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Paul Dirac, after completing his formalism of quantum mechanics: 

“The rest is chemistry…”. 

This is a heavy burden the shoulders of “chemistry”: 

The “rest” amounts to the quantitative description of the world around us 
and the prediction of all every-day phenomena ranging from the 
chemical reactions of small molecules to the integrated description of 
living organisms.

Why Molecular Simulations
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 for a given intermolecular potential 
“exactly” predict the thermodynamic and

transport properties of the system

Concept of Molecular Simulations
If one could envision 

an experimental 
system of these 

particles that interact 
with the potential.
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transport properties of the system
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“Can we predict the 
macroscopic properties of 

(classical) many-body systems?”
THE question:

NEWTON says: yes, my F=ma gives 
the future time evolution of the 
system

LAPLACE says: in principle yes,  
provided that we know the 
position, velocity and interaction of 
all molecules, then the future 
behavior is predictable,..

BOLZMANN says: yes, just solve my phase space integral 
(for static properties)

both approaches should lead to the same results: But......
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.... there are so many molecules....
...making these approaches untractable.
What was the alternative at the time ? 

1. Smart tricks (“theory”)
Only works in special cases: the Ising model: the ideal gas, etc etc

2. Constructing a model (“molecular lego”).

J.D. Bernal’s “ball-bearing model”

of an atomic liquid…

J.D. Bernal’s ball-bearing model 
of an atomic liquid

Watson and Crick’s model of 
DNA double helix
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The computer age 

With computers we can follow the behavior of hundreds to hundreds 
of millions of molecules.

The computer age (1953…)

With computers we can follow the behavior of hundreds to

hundreds of millions  of molecules.

Mary-Ann Mansigh

Berni Alder

Tom Wainwright
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Performance Development 
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Speed of MD simulations

ab-initio MD is 
invented
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Uses of Molecular Simulations
• Mimic the real world:

– Predicting properties of (new) materials
– Computer ‘experiments’ at extreme conditions  
– Understanding phenomena on a molecular scale 

• Model systems
– test theory using same simple model
– explore consequences of model 
– explain poorly understood phenomena in terms of 

essential physics
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To predict the thermodynamic properties (boiling points) 
of the hydrocarbon mixtures it is convenient to know the critical 
points of the hydrocarbons.

Properties of materials

Critical properties of long chain hydrocarbons
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Hydrocarbons intermolecular potential

United-atom model
– Fixed bond length
– Bond-bending
– Torsion
– Non-bonded: Lennard-Jones

CH3

CH3CH2

CH2CH2
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13

Vapour-liquid 
equilibria

Computational issues:
• How to compute 

vapour-liquid 
equilibrium?

• How to deal with long 
chain hydrocarbons?

Course on Free 
Energies and Phase 

Equilibrium

Course on CBMC: 
configurational-bias 

Monte Carlo
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• Protein conformational change with Molecular dynamics
• Empirical  potential, including bonds, angles dihedrals

Understand molecular processes

• Transition path sampling   

Leads to insight and 
new hypotheses
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In the 1950‘s an important question arose: Is an attractive interaction 
always required to form a solid phase?

YES:
– Because theories (up to then) predict that attractions are needed for vapour-

liquid equilibrium and thus why not for solids

MAYBE NOT:
– These theories do not apply to solids

HOWEVER: 
– There no are molecules with only repulsive interactions

So how to test the hypothesis that molecules with only repulsive 
interaction can freeze?

Testing theories with simple models

Your hypothesis is 
WRONG it disagrees 
with the experiments

My hypothesis is 
RIGHT: but this 

experimentalist refuses 
to use molecules that 

do not have any 
attractive interactions
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Simulation of hard spheres

• Bernie Alder et al. carried out 
Molecular Dynamics simulations of 
the freezing of hard spheres

• But, …. did the scientific 
community accept this computer 
results as evidence …?

• … during a New Jersey conference 
in 1957 it was proposed to vote on 
it …

• … and it was voted against the 
results of Alder!

An older Alder
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Experiments are now possible
.. not on molecules but on colloids

and show that hard spheres indeed crystallize at high density 

from : Yethiraj and van Blaaderen
Nature 421, 513-517 (2003)
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• Protein folding is complex:
explicit MD intractable
 

• Make simple lattice model with
essential physics of proteins
– polymer connectivity
– heteropolymer sequence
– attraction/repulsion

• MC simulation yields understanding

Understanding in terms of essential physics

Course on
 lattice models
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The limits of Molecular Simulation
• Brute-force simulations can never bridge all the scales between 

microscopic (nanometers/picoseconds) and macroscopic (cells, 
humans, planets).

