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Why Molecular Simulations

Paul Dirac, after completing his formalism of quantum mechanics:
“The rest is chemistry...”.
This is a heavy burden the shoulders of “chemistry”:

The “rest” amounts to the quantitative description of the world around us
and the prediction of all every-day phenomena ranging from the
chemical reactions of small molecules to the integrated description of
living organisms.
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... there are so many molecules....

...making these approaches untractable.
What was the alternative at the time ?

|. Smart tricks (“theory”)
Only works in special cases: the Ising model: the ideal gas, etc etc

2. Constructing a model (“molecular lego™).

J.D. Bernal’s ball-bearing model Watson and Crick’s model of
Molsim 2012 of an atomic liquid DNA double helix



The computer age

i e | L Berni Alder

o

Mary-An‘n— Maﬁsigh

With computers we can follow the behavior of hundreds to hundreds
of millions of molecules.
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Increment of power since 1950°s

Transistor count

Microprocessor Transistor Counts 1971-2011 & Moore’s Law

2,600,000,000 ~
1,000,000,000

100,000,000

10,000,000

1,000,000 -

100,000

10,000 4

2,300 -

16-Core SPARC T3
Stx-Core Core 17

Six-Cora Xeon 7403__\ . l @ 10-Cora Xaon Wastmar-EX

-
CualCore Harium 2@ @ o ﬂ‘ca‘s’n Wﬂ?&?
Bd-Core 2
AMD K10, :':833:1-&;: tanum Tuswib
FOWERS® g, ®, "~ 8.Core Xoon Nehalem-EX
Itanum 2 with 9ME cache @ ", Sx-Core Opteron 2400

AMD K108"  “Core 7 (Quad)
tankm 2@ ‘Eg;“z bua
® AMD K8
Pantm 4@ St ® Alom
AMD K7
@ £\D K61l
curve shows transistor _AMD K6
It »
count doubling every o rtum 8
two years oADK
@ Pentium
BMEE @
203860
B02B5®
63000 @
® 80155
#0086 @ @E0es
8085
GHI0 g e68m
seo, | ezeo
2008@ OMOS 6502
4004@ “pea 1802
f T T T 1
1971 1980 1990 2000 2011

Date of introduction



<= Super computer performance development
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Uses of Molecular Simulations

* Mimic the real world:
— Predicting properties of (new) materials
— Computer ‘experiments’ at extreme conditions
— Understanding phenomena on a molecular scale

* Model systems
— test theory using same simple model
— explore consequences of model

— explain poorly understood phenomena in terms of
essential physics
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Properties of materials

Critical properties of long chain hydrocarbons
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Properties of materials

Critical properties of long chain hydrocarbons
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To predict the thermodynamic properties (boiling points)

of the hydrocarbon mixtures it is convenient to know the critical
points of the hydrocarbons.
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Hydrocarbons intermolecular potential

United-atom model
— Fixed bond length
— Bond-bending

— Torsion
— Non-bonded: Lennard-Jones

a3 13




Vapour-liquid
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Vapour-liquid
equilibria

Computational issues:

* How to compute
vapour-liquid
equilibrium?

* How to deal with long

%hain hydrocarbons?



Properties at extreme conditions

* Carbon phase behavior at very high pressure and temperature
* Empirical pair potential depending on carbon coordination
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Properties at extreme conditions

* Carbon phase behavior at very high pressure and temperature

* Empirical pair potential depending on carbon coordination
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Understand molecular processes

* Protein conformational change with Molecular dynamics
* Empirical potential, including bonds, angles dihedrals
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Transition path sampling

Course on
rare events
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Understand molecular processes

Protein conformational change with Molecular dynamics
Empirical potential, including bonds, angles dihedrals

Transition path sampling

Leads to insight and
new hypotheses

Molsim 2012
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lesting theories with simple models

In the 1950°s an important question arose: Is an attractive interaction
always required to form a solid phase!?
YES:
— Because theories (up to then) predict that attractions are needed for vapour-
liquid equilibrium and thus why not for solids

MAYBE NOT:

— These theories do not apply to solids

HOWEVER:

— There no are molecules with only repulsive interactions

~

-

o )} that molecules with only repulsive
Your hypothesis is yTEP

WRONG it disagrees
with the experiments
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lesting theories with s

In the 1950°s an important question arose:
always required to form a solid phase!?

