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Statistical Thermodynamics

For an isolated system (NVE) any microscopic 
configuration is equally likely

Basic assumption

Consequence

All of statistical thermodynamics and 
equilibrium thermodynamics
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Ideal gas

Basic assumption

Let us again make an ideal gas

We select: 
(1) N particles, 
(2) Volume V, 
(3) initial velocities
    + positions

This fixes; V/n, U/n

For an isolated system any microscopic 
configuration is equally likely
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What is the probability to find this configuration?

The system has the same kinetic energy!!
Our basic assumption must be seriously wrong! 

... but are we doing the statistics correctly? 
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... lets look at our statistics correctly

Basic assumption:

number 1 can be put in M positions, number 2 at M 
positions, etc 

What is the probability to 
find this configuration?

P =
1

total # of configurations

Total number of configurations: with MN

the larger the volume of the gas the more 
configurations

M =
V

dr
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What is the probability to 
find this configuration?

Are we asking the right question?

exactly equal as to any 
other configuration!!!!!!

This is reflecting the microscopic reversibility 
of Newton’s equations of motion. A microscopic 
system has no “sense” of the direction of time
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Are we asking the right question?

Measure densities: what is the 
probability that we have all our 
N gas particle in the upper half?

N P(empty)
1 0.5

2 0.5 x 0.5

3 0.5 x 0.5 x 0.5

1000 10 -301

These are microscopic properties; no irreversibility
Thermodynamic is about macroscopic properties:
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Summary

On a microscopic level all configurations are equally 
likely

On a macroscopic level; as the number of particles 
is extremely large, the probability that we have a 
fluctuation from the average value is extremely low
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Basic assumption

All micro states will be equally likely!

... but the number of micro states that give an 
particular energy distribution (E1,E-E1) not ...

E1 > E2

Let us look at one of our 
examples; let us assume 
that the total system is 
isolate but heat can flow 
between 1 and 2.NVE1 NVE2

... so, we observe the most likely one ...
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In a macroscopic system we will observe the most likely one

P(E1, E2) =
N1(E1)×N2(E − E1)

�E1=E
E1=0 N1(E1)×N2(E − E1)

lnP(E1, E2) = lnC + lnN1(E1) + lnN2(E − E1)

The summation only depends on the total energy:

We need to find the maximum

P(E1, E2) = C×N1(E1)×N2(E − E1)

d lnP(E1, E2)

dE1
=

d lnN (E1, E2)

dE1
= 0

d [lnN1(E1) + lnN2(E − E1)]

dE1
= 0
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We need to find the maximum

As the total energy is constant

dE1 = −d(E − E1) = −dE2

Which gives as equilibrium condition:

E2 = E − E1

d lnN1(E1)

dE1
=

d lnN2(E2)

dE2

d lnN1(E1)

dE1
= −

d lnN2(E − E1)

dE1

d [lnN1(E1) + lnN2(E − E1)]

dE1
= 0
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Let us define a property 
(almost S, but not quite) :

Equilibrium if:

And for the total system:

For a system at constant energy, volume and number of 
particles the S* increases until it has reached its maximum 
value at equilibrium

  S
* = lnN E( )

  

d lnN1 E1( )
dE1

=
d lnN2 E2( )

dE2

 

∂S1
*

∂E1

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
N1 ,V1

=
∂S2

*

∂E2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
N2 ,V2

 S
* = S1

* + S2
*

or

What is this magic property S*?
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Canonical Ensemble

17Monday, January 10, 2011



The 2nd law
Entropy of an isolated system can only 
increase; until equilibrium were it takes its 
maximum value

Most systems are at constant temperature and 
volume or pressure?

