

- ☐ Free energies: classical thermodynamics
- ☐ Free energies: statistical thermodynamics
- ☐ Monte Carlo simulations: what went wrong?
- ☐ Experiments: how to make a chemical potential—meter?
- ☐ Free energy techniques:
 - □ Thermodynamic integration
 - ☐ Krikwood coupling parameter
 - □ Widom test particle insertion
 - Overlapping distribution
 - ☐ Histogram method
 - □ Umbrella sampling

Chemical potential

Until now we have assumed that most of our systems are closed: NVE

Let us now assume that our system can exchange matter

First law

$$\mathrm{d} U = T\mathrm{d} S - p\mathrm{d} V + \sum_i \left(\frac{\partial U}{\partial n_i}\right)_{S,V,n_j} \mathrm{d} n_i$$

Chemical potential

 $-\left(\frac{\partial u}{\partial n_i}\right)_{S,V,n_j} dn_i$ add one mole of component i at constant S, V, n_j

Change in U if we

$$\mu_{i} \equiv \left(\frac{\partial U}{\partial n_{i}}\right)_{S,V,n_{i}}$$

How is the chemical potential is defined in term of A,G,H

$$A \equiv U - TS$$
$$dA = dU - TdS - SdT$$

Using
$$\mathrm{d} U = T \mathrm{d} S - p \mathrm{d} V + \sum_i \left(\frac{\partial U}{\partial n_i}\right)_{S,V,n_j} \mathrm{d} n_i$$

$$\mathrm{d} A = -S \mathrm{d} T - p \mathrm{d} V + \sum_i \left(\frac{\partial U}{\partial n_i}\right)_{S,V,n_j} \mathrm{d} n_i$$

$$\mathrm{d} A = -S \mathrm{d} T - p \mathrm{d} V + \sum_i \left(\frac{\partial A}{\partial n_i}\right)_{T,V,n_j} \mathrm{d} n_i$$
 Chemical potential
$$\mu_i \equiv \left(\frac{\partial A}{\partial n_i}\right)_{T,V,n_j} = \left(\frac{\partial U}{\partial n_i}\right)_{S,V,n_j}$$

Energy

$$dU = TdS - pdV + \sum_{i} \mu_{i} dn_{i}$$

Enthalpy

$$\mathrm{d} H = T\mathrm{d} S + V\mathrm{d} p + \sum_i \mu_i \mathrm{d} n_i$$

Helmholtz free energy
$$dA = -SdT - pdV + \sum_{i} \mu_{i} dn_{i}$$

Gibbs free energy

$$\mathrm{d}G = -S\mathrm{d}T + V\mathrm{d}p + \sum_{i} \mu_{i}\mathrm{d}n_{i}$$

Chemical potential

$$\mu_i \equiv \left(\frac{\partial U}{\partial n_i}\right)_{S,V,n_\mathfrak{j}} = \left(\frac{\partial H}{\partial n_i}\right)_{S,\mathfrak{p},n_\mathfrak{j}} = \left(\frac{\partial A}{\partial n_i}\right)_{T,V,n_\mathfrak{j}} = \left(\frac{\partial G}{\partial n_i}\right)_{T,\mathfrak{p},n_\mathfrak{j}}$$

G is extensive

How does the Gibbs free energy change if the system is increased by a factor k?

$$\Delta G = kG - G = (k-1)G$$

$$dG = -SdT + Vdp + \sum_i \mu_i dn_i$$
 Integration gives

$$\Delta G = 0 + 0 + \sum_{i} \mu_{i} \Delta n_{i}$$

$$\Delta G = 0 + 0 + \sum_{i} \mu_{i}(k-1)n_{i}$$

Which gives:

$$G = \sum_{i} \mu_{i} n_{i}$$

Equilibrium

Let us consider a system with a constant number of particles, volume, and energy.

This system consists of two phases α and B

Question: When are these two systems in equilibrium?

$$dS = dS^{\alpha} + dS^{\beta} = 0 \qquad dS^{\alpha} = \frac{dU^{\alpha}}{T^{\alpha}} + \frac{p^{\alpha}}{T^{\alpha}} dV^{\alpha} - \sum_{i} \frac{\mu_{i}^{\alpha}}{T^{\alpha}} dn_{i}^{\alpha}$$
$$dS^{\alpha} + dS^{\beta} = \left(\frac{1}{T^{\alpha}} - \frac{1}{T^{\beta}}\right) dU^{\alpha} + \left(\frac{p^{\alpha}}{T^{\alpha}} - \frac{p^{\beta}}{T^{\beta}}\right) dV^{\alpha}$$

$$-\sum_{i} \left(\frac{\mu_{i}^{\alpha}}{\mathsf{T}^{\alpha}} - \frac{\mu_{i}^{\beta}}{\mathsf{T}^{\beta}} \right) \mathrm{d}\mathfrak{n}_{i}^{\alpha}$$