YES:

— Because theories (up to then) predic
liquid equilibrium and thus why not f

MAYBE NOT:
— These theories do not apply to solids

HOWEVER:

— There no are molecules with only repulsive i

My hypothesis is

RIGHT: but this
experimentalist refuses
to use molecules that

do not have any
attractive interactions

4 _ } that molecules wit
Your hypothesis is

WRONG it disagrees
with the experiments

-

o \ll
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Simulation of hard spheres

* Bernie Alder et al. carried out
Molecular Dynamics simulations of
the freezing of hard spheres

7

An older Alder
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Simulation of hard spheres

* Bernie Alder et al. carried out
Molecular Dynamics simulations of
the freezing of hard spheres

* But,....did the scientific
community accept this computer
results as evidence ...?
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Simulation of hard spheres

* Bernie Alder et al. carried out
Molecular Dynamics simulations of
the freezing of hard spheres

* But,....did the scientific
community accept this computer
results as evidence ...?

* ... during a New Jersey conference
in 1957 it was proposed to vote on
it ...
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An older Alder
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Simulation of hard spheres

Bernie Alder et al. carried out
Molecular Dynamics simulations of
the freezing of hard spheres

But, .... did the scientific
community accept this computer
results as evidence ...?

... during a New Jersey conference
in 1957 it was proposed to vote on
it ...

... and it was voted against the
results of Alder!

Q. >

An older Ald

er



Experiments are now possible

.. hot on molecules but on colloids

......
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and show that hard spheres indeed crystallize at high density
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Explore consequences of model

* Trans membrane peptides

* Coarse-grained model of a membrane to study the interactions
between peptides in a membrane
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Understanding in terms of essential physics

* Protein folding is complex: unfolded states (10°) 1
explicit MD intractable =3 . -'

* Make simple lattice model with
essential physics of proteins
— polymer connectivity

— heteropolymer sequence wjhu
— attraction/repulsion 4

compact states
(10")

4
\' I"-—ll -"'HI g
transition states (107 — C
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Protein foldlng is complex: unfolded states (107) | I:

-

explicit MD intractable

Make simple lattice model with
essential physics of proteins
— polymer connectivity

h - u.l by,
— heteropolymer sequence - E:.}H\ N .
- -1 | L]
— attraction/repulsion L
compact states Vi
(10")

MC simulation yields understanding
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Understanding in terms of essential physics

unfolded states (10°)

b |
!

trangition states (10%

* Protein folding is complex:
explicit MD intractable r ST ET I
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The limits of Molecular Simulation

* Brute-force simulations can never bridge all the scales between
microscopic (nanometers/picoseconds) and macroscopic (cells,

humans, planets).

* Need different levels of
description (“coarse -
graining”) - and we need o 4.
input from experiments hybriq 00'59@”7
at many different levels length AA/cG %, @04(9
to validate our models. um — o@%o’c},\
195} OA O"ff
QM/MM ’J‘Q O $
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nm —| 470
", vt methods
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The limits of experiments

* Increasingly, experiments generate far more data than humans can digest.

* Result:“Experulation” or “Simuriment”.

* Simulations are becoming an integral part of the analysis of experimental
data.

Molsim 2012
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Understanding Molecular Simulation

Molecular simulations are based on the framework of statistical
mechanics/thermodynamics

Hence:

An introduction
(or refresher) of

Statistical
Thermodynamics



Outline

* Basic Assumption
— micro-canonical ensemble
— relation to thermodynamics

* Canonical ensemble
— free energy
— thermodynamic properties

e Other ensembles
— constant pressure
— grand-canonical ensemble
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Statistical Thermodynamics: the basics

* Nature is quantum-mechanical

* Consequence:
— Systems have discrete quantum states.

