Basic Monte Carlo
(chapter 3)

Algorithm
Detailed Balance
Other points



[CONTEXT }

Perspective: Time and Length Scales
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e Correlated Methods: ~ 1 ps, ~ 0.1 nm

e DFT: ~ 10 ps, ~ nm

e Hybrid DFT/empirical: ~ 10 ps, ~ 10 nm

e Atomistic semi-empirical: ~ 100 ps, ~ 10 nm
e Atomistic empirical: ~ 10 ns, ~ 100 nm

e Coarse grained particle models: ~ ps, ~ um

e Continueous models: ~ s, ~m



{CONTEXT }

Goal

Understand System on a Atomistic/Particle Level

Properties Conditions
e Equation of State e Temperature
 Local Structure e Pressure
 Electronic Properties e pH
e Phase Equilibria * Electric Fiel

e Dynamics of Transitions e Compositions



{CONTEXT }

FORCES

FORCE-FIELD APPROACH
EMPERICAL AND/OR FITTED INTER-ATOMIC FORCES

INTRA-MOLECULAR: VIBRATION ————> HARMONIC, OR BETTER
BEND
TORSION

EMERGY

DISTANCE

INTER-MOLECULAR:  STERIC REPULSION
DISPERSION } e
HYDROGEN BONDS
ELECTROSTATIC

LENNARD-JONES, OR BETTER

EMERGY

DISTANCE



[CONTEXT }

FORCE FIELDS

FOR MANY SYSTEMS: ACCURATE AND EFFICIENT

STRUCTURE M/

PHASE BEHAVIOR 2% o & ~o ~0
oy * ___ 2l I
o q®
AP o%o%,

FOR CHEMICAL REACTIVE SYSTEMS: DIFFICULT OR IMPOSSIBLE
INTRA-MOLECULAR  <-====--- -» INTER-MOLECULAR

CHANGING ELECTRONIC STRUCTURE + C-e

FORCE FIELDS NOT SUFFICIENTLY TRANSFERABLE



[CONTEXT }

FORCES

FIRST-PRINCIPLES APPROACH

INTER-ATOMIC FORCES BY ELECTRONIC STRUCTURE CALCULATION

LENNARD-JONE

BUT

\ ENERGY /

DISTANCE  \_

CHANGING CHEMISTRY IMPLICIT

DIFFICULT (MANY ELECTRONS)

COMPUTATIONALLY EXPENSIVE

{NOT ADDRESSED IN THIS SCHOOL}




[APPROACH }

Monte Carlo and Molecular Dynamics

Generate a representative set of configurations or trajectory of the /V particle system

Monte Carlo
e Sample Boltzmann distribution by stochastic generation of configurations
e Efficient but limited dynamical properties
Molecular Dynamics
e Generate trajectory by solving equation of motion numerically
e Provides explicit time-dependence

e Proper averages require ergodicity



Statistical Thermodynamics

Partition functlon
Quvr = /\3N|\|| j dr’ exp[—,&J (r )]

Ensemble average

(B s = e [ A Jexel- 0 ()]

NVT QNVT /\3N Nl

Probability to find a particular configuration
1 1 , ,
N(rN) = o ASNN!jdrNJ(rN - r'\')ex{—ﬂu ( r'“)] [ expE—,BU ( P')]

Free energy

Pr :_ln(QNVT) 8




Monte Carlo simulation

[ Measure the Average Depth of the Nile}

© D. Frenkel



Ensemble average
1

(A) s = W I\“jdr A(r )exp[ ,&J(r )]
[ a( () = d}d’*r(rp)P(r )
_ dr A(r )Cexp[ ,6U(r )] _[dr A(r )exp[ ﬂJ(r )}

_[dr Cexp[ ,6U(r )} _[dr exp[ ,[,U(r )]
Generate configuration using v

_ dNA N PMC N
{rN I,.N I,.N I,.N rMN} A:ﬁiA(ﬁN) :.[ ' (r ) (r )

_[drNP (r)
jdr A(r exp[ ,6U(r )]

with =

pMC (rN): cMcC exp[—,aJ (rN)] / jdr A(r )exp[ w(rN)]

jdr'\' exp[—,BU (rN)




Monte Carlo simulation
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Brute-force Monte Carlo (“Random sampling”)
- M
| dei---dayf@) ~ VY f(r)
1—1

(M random points r; in (hyper)volume V)

This Integral is a Problem

Can not be computed analytically, '
except for a few models "