 $\mathsf{T}^{\alpha} = \mathsf{T}^{\beta} \wedge \mathfrak{p}^{\alpha} = \mathfrak{p}^{\beta} \wedge \mu_{i}^{\alpha} = \mu_{i}^{\beta}$ Equilibrium:

Vapor-liquid equilibria

Equilibrium:

$$\mathsf{T}^{\alpha} = \mathsf{T}^{\beta} \wedge \mathfrak{p}^{\alpha} = \mathfrak{p}^{\beta} \wedge \mathfrak{\mu}^{\alpha} = \mathfrak{\mu}^{\beta}$$

Van der Waals equation of

$$P = \frac{k_B T}{v - b} - \frac{a}{v^2}$$

We need to compute the chemical potential

Chemical potential

In equilibrium we have: $\,\mu^{\alpha}(\textbf{T}\!,V^{\alpha})=\mu^{\beta}(\textbf{T}\!,V^{\beta})\,$

$$\Delta \mu^{\alpha\beta} = \mu^{\alpha}(T, V^{\alpha}) - \mu^{\beta}(T, V^{\beta})$$

Equilibrium if:

$$\underline{\Delta \mu^{\alpha\beta}} = \int_{\beta}^{\alpha} dV \left(\frac{\partial \mu}{\partial V} \right)_{T,n} = 0$$

How to relate this to the equation of state?

Recall that we derived the relation between changes in the chemical potential and temperature and pressure (Gibbs-Duhem)

$$G = \sum_{i} \mu_{i} n_{i}$$
 or, for a pure component $G = n\mu$

$$\sum_{i}^{1} n_{i} \mathrm{d} \mu_{i} = - \mathrm{SdT} + \mathrm{Vdp} \quad \text{or} \quad \mathrm{nd} \mu = - \mathrm{SdT} + \mathrm{Vdp} \\ \mathrm{d} \mu = - \mathrm{sdT} + \nu \mathrm{dp}$$

$$\Delta \mu^{\alpha\beta} = \int_{\beta}^{\alpha} \mathrm{d}\nu \left(\frac{\partial \mu}{\partial \nu}\right)_{T,n} = 0 \qquad \qquad d\mu = -s\mathrm{d}T + \nu\mathrm{d}p \\ \mu = \mu(T,P) \qquad \qquad \mu = \mu(T,P)$$
 We need to find

We need to find

$$\left(\frac{\partial \mu}{\partial \nu}\right)_{T} = \left(\frac{\partial \mu}{\partial T}\right)_{p} \left(\frac{\partial T}{\partial \nu}\right)_{T} + \left(\frac{\partial \mu}{\partial p}\right)_{T} \left(\frac{\partial p}{\partial \nu}\right)_{T}$$

$$= 0$$

$$\left(\frac{\partial \mu}{\partial \nu}\right)_{T} = 0 + \nu \left(\frac{\partial p}{\partial \nu}\right)_{T}$$

Equation of state gives us the chemical potential

Which gives:
$$\Delta \mu^{\alpha\beta} = \int_{\beta}^{\alpha} d\nu \nu \left(\frac{\partial p}{\partial \nu}\right)_{T} = \nu p|_{\alpha}^{\beta} - \int_{\beta}^{\alpha} p d\nu$$
$$= -\int_{\beta}^{\alpha} (p - p_{coex}) d\nu$$

Vapor-liquid equilibria

Equilibrium:

$$\mathsf{T}^{\alpha} = \mathsf{T}^{\beta} \wedge \mathfrak{p}^{\alpha} = \mathfrak{p}^{\beta} \wedge \mathfrak{\mu}^{\alpha} = \mathfrak{\mu}^{\beta}$$

Equal chemical potential if

$$\int_{\beta}^{\alpha} (p - p_{coex}) d\nu = 0$$

Equilibrium if these areas are equal

NVT ensemble

Define de Broglie wave length:

$$\Lambda \equiv \left(\frac{h^2 \beta}{2\pi m}\right)^{\frac{1}{2}}$$

Partition function:

$$Q(N,V,T) = \frac{1}{\Lambda^{3N}N!} \int d\mathbf{r}^N \exp\left[-\beta U(\mathbf{r}^N)\right]$$

Free energy:

$$F = -\frac{1}{\beta} \ln Q(N, V, T)$$

Example: ideal gas

$$Q(N,V,T) = \frac{1}{\Lambda^{3N}N!} \int d\mathbf{r}^{N} \exp\left[-\beta U(\mathbf{r}^{N})\right]$$
$$= \frac{1}{\Lambda^{3N}N!} \int d\mathbf{r}^{N} 1 = \frac{V^{N}}{\Lambda^{3N}N!}$$

Free energy:

$$\beta F = -\ln\left(\frac{V^{N}}{\Lambda^{3N}N!}\right)$$

$$\approx N \ln \Lambda^{3} + N \ln\left(\frac{N}{V}\right) = N \ln \Lambda^{3} + N \ln \rho$$