— For finite “closed” systems, the number of states is finite (but usually
very large)

* Hypothesis: In a closed system, every state is equally likely to be
observed.

* Consequence:
ALL of equilibrium Statistical Mechanics and Thermodynamics

Molsim 2012



Simpler example: standard statistics

Draw N balls from an infinite vessel that contains an equal
number of red and blue balls

Number of possibilities to draw Np red balls

and Np blue balls: Q(Ngp,Npg) = NR]!V]{[B!'




Most likely Np = Ng = N/2.
QN/2,N/2) = (wpzjiway
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Most likely Np = Ng = N/2.

N
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Does the basis assumption lead to something that is
consistent with classical thermodynamics?

Systems | and 2 are weakly coupled
E, E2 -E-E such that they can exchange energy.

What will be E,?

Q(E,E-E)=9Q,(E)xQ,(E-E)

BA: each configuration is equally probable; but the number of states that
give an energy E, is not (yet) known.

The most likely E;, is the E; that maximizes ,(E;)x Q(E-E))
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Q(E,E-E)=Q,(E )xQ,(E-E,)
nQ(E,E-E)=InQ (E)+nQ,(E-E,)

Energy is conserved!
—_ 0 dEI='dE2

Nph
(omQ (E)\  (onQ,(E-E

+ =0
T D
Ny N,V

IInQ(E,E-E,)
I,

BN
d1n Q, (E1 ) - d1nQ2, (E - El) This. can be seen as an
IE = E equilibrium condition

1 NpW 2 Ny.V, g

Indeed this is the condition for thermal equilibrium:
“no spontaneous heat flow between | and 2”



Normally, thermal equilibrium means: equal temperatures

Let us define;
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Let us define: [3 Jdln Q (E )
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Normally, thermal equilibrium means: equal temperatures

Let us define: [3 Jdln Q (E )
oE

N,V

Then, thermal equilibrium is equivalent to:

[31=Bz

This suggests that B is a function of T.
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Relation to thermodynamics

Conjecture:

Almost right.

Good features:
— Extensivity
— Third law of thermodynamics comes for free

Bad feature:

— It assumes that entropy is dimensionless but (for unfortunate,
historical reasons, it is not...)
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Relation to thermodynamics

Conjecture: S =InQ

Almost right.

Good features:
— Extensivity
— Third law of thermodynamics comes for free

Bad feature:

— It assumes that entropy is dimensionless but (for unfortunate,
historical reasons, it is not...)

Molsim 2012



We have to live with the past, therefore

S=kBln§2(E)

With ke= 1.380662 10-23 J/K
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We have to live with the past, therefore

S=kBln§2(E)

With ke= 1.380662 10-23 J/K

In thermodynamics, the absolute (Kelvin) temperature scale
was defined such that

sy _1
oE ), T

0 In Q2 (E )
But we found (defined):

ok

N,V




And this gives the “statistical” definition of temperature:

aan(E)

N,V
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And this gives the “statistical” definition of temperature:

aan(E)

N,V

In short:

Entropy and temperature are both related
to the fact that we can COUNT states.
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Number of configurations

How large is ()?
For macroscopic systems, super-astronomically large.

For instance, for a glass of water at room temperature:

Q —~ 102)(1025

Macroscopic deviations from the second law of thermodynamics are not
forbidden, but they are extremely unlikely.

35
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Deviation from the 2nd law?

What is the probability that | mole of argon gas spontaneously lowers it
entropy by 0.00000001% (=10-'9) ?

standard molar entropy of argon : Sargon =307.2 J/K mol-!
slightly lower entropy Sargonjow =307.2 (I - 10-'9) J/K mol-!

probability of occurrence is
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Deviation from the 2nd law?