Numerical evaluation inaccurate or “endless”. <]
100 particles, 3 dimensions,
10 points per degree of freedom:
103 points (poor estimate)




BETTER
STRATEGY:

IMPORTANCE
SAMPLING

© D. Frenkel



Algorithm 1 (Basic Metropolis Algorithm)

(Frenkel & Smit: p. 33)

PROGRAM mc

do i1cycl=l,ncycl
call mcmove
if (mod(icycl,nsamp) .eq.O0)
+ call sample
enddo
end

basic Metropolis algorithm

perform ncycl MG cycles
displace a particle

sample averages

Comments to this algorithm:

1. Subroutine mcmove attempts to displace a randomly selected particle

(see Algorithm 2).

2. Subroutine sample samples quantities every nsampth cycle.
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Algorithm 2 (Attempt to Displace a Particle) (Frenkel & Smit: p. 33)

SUBROUTINE mcmove attempts to displace a particle
o=int (ranf () *npart) +1 select a particle at random

call ener (x(o),eno) energy old configuration

xn=x (o) +(ranf()-0.5) *delx give particle random displacement

call ener (xn,enn) energy new configuration
if (ranf().lt.exp(-beta acceptance rule (3.2.1)
+ * (enn—eno)) x(o)=xn accepted: replace x (o) by xn
return
end

Comments to this algorithm:

1. Subroutine ener calculates the energy of a particle at the given position.
2. Note that, if a configuration is rejected, the old configuration is retained.
3. The ranft () is a random number uniform in [0, 1].

15



Questions

How can we prove that this scheme
generates the desired distribution of
configurations?

Why make a random selection of the
particle to be displaced?

Why do we need to take the old
configuration again?

How large should we take: del x?

16
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Central Requirement R
Whatever the rule is for moving a particle
from one point to another,

t should not destroy the equilibrium distribution)

new, o \\

Hence, in equilibrium we must have:

new,

old

O

7/

news;-

~ “new,
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! N (?‘1) Probability Distribution of States A

7r(0 — n) Transition Probability going from o to n
- /

Equilibrium should be Conserved

{N(o) Y m(o—=n) =) Nn)r(n — o)}
Stronger Condition

Tol

Detailled Balance

4 N
N(o)m(o = n) = N(n)r(n — o).

For every pair {n,o}

\_ /




ol on

Construct Transition Probability

{ a(o — n) Probability to attempt transition}

acc(o — n) Probability to accept transition

(o —n) = alo — n) x acc(o — n)

Detailed Balance Implies

(N(o)a(o —n) x acc(o — n)\

\N(n)a(n — 0) x acc(n — O)/

19




Col

Often Transition Matrix Chosen Symmetric:

alo —n) = a(n — o)

This Implies (with Detailed Balance)

N(o) xacc(o —-n) = N(n) x acc(n — o)

20



a N
o’o NVT-ensemble

N(n) L] exp[—,&) (n)l

acc(o—+n)  N(n)

acc(n — o) N(0) exp{—plU(n) —U(o)]}

Metropolis, Rosenbluth,Rosenbluth, l

Teller and Teller"choice:
# J. Chem. Phys. 21, 1087 (1953)

acc(o —n) = N(o) it N(n)< N(o)

L = min (l,exp{—ﬁ[u(r’N)—Z/{(rN)]})/




Importance Sampling Random Walk

A move starting from one point consist of generating a trial move
and accept or reject such a move.

acc(o — n) = min (1, 6—5[U(n)—U(0)])

e try to change energy state

e compute AE =E, ., —Eqq

e accept new state if ran < exp(AE/KT)
* reject otherwise

» sample the state of the system

e repeat




Questions

How can we prove that this scheme
generates the desired distribution of
configurations?

Why make a random selection of the
particle to be displaced?

Why do we need to take the old
configuration again?

How large should we take: del x?
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Algorithm 2 (Attempt to Displace a Particle)

SUBROUTINE mcmove attempts to displace a particle
o=int (ranf () *npart) +1 select a particle at random
call ener(x(o),eno) energy old contiguraton
xn=x (o) + (ranf{)-0.5) *delx give particle random displacement
call ener {xn, enn) energy new configuration
if (ranf().lt.exp(-beta acceptance rule (3.2.1)

+ * {enn—-eno)) x(o)=xn accepted: replace x (o) by xn
return
end

Comments to this algorithm:

1. Subroutine ener calculates the energy of a particle at the given position.
2. Note that, if a configuration is rejected, the old configuration is retained.