Thermo recall (3)

Helmholtz Free energy:

$$dF = -SdT - pdV$$

Pressure

$$\left(\frac{\partial F}{\partial V}\right)_{T} = -P$$

Energy:

$$\left(\frac{\partial F/T}{\partial 1/T}\right) = \left(\frac{\partial \beta F}{\partial \beta}\right) = E$$

$$\beta F = N \ln \Lambda^3 + N \ln \left(\frac{N}{V} \right)$$

Pressure:

$$P = -\left(\frac{\partial F}{\partial V}\right)_{T} = \frac{N}{\beta V}$$

Energy:

$$E = \left(\frac{\partial \beta F}{\partial \beta}\right) = \frac{3N}{\Lambda} \frac{\partial \Lambda}{\partial \beta} = \frac{3}{2} N k_B T$$

Chemical potential:

$$\mu_{i} = \left(\frac{\partial F}{\partial N_{i}}\right)_{T,V,N_{i}}$$

$$\beta \mu^{IG} = \ln \Lambda^3 + \ln \rho + 1$$

$$\beta\mu^{IG} = \beta\mu^0 + \ln\rho$$

Monte Carlo simulation

What is the difference between <A> and F?

The price of importance sampling

$$\langle A \rangle_{NVT} = \frac{1}{Q_{NVT}} \frac{1}{\Lambda^{3N} N!} \int d\mathbf{r}^{N} A(\mathbf{r}^{N}) \exp\left[-\beta U(\mathbf{r}^{N})\right]$$

$$= \int d\mathbf{r}^{N} A(\mathbf{r}^{N}) P(\mathbf{r}^{N}) = \frac{\int d\mathbf{r}^{N} A(\mathbf{r}^{N}) P(\mathbf{r}^{N})}{\int d\mathbf{r}^{N} P(\mathbf{r}^{N})}$$

$$= \frac{\int d\mathbf{r}^{N} A(\mathbf{r}^{N}) C \exp\left[-\beta U(\mathbf{r}^{N})\right]}{\int d\mathbf{r}^{N} A(\mathbf{r}^{N}) \exp\left[-\beta U(\mathbf{r}^{N})\right]}$$

$$P(\mathbf{r}^{N}) = \frac{\exp[-\beta U(\mathbf{r}^{N})]}{Q_{NVT}\Lambda^{3N}N!}$$

$$= \frac{\int d\mathbf{r}^{N} A(\mathbf{r}^{N}) C \exp\left[-\beta U(\mathbf{r}^{N})\right]}{\int d\mathbf{r}^{N} C \exp\left[-\beta U(\mathbf{r}^{N})\right]} = \frac{\int d\mathbf{r}^{N} A(\mathbf{r}^{N}) \exp\left[-\beta U(\mathbf{r}^{N})\right]}{\int d\mathbf{r}^{N} \exp\left[-\beta U(\mathbf{r}^{N})\right]}$$

$$= \frac{\int d\mathbf{r}^{N} A(\mathbf{r}^{N}) \exp[-\beta U(\mathbf{r}^{N})]}{\int d\mathbf{r}^{N} \exp[-\beta U(\mathbf{r}^{N})]}$$

Generate configuration using MC:

$$\left\{ \mathbf{r}_{1}^{N},\mathbf{r}_{2}^{N},\mathbf{r}_{3}^{N},\mathbf{r}_{4}^{N}\cdots,\mathbf{r}_{M}^{N}\right\}$$

$$\overline{A} = \frac{1}{M} \sum_{i=1}^{M} A(\mathbf{r}_{i}^{N}) = \frac{\int d\mathbf{r}^{N} A(\mathbf{r}^{N}) P^{MC}(\mathbf{r}^{N})}{\int d\mathbf{r}^{N} P^{MC}(\mathbf{r}^{N})}$$

with

$$P^{MC}(\mathbf{r}^{N}) = C^{MC} \exp \left[-\beta U(\mathbf{r}^{N})\right]$$

$$= \frac{\int d\mathbf{r}^{N} A(\mathbf{r}^{N}) C^{MC} \exp[-\beta U(\mathbf{r}^{N})]}{\int d\mathbf{r}^{N} C^{MC} \exp[-\beta U(\mathbf{r}^{N})]}$$
$$= \frac{\int d\mathbf{r}^{N} A(\mathbf{r}^{N}) \exp[-\beta U(\mathbf{r}^{N})]}{\int d\mathbf{r}^{N} \exp[-\beta U(\mathbf{r}^{N})]}$$

Experimental (2)

$$\left(\frac{\partial F}{\partial V}\right)_{N,T} = -P$$

$$F(P) - F(P_0) = -\int_{V_0}^{V} \left(\frac{\partial F}{\partial V}\right)_{N,T} dV$$