What is the probability that | mole of argon gas spontaneously lowers it
entropy by 0.00000001% (=10-'9) ?

standard molar entropy of argon : Sargon =307.2 J/K mol-!
slightly lower entropy Sargonjow =307.2 (I - 10-'9) J/K mol-!

probability of occurrence is

P~ Qcm“gon,low Sargon,low — Sargon] — exp [_307 X 10_8

— exp ~ 107107
kB 1.38 x 1023

Qargon

A mathematical relation : 109" %= 0

A physical relation : 109" =0
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Canonical ensemble

Consider a small system that can exchange heat with a big reservoir

E-E

nQ(E-E )=InQ(E)-

Q(E-E) E

1

Q(E) kT

In

Hence, the probability to find E:
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01ln Q

E. E-F nQ(E-E,)=mQ(E)-~"F

Q(E-E) K
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Q(E) kT

In

Hence, the probability to find E:
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Canonical ensemble

Consider a small system that can exchange heat with a big reservoir

01ln Q

E, E-E nQ(E-E)=nQ(E)- E +
.............. I
Q(E-E) E
In = ——
Q(E) kT
Partition functlon
Hence, the probability to find E;: Q = Z exp(—F,/kpT)
Q(E-E) exp/E/kH

P(E, )=

S Q(E-E) S exp(-E, /k,T)
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Consider a small system that can exchange heat with a big reservoir

01ln Q
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Hence, the probability to find E:
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Canonical ensemble

Consider a small system that can exchange heat with a big reservoir

aanE'er

E. E-F nQ(E-E,)=mQ(E)-~"F

Q(E-E) K

1

Q(E) kT

In

Hence, the probability to find E:
Q(E-E,) exp(~E,/k,T)

S Q(E-E) S exp(-E, /k,T)
P(E, )« exp(=E, /k,T)
\i Boltzmann distribution j

P(E, )=




Canonical ensemble

Consider a small system that can exchange heat with a big reservoir

01ln Q

E. E-F nQ(E-E,)=mQ(E)-~"F

Q(E-E) K

1

Q(E) kT

In

Hence, the probability to find E:
Q(E-E,) exp(~E,/k,T)

S 0(E-£)" S en(E ki)

P(E, )« exp(=E, /k,T)

P(E, )=

“Low energies are more likely than high energies”

E +-



Thermodynamics

What is the average energy of the system!
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Thermodynamics
What is the average energy of the system!

) =EZEZ. exp(-BE,)
<E> B Ez’EiP(Ei) EJGXP(—ISEJ-)
- dIn ziexp(—BEi)

Jp




Thermodynamics
What is the average energy of the system!

N E exp(-BE,)

Ey= EP(E )=

< > Ei i ( l) EJ.GXP(—ﬁEJ-)

B alnziexp(—ﬁEi)

= — B
dInQ, , ;

_ "




Thermodynamics

What is the average energy of the system!

(E)=Y EP(E,)-=

Compare:

|

OF|T

oUT

)=E

N E exp(-BE,)

Ej exXp (—[SEJ. )
dIn ziexp (—[SEZ. )
_ %
dIn QN,V,T
_ "




What is the a\

Compare:

|

Thermodvnamics

2

Thermo recall

Fundamental equation

dE =7dS - pdV

Helmholtz Free energy:

F=E-TS
dF = -SdT - pdV
OFIT L OF . OF
01/T T a1/T oT
=F+TS=F
oL
T |




Thermodynamics

What is the average energy of the system!

(E)=Y EP(E,)-=

Compare:

|

OF|T

oUT

)=E

N E exp(-BE,)

Ejexp(_BEj)

alnziexp(—ﬁEi)

3
_ dIn QN,V,T
Jf3

Hence:
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The classical limit

We have assume quantum mechanics (discrete states) but

we are interested in the classical limit

| -
Eiexp(—BEl.) > PET fdedrNeXp<—|3

1

_ Particles are indistinguishable

N

— “volume of phase space”

Why does planck constant appear?