What is the formulation for these systems?
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Constant  T and V 
We have our box 1 and a bath
Total system is isolated and 
the volume is constant

First law

Box 1:  constant volume and temperature 

1

fixed volume but can 
exchange energy

Second law dS ≥ 0

1st law:
The bath is so large that the heat flow does not influence the 
temperature of the bath + the process is reversible

dU = dq − pdV = 0

dU1 + dUb = 0 or dU1 = −dUb

2nd law: dS1 + dSb = dS1 +
dUb

T
≥ 0

TdS1 − dU1 ≥ 0
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Constant T and V

1
Total system is isolated and 
the volume is constant
Box 1:  constant volume 
and temperature 

fixed volume but can 
exchange energy

2nd law: TdS1 − dU1 ≥ 0

d(U1 − TS1) ≤ 0
Let us define the Helmholtz free energy:  A

A ≡ U − TS

For box 1 we can write dA1 ≤ 0

Hence, for a system at constant temperature and volume 
the Helmholtz free energy decreases and takes its 
minimum value at equilibrium 
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Canonical ensemble
Consider a small system that can 
exchange heat with a big reservoir

1/kBT

Hence, the probability to find Ei:

Boltzmann distribution
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Thermodynamics
What is the average energy of the system?

Compare: 
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Thermodynamics
First law of thermodynamics

Helmholtz Free energy:
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What is the average energy of the system?

Compare: 

Hence: 
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Monte Carlo 
Simulations
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Statistical Thermodynamics: 
canonical ensemble

βF = − ln QNVT( )

A NVT =
1

QNVT

1
Λ3NN !

drN∫ A rN( )exp −βU rN( )⎡⎣ ⎤⎦� 

QNVT = 1
Λ3NN!

drN∫ exp −βU rN( )[ ]
Partition function

Ensemble average

Free energy
  
N r N( ) = 1

QNVT

1
Λ3N N !

dr'N∫ δ r'N − r N( )exp −βU r'N( )⎡
⎣

⎤
⎦ ∝ exp −βU r N( )⎡

⎣
⎤
⎦

Probability to find a particular configuration
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Probability to generate Probability to generate 
state n from o

Probability to be in state N(o)

Detailed Balance
o n

In equilibrium we do not want to disrupt the distribution 
by our MC process

K o→ n( ) = K n→ o( )

K o→ n( ) = N o( )α o→ n( )acc o→ n( )

Probability to accept the Probability to accept the 
attempted move from n to o

For the flow from o to n:
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Probability to generate state does not depend on n or o

Imposing detailed balance: K o→ n( ) = K n→ o( )
K o→ n( ) = N o( )α o→ n( )acc o→ n( )

If we sample the canonical ensemble

with

K n→ o( ) = N n( )α n→ o( )acc n→ o( )...and for the 
reverse move:

N o( ) = Ce−βU o( ) N n( ) = Ce−βU n( )and

Which gives for the acceptance rules:

acc o→ n( )
acc n→ o( ) =

N n( )α n→ o( )
N o( )α o→ n( )

= e
−βU n( )

e−βU o( ) = e
−βΔU
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Metropolis acceptance rule

acc o→ n( )
acc n→ o( ) = exp −β U n( )−U o( )( )⎡⎣ ⎤⎦

For the canonical ensemble

acc o→ n( ) = min 1,exp −β U n( )−U o( )( )⎡⎣ ⎤⎦{ }
Metropolis rule:

Assume ΔU<0
α o→ n( ) = 1 α n→ 0( ) = exp −β U o( )−U n( )( )⎡⎣ ⎤⎦and

Hence acc o→ n( )
acc n→ o( ) =

1
exp −β U o( )−U n( )( )⎡⎣ ⎤⎦
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Other ensemble

31Monday, January 10, 2011



Example (2): phase equilibria of mixtures

Phase equilibria

x

T G

L

L+G

x1 x2

How to mimic this 
experiment in NVT 
conditions?

P
How do we measure 
vapor-liquid equilibria 
for a mixture?

Better solution: NPT 
ensemble
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Example (3): swelling of clays

Deep in the earth clay layers can 
swell upon adsorption of water:

How to mimic this in the N,V,T 
ensemble?

What is a better ensemble to 
use?

