
Basic Monte Carlo
(chapter 3)

Algorithm
Detailed Balance

Other points
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Goal

Understand System on a Atomistic/Particle Level

ConditionsProperties

CONTEXT
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• Equation of State
• Local Structure
• Electronic Properties
• Phase Equilibria
• Dynamics of Transitions
• ....

Conditions

• Temperature
• Pressure
• pH
• Electric Fiel
• Compositions
• ...

Properties
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CONTEXT

6NOT  ADDRESSED  IN  THIS  SCHOOL
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Statistical Thermodynamics
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Monte Carlo simulation
Measure the Average Depth of the Nile
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Ensemble average
A
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Generate configuration using MC:
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Generate configuration using MC:

PMC rN( )= C MC exp −βU rN( ) 
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drN PMC rN( )∫

=
drN A rN( )C MC exp −βU rN( ) ∫

drNC MC exp −βU rN( ) ∫

=
drN A rN( )exp −βU rN( ) ∫

drN exp −βU rN( ) ∫



Monte Carlo simulation
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This Integral is a Problem

Can not be computed analytically, 
except  for a few models

Numerical evaluation inaccurate or “endless”:
100 particles, 3 dimensions, 

10 points per degree of freedom:
10300 points (poor estimate) 
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(Frenkel & Smit: p. 33)
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(Frenkel & Smit: p. 33)
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Questions

• How can we prove that this scheme 
generates the desired distribution of 
configurations?

• Why make a random selection of the 
particle to be displaced?
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particle to be displaced?
• Why do we need to take the old 

configuration again?
• How large should we take: delx?



new1

Central Requirement
Whatever the rule is for moving a particle

from one point to another,
it should not destroy the equilibrium distribution

Hence, in equilibrium we must have:
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old
new2

new3

new1

new4



Equilibrium should be Conserved

Stronger Condition

Probability Distribution of States

Transition Probability going from  o to  n

18For every pair {n,o}

Stronger Condition

Detailed Balance

o n



o n

Construct  Transition  Probability

Probability to attempt transition 

Probability to accept transition 
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Detailed Balance Implies

=



o n

Often Transition Matrix Chosen  Symmetric: 

=
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This Implies (with Detailed Balance)

=



NVT-ensemble

  
N (n) ∝ exp −βU n( )





o n

=            if                <

1 if                >

=

# J. Chem. Phys. 21, 1087 (1953)

#



Importance Sampling Random Walk

A move starting from one point consist of generating a trial move 
and accept or reject such a move.

• try to change energy state

• compute ∆E =Enew –Eold

• accept new state if ran < exp(∆E/kT)

• reject otherwise

• sample the state of the system

• repeat



Questions

• How can we prove that this scheme 
generates the desired distribution of 
configurations?

• Why make a random selection of the 
particle to be displaced?
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particle to be displaced?
• Why do we need to take the old 

configuration again?
• How large should we take: delx?
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Often Transition Matrix Chosen  Symmetric: 

=

Recall:

Forward and Backward Move Equally Probably  ->  Random Selection



Questions

• How can we prove that this scheme 
generates the desired distribution of 
configurations?

• Why make a random selection of the 
particle to be displaced?particle to be displaced?

• Why do we need to take the old 
configuration again?

• How large should we take: delx?



History
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Mathematical

  π (o → n) = α(o → n) × acc(o → n)

Transition probability:

π (o → n)∑ = 1
  

π (o → n)
n
∑ = 1

  
π (o → o) = 1− π (o → n)

n≠o
∑

Probability to accept the old configuration: ≠0



Keeping old configuration?
Lennard Jones Equation of State

True EOS

MC: including old configurations of rejected moves

MC: neglecting old configurations of rejected moves



Questions

• How can we prove that this scheme 
generates the desired distribution of 
configurations?

• Why make a random selection of the 
particle to be displaced?particle to be displaced?

• Why do we need to take the old 
configuration again?

• How large should we take: delx?