’2m




Molsim 2012

Apbpearance of Plank’s constant?

Easiest to look at translation partition function Qx of particle in ID box

1 p’ p= momentum
€irans = Emv = m=mass

Postulate quantum mechanics: p=h/\ met h Planck’s constant
Particle is standing wave with length
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Apbpearance of Plank’s constant?

Easiest to look at translation partition function Qx of particle in ID box

1 p’ p= momentum
€irans = Emv = m=mass

Postulate quantum mechanics: p=h/\ met h Planck’s constant
Particle is standing wave with length

) _pz _(h/)\'>2_n2h2 n=3
T Om 2m Sml?

n
0.- Sowt-pen)- Sew| -G ~
/‘\

a2t
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Apbpearance of Plank’s constant?

Easiest to look at translation partition function Qx of particle in ID box

2 —_
_ l L pP= momentum
€irans = > my = m=mass

Postulate quantum mechanics: p=h/\ met h Planck’s constant

Particle is standing wave with length ‘ ‘
2L Lo () e v
T N 2m 2m 8ml’

0 ‘iexp(—/a’e )-ieXp e N
X - trans L 8m L2 /\/

Y ~Bn’h*I(8mL*) L [2am — L,
0, = [ dne L [2zm

h\ B




Apbpearance of Plank’s constant?

Easiest to look at translation partition function Qx of particle in ID box

1 p’ p= momentum
€irans = Emv = m=mass

Postulate quantum mechanics: p=h/\ met h Planck’s constant
Particle is standing wave with length

2L p2 (h/)\.) n2h2 n=3
)\- = 8trans = 2
2m 2m 8mL

n
0 0 [_))n2h2 n=2
= EXp(—pPE = cX

0 =f°°dne—/3n2h2/(8mL2) =£ 27m — L &
X 1 h ﬁ

now compare to classical mtegratlon without Planck’s constant

//dpdfrexp 5—+U( ) = L/dpexp(—BQp—m) = L

factor of h is missing for each degree of freedom.
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The classical limit

We have assume quantum mechanics (discrete states) but

we are interested in the classical limit

Eiexp(—ﬁEl.)

fdedr exp -

hWNv
L Particles are indistinguishable
N
1

— Volume of phase space (particle in a box)

-

-

’2m
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The classical limit

We have assume quantum mechanics (discrete states) but
we are interested in the classical limit

Eiexp(—ﬁEi)

1
N
1
"

hWNv

fdedr exp{—f

-

’2m

Particles are indistinguishable

Volume of phase space (particle in a box)

Integration over the momenta can be carried out for most systems:

-

[dp™ expi-B

3

7 1

Pi

'2m,

- 3N EN

_ p’ 2rtm \?
ooz
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The classical limit

Define de Broglie wavelength:

20 \)2
Ag(hﬁ)
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The classical limit

Define de Broglie wavelength:

20 \)2
Ag(hﬁ)

2mtm

Partition function:

O(N,V,T)= AJN!fdrN exp [—ﬁU(rN )]
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Example° ideal gas

Q(N,V,T)—AWNJdr exp[ BU (" )]
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Example: ideal gas
Q(N,V,T)= AM},N!de‘N CXPp [_ﬁU(rN )]

__ ] dr¥1 = 4
B A3NN!f AVN

Free energy:

BF = —ln( V-

AV NI

)lenA3—Nan+NlnN—N



Example: ideal gas
O(N,V,T)= AJN!fdrN exp [—[SU(rN )]
1 Y

— N —
A T Ay
Free energy:

ﬁF=—m(
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AV NI

)lenA3—Nan+NlnN—N

pF = N(ln(pA3) — 1) with density p=N/V



Example: ideal gas

O(N,V,T

Free energy

BF

pF

T hermo recall

Helmholtz Free energy:

dF = —SdT - pdV

Pressure

N __p
),

Energy:
(o ()

ouT || op

1N -N

=N/V




Example: ideal gas
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Example: ideal gas
O(N,V,T)= AJN!fdrN exp [—[SU(rN )]
1 Y