- Works always for vapor-liquid
- Requires a large number of simulations to fit the equation of state
- Does not work for solid-liquid

Thermodynamic integration

Coupling parameter

$$U(\lambda) = (1 - \lambda)U_I + \lambda U_{II}$$

$$U(\lambda) = U^{LJ} + \lambda U^{\text{dipole-dipole}}$$

$$U(0)=U^{LJ}$$

Lennard-Jones

$$U(1) = U^{\text{Stockm}}$$

Stockmayer

$$Q_{NVT}(\lambda) = \frac{1}{\Lambda^{3N} N!} \int d\mathbf{r}^{N} \exp\left[-\beta U(\lambda)\right]$$

$$Q_{NVT}(\lambda) = \frac{1}{\Lambda^{3N} N!} \int d\mathbf{r}^{N} \exp\left[-\beta U(\lambda)\right]$$

$$\left(\frac{\partial F(\lambda)}{\partial \lambda}\right)_{N,T} = -\frac{1}{\beta} \frac{\partial}{\partial \lambda} \ln(Q) = -\frac{1}{\beta} \frac{1}{Q} \frac{\partial Q}{\partial \lambda}$$

$$F = -\frac{1}{\beta} \ln(Q_{NVT})$$

$$= \frac{\int d\mathbf{r}^{N} (\partial U(\lambda)/\partial \lambda) \exp[-\beta U(\lambda)]}{\int d\mathbf{r}^{N} \exp[-\beta U(\lambda)]} = \left\langle \frac{\partial U(\lambda)}{\partial \lambda} \right\rangle_{\lambda}$$

Free energy as ensemble average!

$$F(\lambda = 1) - F(\lambda = 0) = \int d\lambda \left\langle \frac{\partial U(\lambda)}{\partial \lambda} \right\rangle_{\lambda}$$

$$U(\lambda) = (1 - \lambda)U_I + \lambda U_{II}$$
$$\left\langle \frac{\partial U(\lambda)}{\partial \lambda} \right\rangle_{\lambda} = \left\langle U_{II} - U_I \right\rangle_{\lambda}$$

Molecular association

B + A

Experimentally we can measure the free energies of association.

We would like to have the molecule which has the optimal free energy of association

How to compute the free energy of association?

Solution: compute the potential of mean force = the reversible work required to bring B to the host

We do not need to know the absolute value, but to see whether B or B' is better we need to know only:

$$\Delta \Delta G = \Delta G_1 - \Delta G_2 \quad U(\lambda) = U(B) + \lambda [U(B') - U(B)]$$

In a simulation it is easier to compute:

$$\Delta \Delta G = \Delta G_{bind} - \Delta G_{solv}$$

$$F(\lambda = 1) - F(\lambda = 0) = \int d\lambda \left\langle \frac{\partial U(\lambda)}{\partial \lambda} \right\rangle_{\lambda}$$

When will this computation be accurate?

Chemical potential

$$Q_{NVT} = \frac{1}{\Lambda^{3N} N!} \int d\mathbf{r}^N \exp\left[-\beta U(\mathbf{r}^N)\right]$$

Scaled coordinates: s=r/L

$$Q_{NVT} = \frac{V^{N}}{\Lambda^{3N} N!} \int ds^{N} \exp \left[-\beta U(s^{N}; L) \right]$$

$$\beta F = -\ln(Q_{NVT})$$

$$=-\ln\left(\frac{V^{N}}{\Lambda^{3N}N!}\right)-\ln\left(\int ds^{N} \exp\left[-\beta U\left(s^{N};L\right)\right]\right)$$

$$= -N \ln \left(\frac{1}{\Lambda^{3} \rho} \right) - \ln \left(\int ds^{N} \exp \left[-\beta U(s^{N}; L) \right] \right)$$

Chemical potential: Widom test particle method

$$\beta F = -\ln(Q_{NVT})$$

$$= -N \ln \left(\frac{1}{\Lambda^3 \rho} \right) - \ln \left(\int ds^N \exp \left[-\beta U(s^N; L) \right] \right)$$

$$\beta F = \beta F^{IG} + \beta F^{ex}$$

$$\mu \equiv \left(\frac{\partial F}{\partial N}\right)_{VT}$$

$$\beta\mu = \beta\mu^{IG} + \beta\mu^{ex}$$

$$\beta \mu^{IG} \equiv \left(\frac{\partial \beta F^{IG}}{\partial N} \right)_{V,T} \beta \mu^{ex} \equiv \left(\frac{\partial \beta F^{ex}}{\partial N} \right)_{V,T}$$

$$\beta \mu \equiv \left(\frac{\partial \beta F}{\partial N}\right)_{V,T}$$

$$\beta \mu = \left(\frac{\partial \beta F}{\partial N}\right)_{V,T} \qquad \beta \mu = \frac{\beta F(N+1) - \beta F(N)}{N+1-N}$$