3. The ranft () is a random number uniform in [0, 1].

Recall:

Often Transition Matrix Chosen Symmetric:
alo = n) = a(n — o)

Forward and Backward Move Equally Probably -> Random Selection

24



Questions

How can we prove that this scheme
generates the desired distribution of
configurations?

Why make a random selection of the
particle to be displaced?

Why do we need to take the old
configuration again?

How large should we take: del x?



History

Kirkwood’s objection:

“If a trial move has been rejected, one should not count
the original state AGAIN...”

Counter-example:

el oo Ideal gas on a lattice.




Mathematical

Transition probability:

71(0 - n)=a(o - n)xacc - n)
Zﬂ(O—) n):].

Probability to accept the old configur

(0 - 0)=1-) 71(0 - n)

N0



Keeping old configuration?

Lennard Jones Equation of State

10T True EOS

05

0.0 : - : - -
0.0 0.2 0.4
o T
MC: neglecting old configurations of rejected moves

MC: including old configurations of rejected moves



Questions

How can we prove that this scheme
generates the desired distribution of
configurations?

Why make a random selection of the
particle to be displaced?

Why do we need to take the old
configuration again?

How large should we take: del x?



Algorithm 2 (Attempt to Displace a Particle) (Frenkel & Smit: p. 33)

SUBROUTINE mcmove attempts to displace a particle

o=int (ranf () *npart) +1 select a particle at random

)
call ener (x(o),eno) energy old configuration

xn=x (o) + (ranf () -0.5) *delx give particle random displacement

call ener (xn,enn) energy new configuration
if (ranf().lt.exp(-beta acceptance rule (3.2.1)
+ * (enn—eno)) x(o)=xn accepted: replace x (o) by xn
return
end

Comments to this algorithm:

1. Subroutine ener calculates the energy of a particle at the given position.
2. Note that, if a configuration is rejected, the old configuration is retained.
3. The ranft () is a random number uniform in [0, 1].



Simulation Iin Practice

-~

A Sampling Scheme

can be Considered Optimal if

It Yields the Lowest Statistical Error

In the Quantity to be Computed

~

Q)r a given Expenditure of Computing Budq?




Not too small, not too big!

2
<Al >

Cost

----- continuous
hard core

A A
delx
Maximum attempted displacement

Optimal delx for hard core systems larger
than for contineous potential systems



Algorithm 5 (Calculation of the Forces) and energies

subroutine force (f,en) determine the force
en=0 and energy
de i=1l,npart
f(i)=0 set forces to zero
enddo
do i=1,npart-1
do j=i+1,npart loop over all pairs
xr=x(i)-x{])
xr=xr-box*nint (xr/box) periodic boundary conditions
rZ=xr**2
if (r2.lt.rec2) then test cutoff
r2i=1/r2
ré6i=r2i**3
ff=48*r2i*r6i* (r6i-0.5) Lennard-Jones potential
f(i)=Ff(i)+ff*xr update force
f()=£(jy)—ff*xxr
en=en+4*r6i* (r6i-1) -ecut update energy
endif
enddo
enddo
return
end

Comments to this algorithm:

1. For efficiency reasons the factors 4 and 48 are usually taken out of the force
loop and taken into account at the end of the calculation for the energy.

2. The term ecut is the value of the potential at v = v¢; for the Lennard-Jones

potential, we have
t =4 P
eCcut = le T‘g .



Practical issues

Boundaries

CPU saving methods
Reduced units

Long ranged forces



Boundary effects
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In small systems, boundary effects are always large.

1000 atoms in a simple cubic crystal — 488 boundary
atoms.

1000000 atoms in a simple cubic crystal — still 6%
boundary atoms.



Periodic boundary conditions
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Algorithm 5 (Calculation of the energies)

subroutine ener(x,en)

en=0
do i=1,npart
f(i)=0
enddo
do i=1,npart-1
do j=i+l,npart
xr=x(1)-x(7J)

Xr=xr-box*nint (xr/box)

r2=xr**2

if (r2.l1lt.rc2) then
r2i=1/r2
rei=r2i**3
ff=48*r2i*r6i* (rei-0.5)
f(i)y=f (i) +ff*xr
f{3)=f(j)-ff*xr
en=en+4*roi* (roi-1)-ecut

endif
enddo

enddo

return

end

determine the force
and energy

set forces to zero

loop over all pairs

periodic boundary conditions
test cutoff

Lennard-Jones potential
update force

update energy




Energy evaluation costs!