(Frenkel & Smit: p. 33)
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A Sampling Scheme

can be Considered Optimal if 

it Yields the Lowest Statistical Error

Simulation in Practice

it Yields the Lowest Statistical Error

in the Quantity to be Computed 

for a given Expenditure of Computing Budget



Not too small, not too big!

delx
Maximum attempted displacement

Optimal delx for hard core systems larger 
than for contineous potential systems



and energies



Practical issues

• Boundaries
• CPU saving methods
• Reduced units• Reduced units
• Long ranged forces



Boundary effects

• In small systems, boundary effects are always large.

• 1000 atoms in a simple cubic crystal – 488 boundary 
atoms.

• 1000000 atoms in a simple cubic crystal – still 6% 
boundary atoms.



Periodic boundary conditions



ener(x,en)

energies)



Energy evaluation costs!

• The most time-consuming part of any simulation is 
the evaluation of all the interactions between the 
molecules.

• In general: N(N-1)/2 = O(N2)

• But often, intermolecular forces have a short range:

• Therefore, we do not have to consider interactions 
with far- away atoms.



Saving CPU

• Cell list Verlet List

Han sur Lesse



Application: Lennard Jones 
potential

uLJ r( ) = 4ε σ
r
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•The truncated Lennard-Jones potential

•The Lennard-Jones potential

u r( ) =
uLJ r( ) r ≤ rc

0 r > rc





u r( ) =
uLJ r( ) − uLJ rc( ) r ≤ rc

0 r > rc





•The truncated and shifted Lennard-Jones potential

•The truncated Lennard-Jones potential



ener(x,en)

energies)



Phase diagrams of Lennard Jones fluids



Long ranged interactions

• Long-ranged forces require special techniques. 
– Coulomb interaction (1/r in 3D) 
– Dipolar interaction (1/r3 in 3D)

• ...and, in a different context: 
– Interactions through elastic stresses (1/r in 3D) 
– Hydrodynamic interactions (1/r in 3D) 
–



Reduced units

Example: Particles with mass m and pair 
potential:

Unit of length: σ

Unit of energy: ε

Unit of time: 



Beyond standard MC

• Non Boltzmann Sampling
• Parallel tempering

More to Come 
on  Thursday and Friday 

(Daan Frenkel)



Ergodicity problems can occur, especially in glassy systems: 
biomolecules, molecular glasses, gels, etc.

The solution: go to high temperature

Parallel tempering/Replica Exchange

EE

phase space

E

phase space

low T

high T

High barriers in energy 
landscape: difficult to sample

Barriers effectively low: easy to 
sample



Non-Boltzmann sampling 
A

NVT1
=

1

QNVT1

1

Λ3N N !
drN
∫ A rN( )exp −β1U rN( ) 

=
drN A rN( )∫ exp −β1U rN( ) 

drN exp −β1U rN( ) ∫
drN A rN( )∫ exp −β U rN( ) exp β U rN( )− β U rN( ) 

T1 is arbitrary!

Why are we not using this?

=
drN A rN( )∫ exp −β1U rN( ) exp β2U rN( )− β2U rN( ) 

drN exp −β1U rN( ) ∫ exp β2U rN( )− β2U rN( ) 

=
drN A rN( )∫ exp β2U rN( )− β1U rN( ) exp −β2U rN( ) 

drN
∫ exp β2U rN( )− β1U rN( ) exp −β2U rN( ) 

=
Aexp β2 − β1( )U  NVT2

exp β2 − β1( )U  NVT2

We perform a simulation at T=T2 and 
we determine A at T=T1

We only 
need a single
simulation!



T1

T2

T3

T

P
(E

)
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T5

T4

EOverlap becomes very small



Parallel tempering/Replica Exchange
Simulate two systems simultaneously 

system 1
temperature T1

system 2
temperature T2

total Boltzmann weight:



Swap move
• Allow two systems to swap

system 2
temperature T1

system 1
temperature T2

total Boltzmann weight:



Acceptance rule

The ratio of the new boltzmann factor over the old one is

1

the swap acceptance ratio is



Consider M replica’s in the NVT ensemble at a different temperature.

A swap between two systems
of different temperatures (Ti,Tj)

More replicas

of different temperatures (Ti,Tj)
is accepted if their potential
energies are near.

other parameters can be used: Hamiltonian exchange



Questions

…
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Lunch