$$= -\ln \frac{Q(N+1)}{Q(N)}$$

$$=-\ln\left(\frac{\frac{V^{N+1}}{\Lambda^{3N+3}(N+1)!}}{\frac{V^{N}}{\Lambda^{3N}N!}}\right)-\ln\left(\frac{\int ds^{N+1} \exp\left[-\beta U\left(s^{N+1};L\right)\right]}{\int ds^{N} \exp\left[-\beta U\left(s^{N};L\right)\right]}\right)$$

$$=-\ln\left(\frac{V}{\Lambda^{3}(N+1)}\right)-\ln\left(\frac{\int ds^{N+1} \exp\left[-\beta U\left(s^{N+1};L\right)\right]}{\int ds^{N} \exp\left[-\beta U\left(s^{N};L\right)\right]}\right)$$

$$\beta\mu = \beta\mu^{IG} + \beta\mu^{ex}$$

$$\beta \mu^{ex} = -\ln \left(\frac{\int ds^{N+1} \exp\left[-\beta U\left(s^{N+1};L\right)\right]}{\int ds^{N} \exp\left[-\beta U\left(s^{N};L\right)\right]} \right)$$

$$\beta \mu^{ex} = -\ln \left(\frac{\int ds^{N+1} \exp\left[-\beta U\left(s^{N+1};L\right)\right]}{\int ds^{N} \exp\left[-\beta U\left(s^{N};L\right)\right]} \right)$$

$$U(s^{N+1};L) = \Delta U^+ + U(s^N;L)$$

$$\beta \mu^{ex} = -\ln \left(\frac{\int ds^{N} \int ds_{N+1} \exp \left[-\beta \left(\Delta U^{+} + U(s^{N}; L) \right) \right]}{\int ds^{N} \exp \left[-\beta U(s^{N}; L) \right]} \right)$$

$$=-\ln\left(\frac{\int ds_{N+1} \int ds^{N} \left\{ \exp\left[-\beta \Delta U^{+}\right] \right\} \exp\left[-\beta U\left(s^{N};L\right)\right]}{\int ds^{N} \exp\left[-\beta U\left(s^{N};L\right)\right]}\right)$$

$$=-\ln\left(\int ds_{N+1} \left\langle \exp\left[-\beta \Delta U^{+}\right]\right\rangle_{NVT}\right)$$

Ghost particle!

Algorithm 16 (Widom Test Particle Insertion)

```
subroutine Widom

xtest=box*ranf()
call ener(xtest,entest)
wtest=wtest
+ +exp(-beta*entest)
return
end
```

excess chemical potential via the addition of test particles generate a random position determine energy update Boltzmann factor in (7.2.5)

Hard spheres

$$\beta \mu^{ex} = -\ln \left(\int ds_{N+1} \left\langle \exp \left[-\beta \Delta U^{+} \right] \right\rangle_{NVT} \right)$$

$$U(r) = \begin{cases} \infty & r \le \sigma \\ 0 & r > \sigma \end{cases}$$

$$\langle \exp[-\beta \Delta U^{+}] \rangle = \begin{cases} 0 & \text{if overlap} \\ 1 & \text{no overlap} \end{cases}$$

Probability to insert a test particle!

Real-particle method

$$\beta \mu \equiv \left(\frac{\partial \beta F}{\partial N}\right)_{V,T}$$

$$\beta \mu \equiv \left(\frac{\partial \beta F}{\partial N}\right)_{V,T} \qquad \beta \mu = \frac{\beta F(N+1) - \beta F(N)}{N+1-N}$$

$$= -\ln \frac{Q(N+1)}{Q(N)}$$

$$=-\ln\left(\frac{\frac{V^{N+1}}{\Lambda^{3N+3}(N+1)!}}{\frac{V^{N}}{\Lambda^{3N}N!}}\right)-\ln\left(\frac{\int ds^{N+1} \exp\left[-\beta U\left(s^{N+1};L\right)\right]}{\int ds^{N} \exp\left[-\beta U\left(s^{N};L\right)\right]}\right)$$

$$=-\ln\left(\frac{V}{\Lambda^{3}(N+1)}\right)-\ln\left(\frac{\int ds^{N+1} \exp\left[-\beta U\left(s^{N+1};L\right)\right]}{\int ds^{N} \exp\left[-\beta U\left(s^{N};L\right)\right]}\right)$$

$$\beta\mu = \beta\mu^{IG} + \beta\mu^{ex}$$

$$\beta \mu^{ex} = -\ln \left(\frac{\int ds^{N+1} \exp\left[-\beta U\left(s^{N+1};L\right)\right]}{\int ds^{N} \exp\left[-\beta U\left(s^{N};L\right)\right]} \right)$$

$$\beta \mu^{ex} = -\ln \left(\frac{\int ds^{N+1} \exp\left[-\beta U\left(s^{N+1};L\right)\right]}{\int ds^{N} \exp\left[-\beta U\left(s^{N};L\right)\right]} \right)$$