— N —
A T Ay
Free energy:

N
BF =-In d ~NInA’~-NInV+NInN-N
AV NI
pF = N(ln(pA3)—1) with density p=N/V
Pressure:

p=_(£) _ N
o), BV



Example: ideal gas

O(N,V.,T)= AJN!fdrN exp [—[SU(rN )]

1 v

— N —
A T Ay
Free energy:

N
BF =-In d ~NInA’~-NInV+NInN-N
AV NI
pF = N(ln(pA3) — 1) with density p=N/V
Pressure: Energy:

po () N po(BF)_3NIA 3,
ov ). BV o A dp 2
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Ideal gas (2)

Chemical potential (—F\
i o jal: -
P “lav ),
PF = N(ln(pA3) — 1) with density p=N/V

Bu=InA’+Inp

pu’” = pu’ +1np
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Heat capacity from energy fluctuation

CV=(@) (& (@) k,T°C, =-| 2&
T )y \ B ), y\dT B )y n
4 )
EEi eXp(_ﬁEi)
E)= N
Y exp(-BE,)
\_ i J




Heat capacity from energy fluctuation

R I
ol Jyny \p ), y\IT B ),

P in exp(-pBE;)

k,T°C, = —— -1
&ﬁ Eexp(—/a’El.)

S Eexp(-BE,) (Y E exp(-BE,))

zexp(—ﬁE,-) \ zexp(—ﬁEi) |

-(E%)~(E) - ((E<(E)))




Heat capacity from energy fluctuation

R
or )y \dB), \dT B )y u

p EEI. exp(-pBE;)
B Y exp(-BE,)

k,T°C, =-

EE? exp(-fE) (EEZ' eXp(_ﬁEi)\ P(E) fluctuation in E
= o grows as |/+/N
Eexp(—ﬁEi) Eexp(—ﬁEi) )

i \

-(E*)~(E) =((E-(E)))




Computing the pressure

OF
p=-""

oV
F=—-kTIn@

Q(N,V,T)—AWNJdr exp [~ BU (" )]

Introduce scaled coordinates I° — LS

QIN.V.T) = 5y / as" exp[—pU(s™; L))



Computing the pressure

.  —=_p
oV
OF O |
OF _ pr?n€
oV oV
oInVHN [ds? exp[-puU(s™; L
P — kpT [ dsN exp[—pu(sN; L)]
oV
N _ N.
P:NchT | IcBTaInde exp[—pU (s ; L)

oV



U™, L)y X ou(N)or;
ov or, OV

1=1

81'2' 1 aLSZ' 1

oV  3L2 6L 312

oV



_ Nkgr JdsV f\f_laug;” i exp[—BU(sN; L)]

V [ds™N exp[—ﬁbl(s  L)]
P NkgT <§: oU (rV) T >
% ~ or; 3V

Free energy derivative can be written as ensemble average!



For pairwise additive forces:
f, =) f
JF1

Then

NkgT . 1 N
P=— I3v< 2 f’”'”>
i j=1i]




NkgT 1 N
P=— 3v< 2 f’ij'ri>

ij=1,i7]
i and j are dummy variable hence:
N N
>, fiyri= ) ey
L,J=117] Ji=1,j71
And we can write
N 1 N

D fij-ri =5 D (fz’j°rz“|‘fji°rj)

1,J=1,17] Ji=1,j71



But as action equals reaction (Newton’s 3 law):

71
And hence
N N
> (fz'j 1+ £ I'j) = > fy-(ri—ry)
Jst=1,571 Ji=1,j71

Inserting this in our expression for the pressure, we get:

NkgT = 1 N
P=—"+e{ 2 furmy
i j= 1,7

Where T'jj =T; — Ty

This is known as the virial expression



What do you do if you can’t use the virial expression?