The most time-consuming part of any simulation is
the evaluation of all the interactions between the
molecules.

In general: N(N-1)/2 = O(N?)
But often, intermolecular forces have a short range:

Therefore, we do not have to consider interactions
with far- away atoms.



Saving CPU

» Cell list Verlet List

sssssssssss



Application: Lennard Jones
potential

*The Lennard-Jones potential

-2

*The truncated Lenna-Jones potent
u-(r) r<r
U(r) :{ ( ) c
0 r>r,
*The truncated and shifted Lennard-Jones potential

u(r) = {ULJ(r)‘UU(Q) r<r

0 r>r,



Algorithm 5 (Calculation of the energies)

subroutine ener(x,en)

en=0
do i=1,npart
£f(i)=0
enddo
do i=1,npart-1
do j=i+l,npart
xr=x(1i)-=z(7j)
Xr=xr-box*nint (xr/box)
r2=xr**2
if (rZ2.lt.rcz) then
r2i=1/r2
rei=r2i**3
ff=48*r2i*r6i* (rei-0.5)
f(i)y=f (i) +ff*xr
f{3)=f(j)-ff*xr
en=en+4*roi* (roi-1)-ecut
endif
enddo
enddo
return
end

determine the force
and energy

set forces to zero

loop over all pairs

periodic boundary conditions
test cutoff

Lennard-Jones potential
update force

update energy




Phase diagrams of Lennard Jones fluids

1.3 F - -
1.1

0.9

0.7

truncated and shifted
----tail correction

05 1 ] ] ] 1 ] 1 ]
00 02 04 06 038 1.0
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Long ranged interactions

* Long-ranged forces require special techniques.
— Coulomb interaction (1/r in 3D)
— Dipolar interaction (1/r3 in 3D)

e ...and, in a different context:
— Interactions through elastic stresses (1/r in 3D)
— Hydrodynamic interactions (1/r in 3D)



Reduced units

Example: Particles with mass and pair
potential:

v(r) =ef(r/o)

Unit of length: o)

Unit of energy: £

Unit of time: oy\/m/e



Beyond standard MC

 Non Boltzmann Sampling
« Parallel tempering

More to Come
on Thursday and Friday
(Daan Frenkel)



Parallel tempering/Replica Exchange

Ergodicity problems can occur, especially in glassy systems:
biomolecules, molecular glasses, gels, etc.

The solution: go to high temperature

E
High barriers in energy
landscape: difficult to sample low T
phase space
Barriers effectively low: easy to e
sample
high T

phase space



| _Non-BoItzmann sampling
(A)ij1 O /\SNNl-‘-dr A(r )exp[ BU (r )]
) jdr A(r )exp[—ﬂlu (r h%re/we not using this? ]
j dr' ex p[ -3U (r N )}
_[dr A(r )exp[ BU (r )]exp[ﬁzu (rN)— BU (rN)]

— j dr® exp[ -BU (r )] eXI'J[,GZIU (fN)‘ £ (rN )]

need asingle

TR e AV (e ) AL )]exe A0 ()]

We perform a simulation d&=T, and
we determin at T=T,




P(E)

—

Overlap becomes very small} 48




Parallel tempering/Replica Exchange

Simulate two systems simultaneously

system 1
temperature |

6—51[]1 (r™) e—ﬁzUz(’f‘N)

total Boltzmann weight:

6—51 Uy (r™) 6—52 Us(r™)



Swap move

o Allow two systems to swap

system 2
temperature |
N
6—51U2(?“N) e~ 02U (1)

total Boltzmann weight:

6—51 Uz(TN)e—ﬁz Uy (r™)

ace(l > 2) = min (1, ¢( ML) -0



Acceptance rule

The ratio of the new boltzmann factor over the old one is

N(n) — 6(52—ﬁ1)[U2 ("“N)—lU2 (r™)]
N (o)

the swap acceptance ratio is

acc(l s 2) — min (1’ 6(52—51)[U2(TN)_U1(7~N)]>



More replicas

Consider M replica’s in the NVT ensemble at a different temperature.

Smw :3§§§ |' A swap between two systems
| ( of different temperatures (T;,T))
- . I i ' ' is accepted if their potential
= | ‘ | a' energies are near.

£ ‘ f\ \P ‘

350 \ f \ W

other parameters can be used: Hamiltonian exchange



Questions

Lunch
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