$$U(s^{N+1};L) = \Delta U^+ + U(s^N;L)$$

$$U(s^{N+1};L) = \Delta U^+ + U(s^N;L)$$

$$U(s^N;L) = U(s^{N+1};L) - \Delta U^+$$

$$\beta \mu^{ex} = -\ln \left(\frac{\int ds^{N+1} \exp\left[-\beta U\left(s^{N+1};L\right)\right]}{\int ds^{N+1} \exp\left[+\beta \Delta U^{+} - \beta U\left(s^{N+1};L\right)\right]} \right)$$

$$=-\ln\left(\frac{\int ds^{N+1} \exp\left[-\beta U\left(s^{N+1};L\right)\right]}{\int ds^{N+1} \exp\left[+\beta \Delta U^{+}\right] \exp\left[-\beta U\left(s^{N+1};L\right)\right]}\right)$$

$$= +\ln\left(\left\langle \exp\left[+\beta\Delta U^{+}\right]\right\rangle_{N+1VT}\right)$$

real particle!

Other ensembles: NPT

NVT: Helmholtz free energy

$$\mu \equiv \left(\frac{\partial F}{\partial N}\right)_{V,T}$$

$$\mu \equiv \left(\frac{\partial G}{\partial N}\right)_{P,T}$$

$$\beta G = -\ln(Q_{NPT})$$

$$Q_{NPT} = \frac{1}{\Lambda^{3N} N!} \int dV V^{N} \exp(-\beta V P) \int ds^{N} \exp[-\beta U(s^{N}; L)]$$

$$\beta \mu = \frac{\beta G(N+1) - \beta G(N)}{N+1-N}$$

$$\beta \mu = -\ln \frac{Q(N+1)}{Q(N)}$$

$$\beta\mu = -\ln\frac{Q(N+1)}{Q(N)}$$

$$\beta\mu = -\ln\frac{\frac{1}{\Lambda^{3N+3}(N+1)!}}{\frac{1}{\Lambda^{3N}N!}} \left(\frac{\int dVV^{N+1} \exp(-\beta VP) \int ds^{N+1} \exp\left[-\beta U\left(s^{N+1};L\right)\right]}{\int dVV^{N} \exp(-\beta VP) \int ds^{N} \exp\left[-\beta U\left(s^{N};L\right)\right]} \right)$$

$$\beta \mu = -\ln \frac{1}{\Lambda^{3} (N+1)} \left(\frac{\int dV V^{N} \exp(-\beta V P) V \int ds^{N} \exp\left[-\beta U\left(s^{N}; L\right)\right] \int ds_{N+1} \exp\left(-\beta \Delta U^{+}\right)}{\int dV V^{N} \exp\left(-\beta V P\right) \int ds^{N} \exp\left[-\beta U\left(s^{N}; L\right)\right]} \right)$$

$$\beta \mu = -\ln \frac{1}{\Lambda^{3}(N+1)} \left(\frac{\int dV V^{N} \exp(-\beta V P) V \int ds^{N} \exp\left[-\beta U\left(s^{N}; L\right)\right] \int ds_{N+1} \exp\left(-\beta \Delta U^{+}\right)}{\int dV V^{N} \exp\left(-\beta V P\right) \int ds^{N} \exp\left[-\beta U\left(s^{N}; L\right)\right]} \right)$$

$$\beta\mu = \ln\left(\Lambda^{3}\beta P\right) - \ln\left(\frac{\beta P}{N+1} \frac{\int dV V^{N} \exp(-\beta V P) \int ds^{N} \exp\left[-\beta U\left(s^{N}; L\right)\right] \int ds_{N+1} V \exp\left(-\beta \Delta U^{+}\right)}{\int dV V^{N} \exp\left(-\beta V P\right) \int ds^{N} \exp\left[-\beta U\left(s^{N}; L\right)\right]}\right)$$

The volume fluctuates!

$$\left\langle \frac{\beta PV}{N+1} \int ds_{N+1} \exp\left(-\beta \Delta U^{+}\right) \right\rangle \neq \left\langle \frac{\beta PV}{N+1} \right\rangle \left\langle \int ds_{N+1} \exp\left(-\beta \Delta U^{+}\right) \right\rangle$$

$$\beta \mu = \ln(\Lambda^3 \beta P) - \ln\left\langle \frac{\beta PV}{N+1} \int ds_{N+1} \exp(-\beta \Delta U^+) \right\rangle$$

NVT versus NPT

NVT:

$$\beta \mu = \beta \ln(\rho) - \ln \left\langle \int ds_{N+1} \exp \left[-\beta \Delta U^{+} \right] \right\rangle_{NVT}$$

$$\beta \mu = \ln(\Lambda^3 \beta P) - \ln\left\langle \frac{\beta PV}{N+1} \int ds_{N+1} \exp(-\beta \Delta U^+) \right\rangle$$