b OF F(V-AV)-F()

oV AV

This will be the case e.g. with discontinuous potentials.
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Entropy
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Summary:
Canonical ensemble (N, V, T)

Partition function:

Probability to find a particular configuration 1 = {l‘l, r,..., l‘N}

P(T)e exp[-BU(T)]

Free energy

[3 F=-In QN,V,T



Ensemble averages

For properties that only depend on the configurational part
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Ensemble averages

For properties that only depend on the configurational part

Probability to find a configuration: I = {rl,rz, cens rN}

P(I)= éexp[—ﬁU(r)]
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Ensemble averages

For properties that only depend on the configurational part

Probability to find a configuration: I = {rl,rz, cens rN}

P(I)= éexp[—/&’U(I‘)]

Ensemble average:

(A) = f dTA(D)P(T)

(4) = édeA (T )exp [-BU (T)]



Ergodicity theorem

suppose we have an ensemble average of a system defined by U(I') obtained by MC

(4) = éfaTA (T)exp [-BU ()]

Now suppose we have a NVT molecular dynamics trajectory for the same system
A time average over the trajectory is simply

1 7
A= — A
T/o (t)dt
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Ergodicity theorem

suppose we have an ensemble average of a system defined by U(I') obtained by MC

(4) = éfaTA (T)exp [-BU ()]

Now suppose we have a NVT molecular dynamics trajectory for the same system
A time average over the trajectory is simply

1 7
A-L [ 4
T/o (1)t

Ergodicity theorem states that for an ‘ergodic system’

A = (A)

MC and MD give the same averages

Molsim 2012
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Other ensembles?

In the thermodynamic limit the thermodynamic properties are
independent of the ensemble: so buy a bigger computer ...

However, it is most of the times much better to think and to carefully
select an appropriate ensemble.

For this it is important to know how to simulate in the various ensembles.

But for doing this we need to know the Statistical Thermodynamics
of the various ensembles.

Molsim 2012
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Constant pressure simulations:

N P T ensemble

V.E, A

nQ(V -7,

Thermo recall

Fundamental equation

dE = TdS - pdVJrEi w.dN,

Hence

l: ﬁ
T \oE ), ,

W) _p
oV TN T

and




Constant pressure simulations:
N,P. T ensemble

Vi, E,

E-E,

V-,

Consider all system that can excha

and energy with a bj

an(V—VZ.,E—EZ.)=an(V,E)—(aan) E._(‘”ng) Vg
V E

l

ok 4



Constant pressure simulations:

Vi, E,

E-E,

V-,

N,P. T ensemble

Consider a small system that can exchange volume
and energy with a big reservoir

an(V—VZ.,E—EZ.)=an(V,E)—(aan) E._(am) Vg
V E

1 l

ok 4



Constant pressure simulations:
N,P. T ensemble

vE|__. E-E,
V-,

Consider a small system that can exchange volume
and energy with a big reservoir

an(V—VZ.,E—EZ.)=an(V,E)—(ag;Q) El.—(a(l;;/g) Vo
Vv E

Q(E_EiaV_Vi)_ E, pV,

In —
Q(E,V) kyT kT



Constant pressure simulations:
N,P. T ensemble

vE|__. E-E,
V-,

Consider a small system that can exchange volume
and energy with a big reservoir

an(V—VZ.,E—EZ.)=an(V,E)—(ag;Q) El.—(a(l;;/g) Vo
Vv E

Q(E_EiaV_Vi) L ph
Q(E,V) kyT kT
Hence, the probability to find E,V:

In



Constant pressure simulations:
N,P. T ensemble

vE|__. E-E,
V-,

Consider a small system that can exchange volume
and energy with a big reservoir

an(V—VZ.’E—EZ.)=an(V,E)—(ag;Q) El.—(a(l;;/g) Vo
Vv E

Q(E_Ez‘»V_Vi)_ E, pV,

In

Q(EV) kT kT
Hence, the probability to find E,V:
P(El.,Vl.)= Q(E_Ei?V_Vi) eXp[_ﬁ(Ei+pI/i)-‘