• Need different levels of 
description (“coarse 
graining”) - and we need 
input from experiments 
at many different levels 
to validate our models.
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The limits of experiments
• Increasingly, experiments generate far more data than humans can digest.

• Result: “Experulation” or “Simuriment”.

• Simulations are becoming an integral part of the analysis of experimental 
data.
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Understanding Molecular Simulation 
Molecular simulations are based on the framework of statistical 
mechanics/thermodynamics

Hence:

An introduction 
(or refresher) of 

Statistical 
Thermodynamics
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Outline

• Basic Assumption
– micro-canonical ensemble
– relation to thermodynamics

• Canonical ensemble
– free energy
– thermodynamic properties

• Other ensembles
– constant pressure
– grand-canonical ensemble
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Statistical Thermodynamics: the basics
• Nature is quantum-mechanical

• Consequence:
– Systems have discrete quantum states.
– For finite “closed” systems, the number of states is finite (but usually 

very large)

• Hypothesis: In a closed system, every state is equally likely to be 
observed.

• Consequence:  
ALL of equilibrium Statistical Mechanics and Thermodynamics
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! !

Simpler example: standard statistics
Draw N balls from an infinite vessel that contains an equal 
number of red and blue balls
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0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

NR/N

N=10000
N=1000

N=100
N=10
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If the number of particles 
is large (>100) the 

probability functions for 
these states are sharply 

peaked

Molecular consequence of 
basic assumption

Each individual 
microstate is equally 

probable 

…, but there are not many 
microstates that give these 

extreme results
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Does the basis assumption lead to something that is 
consistent with classical thermodynamics?

Systems 1 and 2 are weakly coupled 
such that they can exchange energy.

What will be E1?

BA: each configuration is equally probable; but the number of states that 
give an energy E1 is not (yet) known.

 The most likely E1, is the E1 that maximizes  Ω1(E1)x Ω2(E-E1)



Molsim 2012



Molsim 2012



Molsim 2012



Molsim 2012



Molsim 2012

  

∂ lnΩ1 E1( )
∂E1

⎛

⎝
⎜

⎞

⎠
⎟

N1 ,V1

+
∂ lnΩ2 E − E1( )

∂E1

⎛

⎝
⎜

⎞

⎠
⎟

N2 ,V2

= 0



Molsim 2012

  

∂ lnΩ1 E1( )
∂E1

⎛

⎝
⎜

⎞

⎠
⎟

N1 ,V1

+
∂ lnΩ2 E − E1( )

∂E1

⎛

⎝
⎜

⎞

⎠
⎟

N2 ,V2

= 0

Energy is conserved!
dE1=-dE2



Molsim 2012

  

∂ lnΩ1 E1( )
∂E1

⎛

⎝
⎜

⎞

⎠
⎟

N1 ,V1

+
∂ lnΩ2 E − E1( )

∂E1

⎛

⎝
⎜

⎞

⎠
⎟

N2 ,V2

= 0

Energy is conserved!
dE1=-dE2



Molsim 2012

  

∂ lnΩ1 E1( )
∂E1

⎛

⎝
⎜

⎞

⎠
⎟

N1 ,V1

+
∂ lnΩ2 E − E1( )

∂E1

⎛

⎝
⎜

⎞

⎠
⎟

N2 ,V2

= 0

Energy is conserved!
dE1=-dE2

This can be seen as an 
equilibrium condition



Molsim 2012

  

∂ lnΩ1 E1( )
∂E1

⎛

⎝
⎜

⎞

⎠
⎟

N1 ,V1

+
∂ lnΩ2 E − E1( )

∂E1

⎛

⎝
⎜

⎞

⎠
⎟

N2 ,V2

= 0

Energy is conserved!
dE1=-dE2

This can be seen as an 
equilibrium condition

Indeed this is the condition for thermal equilibrium: 
“no spontaneous heat flow between 1 and 2”



Molsim 2012

Normally, thermal equilibrium means: equal temperatures

Let us define:



Molsim 2012

Normally, thermal equilibrium means: equal temperatures

Let us define:



