
 
 
ensemble average 
 
 
 
 
 
Ergodicity theorem states that for an ‘ergodic system’ 
 
 
 
 

Ā =
1
T

� T

0
A(t)dt

�A� =
�

drNA(rN ) exp(−βU(rN ))�
drN exp(−βU(rN ))

Ā = �A�



Computing equilibrium properties 
Ensemble averages follow from time averages 

Temperature follows from  equipartition: ! kBT per d.o.f. 
  

 
Where f is number of degrees of freedom 

T =
2K
kB f

K =
1
2

mvi
2

i=1

N

!

Ā =
1
T

� T

0
A(t)dt�A� =

P = NkBT
V

+
1
3V

fijrij
i< j

N

!

Pressure follows from virial expression 



Transport coefficients: Diffusion 
Diffusion equation (Fick’s second law) 

∂c(x, t)

∂t
= D

∂2c(x, t)

∂x2

c(x, t) =
1√
4πDt

exp

�
− x2

4Dt

�Solution for an initial c(x,0)="(0): all molecules at origin  

�x2(t)� =
�
dxx2c(x, t)�
dxc(x, t)

=

�
dx

x2e−
x2

4Dt

√
4πDt

= 2Dt

Mean square displacement of the molecules 

Or:

This is how Einstein proposed to measure the

diffusion coefficient of Brownian particles

Time derivative gives 



General c(x,t) 

MolSim 2011 

Integrating the left-hand side by parts:

Or:

This is how Einstein proposed to measure the

diffusion coefficient of Brownian particles

D =
1

6
lim
t→∞

d�r2(t)�
dt

Diffusion in 3 dimensions 



Relation to velocity 
Relation to velocity 



(“Green-Kubo relation”)

∂�x2(t)�
∂t

= 2
∂

∂t

� t

0
dt�

� t�

0
dt���vx(t�)vx(t��)�

(“Green-Kubo relation”)

Define " = t –t’’ 

Green –Kubo relation 

Also exists for other transport coefficients, such as viscosity and conductivity 



Outline 
•  Basic MD 

•  Practical MD 

•  Ensembles 
–  MD generates the NVE ensemble 
–  The canonical NVT ensemble: thermostats 
–  ensemble averages by ergodicity 

•  Integrating the equations of motion 
–  Verlet or velocity Verlet? 
–  Multiple time steps  

 
•  Computing transport properties 

 
•  Example biomolecules 

MolSim 2012 



All-atom force fields for biomolecules 

•  Potential energy for protein 
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Currently available empirical force fields 
•  CHARMm  (MacKerrel et 96) 
•  AMBER     (Cornell et al. 95) 
•  GROMOS   (Berendsen et al 87) 
•  OPLS-AA  (Jorgensen et al 95) 
•  ENCAD     (Levitt et al 83)  

•  Subtle differences in improper torsions, scale factors 1-4 bonds, united 
atom  rep. 

•  Partial charges based on empirical fits to small molecular systems  
•  Amber & Charmm also include ab-initio calculations  
•  Not clear which FF is best : top 4 mostly used 

•  Water models also included in description 
–  TIP3P, TIP4P 
–  SPC/E 

•  Current limit: 105 atoms, 1000 ns 



Photoactive Yellow Protein 
bacterial blue-light sensor 

N-terminal domain PAS domain 

Absorption of a blue-light photon triggers the photo cycle 

Tyr42 

pCA 

Thr50 

Glu46 

Cys69 

Arg52 

J. Vreede et al. Biophys. J. 2005 



0.3 µs 
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Replica Exchange works for MD 

Consider M replica’s in the NVT ensemble at a different temperature. 

! 

i" j
j" i

= exp# ($i #$ j )(U( j) #U(i))[ ]

A swap between two systems of different 
temperatures (Ti,Tj) is accepted if their potential 
energies overlap.  

E 

phase space 

E 

phase space 

low T 

high T 

High barriers in energy 
landscape: difficult to sample 

Barriers effectively low: easy to 
sample 

Advantage: better sampling phase space 



Partial unfolding 
• Loss of $-helical structure 

• Exposure of hydrophobic groups 

• Increased flexibility in parts of the protein backbone 

- 

H2O 
H2O 

H2O 

H2O 

H2O 

H2O 

 
cis-chroH + Glu46- 

Force field MD (gromacs) 
Gromos96 - SPC water - PME 

Replica Exchange 
 

Molecular simulation 



EBSA July 2007 Exp: Bernard et al. Structure 2005 



A REMD trajectory 



Other examples: shear viscosity

Other examples: thermal conductivity