Overlapping Distribution Method

Two systems:

System 0: N, V,T, U0

System 1: N, V,T, U₁

$$Q_0 = \frac{V^N}{\Lambda^{3N} N!} \int d\mathbf{s}^N \exp(-\beta U_0)$$

$$Q_1 = \frac{V^N}{\Lambda^{3N} N!} \int d\mathbf{s}^N \exp(-\beta U_1)$$

$$\Delta \beta F = \beta F_1 - \beta F_0 = -\ln(Q_1/Q_0)$$

$$= -\ln \left(\frac{\int d\mathbf{s}^N \exp(-\beta U_1)}{\int d\mathbf{s}^N \exp(-\beta U_0)} \right) = -\ln \left(\frac{q_1}{q_0} \right)$$

$$\int d\mathbf{s}^N \exp(-\beta U_1) = \frac{q_1}{q_0} \int d\mathbf{s}^N \exp(-\beta U_0)$$

System 0: N, V,T, U₀

System 1: N, V,T, U₁

Let us define

$$p_1(\Delta U) = \frac{\int d\mathbf{s}^N \exp(-\beta U_1) \delta(U_1 - U_0 - \Delta U)}{\int d\mathbf{s}^N \exp(-\beta U_1)}$$

and

$$p_0(\Delta U) \equiv \frac{\int d\mathbf{s}^N \exp(-\beta U_0) \delta(U_1 - U_0 - \Delta U)}{\int d\mathbf{s}^N \exp(-\beta U_0)}$$

$$\Delta \beta F = -\ln \left(\frac{\int d\mathbf{s}^N \exp(-\beta U_1)}{\int d\mathbf{s}^N \exp(-\beta U_0)} \right) = -\ln \left(\frac{q_1}{q_0} \right)$$

$$p_1(\Delta U) = \frac{\int d\mathbf{s}^N \exp(-\beta U_1) \delta(U_1 - U_0 - \Delta U)}{\int d\mathbf{s}^N \exp(-\beta U_1)} \quad p_0(\Delta U) = \frac{\int d\mathbf{s}^N \exp(-\beta U_0) \delta(U_1 - U_0 - \Delta U)}{\int d\mathbf{s}^N \exp(-\beta U_0)}$$

= ΔU : Because of the δ function it can be taken outside the integration

 $\int d\mathbf{s}^N \exp(-\beta U_1) = \frac{q_1}{q_2} \int d\mathbf{s}^N \exp(-\beta U_0)$

$$p_{1}(\Delta U) = \frac{\int d\mathbf{s}^{N} \exp\left[-\beta (U_{1} - U_{0})\right] \exp\left[-\beta U_{0}\right] \delta(U_{1} - U_{0} - \Delta U)}{\int d\mathbf{s}^{N} \exp\left(-\beta U_{1}\right)}$$
$$= \frac{\exp\left[-\beta \Delta U\right] \int d\mathbf{s}^{N} \exp\left[-\beta U_{0}\right] \delta(U_{1} - U_{0} - \Delta U)}{\int d\mathbf{s}^{N} \exp\left(-\beta U_{1}\right)}$$

Monday, January 10, 2011

Overlapping Distribution Method

$$p_1(\Delta U) = \frac{\exp[-\beta \Delta U] \int d\mathbf{s}^N \exp[-\beta U_0] \delta(U_1 - U_0 - \Delta U)}{\int d\mathbf{s}^N \exp(-\beta U_1)}$$

$$= \frac{q_0}{q_1} \exp(-\beta \Delta U) \frac{\int d\mathbf{s}^N \exp[-\beta U_0] \delta(U_1 - U_0 - \Delta U)}{\int d\mathbf{s}^N \exp(-\beta U_0)}$$

$$\int d\mathbf{s}^N \exp(-\beta U_1) = \frac{q_1}{q_0} \int d\mathbf{s}^N \exp(-\beta U_0)$$

$$\frac{q_0}{q_1} = \exp(\beta \Delta F)$$

$$p_1(\Delta U) = \frac{q_0}{q_1} \exp(-\beta \Delta U) p_0(\Delta U)$$

$$\ln p_1(\Delta U) = \beta (\Delta F - \Delta U) + \ln p_0(\Delta U)$$

Let us define two new functions:

$$f_0(\Delta U) \equiv \ln p_0(\Delta U) - 0.5 \beta \Delta U$$

$$f_1(\Delta U) \equiv \ln p_1(\Delta U) + 0.5 \beta \Delta U$$

$$\beta \Delta F = f_1(\Delta U) - f_0(\Delta U)$$

Fit f_0 and f_1 to two polynomials that only differ by the offset.