Molsim 2012

Normally, thermal equilibrium means: equal temperatures

Let us define:

Then, thermal equilibrium is equivalent to:

This suggests that β is a function of T.
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We have to live with the past, therefore

With kB=  1.380662 10-23 J/K 

In thermodynamics, the absolute (Kelvin) temperature scale 
was defined such that

dE = TdS-pdV + µidNi
i=1

n

∑
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We have to live with the past, therefore

With kB=  1.380662 10-23 J/K 

In thermodynamics, the absolute (Kelvin) temperature scale 
was defined such that

But we found (defined):
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And this gives the “statistical” definition of temperature:

In short:

Entropy and temperature are both related 
to the fact that we can COUNT states. 

β =
1

kBT

with
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35

How large is Ω?

For macroscopic systems, super-astronomically large. 

For instance, for a glass of water at room temperature:

Macroscopic deviations from the second law of thermodynamics are not 
forbidden, but they are extremely unlikely.

Number of configurations
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slightly lower entropy Sargon,low =307.2 (1 - 10-10) J/K mol-1
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Deviation from the 2nd law?
What is the probability that 1 mole of argon gas spontaneously lowers it 
entropy by 0.00000001%  (=10-10) ?

standard molar entropy of argon : Sargon =307.2 J/K mol-1

slightly lower entropy Sargon,low =307.2 (1 - 10-10) J/K mol-1

probability of occurrence is 

A mathematical relation  : 10-1015 ≠ 0 

A physical relation  : 10-1015 = 0

P ≈ Ωargon,low

Ωargon
= exp

�
Sargon,low − Sargon

kB

�
= exp

�
−3.07× 10−8

1.38× 10−23

�
≈ 10−1015
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Canonical ensemble
Consider a small system that can exchange heat with a big reservoir

Hence, the probability to find Ei:
Partition function:
Q =

�

j

exp(−Ej/kBT )
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Canonical ensemble
Consider a small system that can exchange heat with a big reservoir

Hence, the probability to find Ei:

Boltzmann distribution
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Canonical ensemble
Consider a small system that can exchange heat with a big reservoir

Hence, the probability to find Ei:

“Low energies are more likely than high energies”
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Thermodynamics

What is the average energy of the system?

Compare: 

Thermo recall

Fundamental equation

Helmholtz Free energy:
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Thermodynamics

What is the average energy of the system?

Compare: 

Hence: 
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The classical limit
We have assume quantum mechanics (discrete states) but
we are interested in the classical limit

Particles are indistinguishable 

N

“volume of phase space”
N

Why does planck constant appear?
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Easiest to look at translation partition function Qx of particle in 1D box 

Postulate quantum mechanics: p=h/λ met h Planck’s constant
Particle is standing wave with length

Appearance of Plank’s constant?

! 

"trans =
1
2
mv 2 =

p2

2m
p= momentum
m=mass
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Easiest to look at translation partition function Qx of particle in 1D box 

Postulate quantum mechanics: p=h/λ met h Planck’s constant
Particle is standing wave with length

Appearance of Plank’s constant?

! 

"trans =
1
2
mv 2 =

p2

2m
p= momentum
m=mass

! 

" =
2L
n

! 

"trans =
p2

2m
=
h /#( )2

2m
=
n2h2

8mL2

Qx = dne!!n
2h2 /(8mL2 )

1

"

# =
L
h

2"m
!

Qx = exp(!!"trans )
n=1

"

# = exp !
!n2h2

8mL2
$

%
&

'

(
)

n=1

"

#

Qx =

� �
dpdr exp(−β

p2

2m
+ U(r)) = L

�
dp exp(−β

p2

2m
) = L

�
2πm

β

now compare to classical integration without Planck’s constant

factor of h is missing for each degree of freedom. 