Ej,kQ(E_EJ’V_Vk)= Ej,kexp[_ﬁ (Ej +ka)]
o« exp [~B (E, + V)]
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OWN.P.T)= s [V exp (B PV )far' exp[-5U ()]
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N,P, T ensemble (2)

In the classical limit, the partition function becomes

OWN.P.T)= s [V exp (B PV )far' exp[-5U ()]

The probability to find a particular configuration: V.V

P(e.7 )= exp =B (PV +U ("))
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N

0 In Q2
oF

Nl__|_...
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Grand-canonical simulations:

u,V, T ensemble
Ni’Ei E - E.,
\\/ N-N, 1/kgT
Consideras system that can exchange particles
and energy with a big reservoir

E -

1

an(N—NZ.,E—El.)=an(N,E)—(aan)
N

0 In Q2
oF

Nl__|_...
)



Grand-canonical simulations:
u,V, T ensemble

\\/ N—]\lfl. ]/kBT

Consideras system that can exch
and energy with

particles
g reservoir

E -

1

an(N—NZ.,E—El.)=an(N,E)—(aan)
N

0 In Q2
oF

Nl__|_...
)



Grand-canonical simulations:
11 \/ T ensemble

Thermo recall

Fundamental equation

dE = TdS - pdVJrEi w.dN,

Hence
l: ﬁ
T \oE ),

and

(ﬁ) W
oN, |, T
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Grand-canonical simulations:
u,V, T ensemble

Consider a small system that can exchange particles
and energy with a big reservoir

E -

1

an(N—NZ.,E—El.)=an(N,E)—(aan)
N

0 In Q2
oF

Nl__|_...
)



Grand-canonical simulations:
u,V, T ensemble

Consider a small system that can exchange particles
and energy with a big reservoir

an(N—NZ.,E—El.)=an(N,E)—(ag;Q) E,-—(M;A? ) N4
N E

Q(E-E,N-N,) E Y
Q(EN) kT kT

In



Grand-canonical simulations:
u,V, T ensemble

Consider a small system that can exchange particles
and energy with a big reservoir

E -

1

an(N—NZ.,E—El.)=an(N,E)—(aan)
N

0 In Q2
oF

N+
).~
Q(E-E,N-N,) E Y

Q(EN) kT kT
Hence, the probability to find E,N::

In



Grand-canonical simulations:
u,V, T ensemble

Consider a small system that can exchange particles
and energy with a big reservoir

an(N—NZ.E—El.)=an(N,E)—(aan) Ei_(aan ) N+
| N N ),
Q(E-E,N-N,) E L,
In = !
Q(E,N) kT kT
Hence, the probability to find E,N::
-E,N-N, B (E, -uN,
P(EN )= Q(E-E,N-N,)  exp[-B(E-wN,)]

Y Q(E-E.N-N.) > x| (E, - wN, )]

o eXP [—[3 (E, - N, )]



u,V, T ensemble (2)

In the classical limit, the partition function becomes
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u,V, T ensemble (2)

In the classical limit, the partition function becomes

O(w,V,T)= OO_ VN fdrN exp[—BU(rN )]




u,V, T ensemble (2)

In the classical limit, the partition function becomes

P(N,rN)oc exp[[SMN— BU(rN )]
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Summary

Molecular simulation is firmly rooted in equilibrium statistical
mechanics/thermodynamics

Basis of statistical thermodynamics: configurations with same energy
are equally likely: microcanonical ensemble

At constant temperature Boltzmann distribution follows:
canonical ensemble

other ensembles are isobaric and grand canonical ensembles
MD and MC are two roads to the same equilibrium answer: ergodicity

MD also gives dynamical properties (viscosity, diffusion etc)

Rest of the week: MC and MD in depth.