$$f_1(\Delta U) \equiv C_1 + a\Delta U + b\Delta U^2 + c\Delta U^3$$

$$f_0(\Delta U) \equiv C_0 + a\Delta U + b\Delta U^2 + c\Delta U^3$$

Simulate system 0: compute
$$f_0$$

Simulate system 1: compute f_1

$$\beta \Delta F = C_1 - C_0$$

System 0: N-1, V,T, U

+ 1 ideal gas

$$\Delta \beta F = \beta F_1 - \beta F_0 \equiv \beta \mu^{ex}$$

System 1: N, V,T, U

$$\Delta U = U_1 - U_0$$

System 0: test particle energy System 1: real particle energy

$$\beta \mu^{ex} = f_1(\Delta U) - f_0(\Delta U)$$

System 0: N-1, V,T, U + 1 ideal gas

$$f_0(\Delta U) \equiv \ln p_0(\Delta U) - 0.5 \beta \Delta U$$

System 1: N, V,T, U

$$f_1(\Delta U) \equiv \ln p_1(\Delta U) + 0.5 \beta \Delta U$$

- Accurate sampling only if there is overlap between the two distributions
- How to create this overlap?

Intermezzo: order parameters and Landau Free energies (1)

Landau free energy density:

$$\beta f(q) = -\ln \frac{1}{\Lambda^{3N} N!} \int \delta(q - q(\mathbf{r}^N)) \exp[-\beta U(\mathbf{r}^N)] d\mathbf{r}^N$$

Probability to find the system with order parameter q

$$P(q)dq \propto \exp[-\beta f(q)]dq$$

Free energy:

$$F = \int f(q) \mathrm{d}q$$

Probability to find the system with order parameter q

$$P(q)dq \propto \exp[-\beta f(q)]dq$$

Histogram method (1)

Define a set of windows:

$$U_{j}(q) = \begin{cases} \infty & \text{if} \qquad q < q_{j}^{\min} \\ 0 & \text{if} \qquad q_{j}^{\min} < q < q_{j}^{\max} \\ \infty & \text{if} \qquad q > q_{j}^{\max} \end{cases}$$

For each window determine: $P_i(q)$

Umbrella sampling (1)

$$\exp\left[-\beta f(q)\right] = \frac{1}{\Lambda^{3N} N!} \int \delta\left(q - q(\mathbf{r}^{N})\right) \exp\left[-\beta U(\mathbf{r}^{N})\right] d\mathbf{r}^{N}$$

$$\Delta f(q) = f(q) - f^{IG}(q)$$

$$\exp\left[-\beta \Delta f(q)\right] = \frac{\int \delta\left(q - q(\mathbf{r}^{N})\right) \exp\left[-\beta U(\mathbf{r}^{N})\right] d\mathbf{r}^{N}}{\int \delta\left(q - q(\mathbf{r}^{N})\right) d\mathbf{r}^{N}}$$

$$\exp\left[-\beta\Delta f(q)\right] = \frac{\int \pi(\mathbf{r}^{N})\pi^{-1}(\mathbf{r}^{N})\delta(q-q(\mathbf{r}^{N}))\exp\left[-\beta U(\mathbf{r}^{N})\right]d\mathbf{r}^{N}}{\int \pi(\mathbf{r}^{N})\pi^{-1}(\mathbf{r}^{N})\delta(q-q(\mathbf{r}^{N}))d\mathbf{r}^{N}}$$

$$\exp\left[-\beta\Delta f(q)\right] = \frac{\int \pi^{-1}(\mathbf{r}^{N})\delta(q-q(\mathbf{r}^{N}))\exp\left[-\beta U(\mathbf{r}^{N})\right]\pi(\mathbf{r}^{N})d\mathbf{r}^{N}}{\int \pi^{-1}(\mathbf{r}^{N})\delta(q-q(\mathbf{r}^{N}))\pi(\mathbf{r}^{N})d\mathbf{r}^{N}}$$

$$\exp\left[-\beta\Delta f(q)\right] = \frac{\int \pi^{-1}(\mathbf{r}^{N})\delta(q-q(\mathbf{r}^{N}))\exp\left[-\beta U(\mathbf{r}^{N})\right]\pi(\mathbf{r}^{N})d\mathbf{r}^{N}}{\int \pi^{-1}(\mathbf{r}^{N})\delta(q-q(\mathbf{r}^{N}))\pi(\mathbf{r}^{N})d\mathbf{r}^{N}}$$

This is NOT a Boltzmann distribution

$$\exp\left[-\beta \Delta f(q)\right] = \frac{\left\langle \delta(q - q(\mathbf{r}^{N})) \exp\left[-\beta U(\mathbf{r}^{N})\right] \pi^{-1}(\mathbf{r}^{N})\right\rangle_{\pi}}{\left\langle \delta(q - q(\mathbf{r}^{N})) \pi^{-1}(\mathbf{r}^{N})\right\rangle_{\pi}}$$

How to choose π ?

Ideal sampling