Molsim 2012

The classical limit
We have assume quantum mechanics (discrete states) but
we are interested in the classical limit

Particles are indistinguishable 

N

Volume of phase space (particle in a box)
N



Molsim 2012

The classical limit
We have assume quantum mechanics (discrete states) but
we are interested in the classical limit

Particles are indistinguishable 

Integration over the momenta can be carried out for most systems:

N

Volume of phase space (particle in a box)
N
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The classical limit

Define de Broglie wavelength:
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The classical limit

Define de Broglie wavelength:

Partition function:
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Example: ideal gas

Free energy:

! N ln"3 # N lnV + N lnN # N

!F = N ln(!!3)"1( ) with density ρ=N/V

Thermo recall

Helmholtz Free energy:

Energy:

Pressure
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Free energy:
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Example: ideal gas

Pressure: Energy:

Free energy:

! N ln"3 # N lnV + N lnN # N

!F = N ln(!!3)"1( ) with density ρ=N/V
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Ideal gas (2)

Chemical potential: µi =
∂F
∂Ni

⎛

⎝⎜
⎞

⎠⎟ T ,V ,N j
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Ideal gas (2)

Chemical potential: µi =
∂F
∂Ni

⎛

⎝⎜
⎞

⎠⎟ T ,V ,N j

  βµ
IG = βµ0 + lnρ

!F = N ln(!!3)"1( ) with density ρ=N/V

!µ = ln!3 + ln"
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Heat capacity from energy fluctuation
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Heat capacity from energy fluctuation

kBT
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Heat capacity from energy fluctuation
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Heat capacity from energy fluctuation
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Computing the pressure 

Introduce “scaled” coordinates:

F = −kT lnQ

P = −∂F

∂V

Introduce scaled coordinates
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Computing the pressure 
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Free energy derivative can be written as ensemble average!
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For pairwise additive forces:

Then
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And we can write

i and j are dummy variable hence:



Molsim 2012

But as action equals reaction (Newton’s 3rd law):

And hence

Inserting this in our expression for the pressure, we get:

Where 

This is known as the virial expression
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What do you do if you can’t use the virial expression?

This will be the case e.g. with discontinuous potentials. 

What to do if you cannot use the virial expression?
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Summary:
micro-canonical ensemble (N,V,E)

Partition function:

Entropy 

Probability to find a particular configuration

S = kB lnQN ,V ,E
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Canonical ensemble (N,V,T)

Partition function:

Probability to find a particular configuration 



Molsim 2012

Summary:
Canonical ensemble (N,V,T)

Partition function:

Free energy 

Probability to find a particular configuration 
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Ensemble averages

Probability to find a configuration: 

P(!) = 1
Q
exp "!U(!)[ ]
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Ensemble averages

Probability to find a configuration: 

Ensemble average: 

A = d!A(!)" P(!)

P(!) = 1
Q
exp "!U(!)[ ]

For properties that only depend on the configurational part
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Ergodicity theorem
suppose we have an ensemble average of a system defined by U(Γ) obtained by MC

Now suppose we have a NVT molecular dynamics trajectory for the same system
A time average over the trajectory is simply

MC and MD give the same averages 

Ergodicity theorem states that for an ‘ergodic system’
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Other ensembles?
In the thermodynamic limit the thermodynamic properties are
independent of the ensemble: so buy a bigger computer …

However, it is most of the times much better to think and to carefully
select an appropriate ensemble.

For this it is important to know how to simulate in the various ensembles.

Course on
MD and MC in 

different ensembles
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Other ensembles?
In the thermodynamic limit the thermodynamic properties are
independent of the ensemble: so buy a bigger computer …

However, it is most of the times much better to think and to carefully
select an appropriate ensemble.

For this it is important to know how to simulate in the various ensembles.

But for doing this we need to know the Statistical Thermodynamics
of the various ensembles.
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N,P,T ensemble

Consider a small system that can exchange volume 
and energy  with a big reservoir

Hence, the probability to find Ei,Vi:
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N,P,T ensemble (2)

In the classical limit, the partition function becomes

The probability to find a particular configuration:
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Grand-canonical simulations: 
µ,V,T ensemble

Consider a small system that can exchange particles 
and energy with a big reservoir

Hence, the probability to find Ei,Ni:
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µ,V,T ensemble (2)

In the classical limit, the partition function becomes

The probability to find a particular configuration:
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Summary
• Molecular simulation is firmly rooted in equilibrium statistical 

mechanics/thermodynamics

• Basis of statistical thermodynamics: configurations with same energy 
are equally likely: microcanonical ensemble

• At constant temperature Boltzmann distribution follows: 
canonical ensemble

• other ensembles are isobaric and grand canonical ensembles

• MD and MC are two roads to the same equilibrium answer: ergodicity

• MD also gives dynamical properties (viscosity, diffusion etc)

• Rest of the week: MC and MD in depth.
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The end