33Monday, January 10, 2011



NPT ensemble
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NPT ensemble

Classical
Legrendre transformation
A small system that can exchange heat and 
volume with a large bath

Statistical
Taylor expansion of a small reservoir
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Gibbs free energy
dU = TdS − pdV + µidNi∑

G =U −TS + pV →G = G T , p( )
Required Legrendre transformation:

dG = −SdT +Vdp + µidNi∑
If T,P,N are kept constant, the total Gibbs free 
energy is constant and has its minimum value in 
equilibrium 
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Legendre Transformation
The energy is a natural function of the entropy, 
volume, and number of particles of component i

Legendre transformations, to get NPT:

Conjugate variables

dU = TdS − pdV + µidNi∑U =U S,V ,Ni( )

S : T = ∂U
∂S

⎛
⎝⎜

⎞
⎠⎟V ,Ni

V : p = − ∂U
∂V

⎛
⎝⎜

⎞
⎠⎟ S ,Ni

Ni : µi =
∂U
∂Ni

⎛
⎝⎜

⎞
⎠⎟ S ,V ,N j

G ≡U −TS + pV →G = G T , p,N( )
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Legrendre transformation
We have a function that depends on                             
! ! !      and we would like  

Legrendre Transformation

 
df = uidxi

i=1

n

∑
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Example: thermodynamics

We prefer to control T: S→T

Legendre transformation

Helmholtz free energy

F =U − TS
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Legendre transformation
I have all my information in L and how can I 
change my coordinates without loosing any 
information?

L = L(X)
L

X

P =
dL(X)
dX

Suppose I would 
like to use P

Would this work? L = L(P)
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What does work is

H = L − PX

L

X

P =
dL(X)
dX

with 

H = H P( )

If we know the slope and 
the intercept we 
reconstruct the curve

(O,H )

as the envelope of tangent 
lines (H(P) define all the 
lines the “envelope” L)
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constant  T and p 
We have our box 1 and a bath
Total system is isolated and 
the volume is constant
First law

Box 1:  constant pressure and temperature 
Second law dS ≥ 0

1st law:

The bath is very large and the small changes do not 
change P or T; in addition the process is reversible

dU = dq − pdV = 0

or dU1 = −dUb

2nd law:

1

dU1 + dUb = 0
dV1 + dVb = 0 or dV1 = −dVb

exchange energy and 
volume

TdS1 − dU1 − pdV1 ≥ 0

dS1 + dSb = dS1 +
dUb

T
+

p

T
dVb ≥ 0
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Constant  T and p
Total system is isolated and 
the volume is constant
Box 1:  constant pressure 
and temperature 
2nd law:

Let us define the 
Gibbs free energy:  G
For box 1 we can write

Hence, for a system at constant temperature 
and pressure the Gibbs free energy decreases 
and takes its minimum value at equilibrium 

1

exchange energy and 
volume

d(U1 − TS1 + pV1) ≤ 0

G ≡ U − TS + pV

dG1 ≤ 0

TdS1 − dU1 − pdV1 ≥ 0
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N,P,T ensemble
Consider a small system that 
can exchange volume and 
energy  with a big reservoir

S = kB lnΩ
The terms in the expansion follow from 
the connection with Thermodynamics:

dS = 1
T
dU + p

T
dV − µi

T
dNi∑We have:

∂S
∂U

⎛
⎝⎜

⎞
⎠⎟V ,Ni

= 1
T

∂S
∂V

⎛
⎝⎜

⎞
⎠⎟ E ,Ni

= p
T

and
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Hence, the probability to find Ei,Vi:

lnΩ V −Vi ,E − Ei( ) = lnΩ V ,E( )− Ei

kBT
− p
kBT

Vi

 
lnΩ V −Vi ,E − Ei( ) = lnΩ V ,E( )− ∂ lnΩ

∂E
⎛
⎝⎜

⎞
⎠⎟V ,N

Ei −
∂ lnΩ
∂V

⎛
⎝⎜

⎞
⎠⎟ E ,N

Vi +
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Partition function: Δ N ,P,T( ) = exp
i, j∑ − Ei

kBT
−
pVj

kBT
⎡

⎣
⎢

⎤

⎦
⎥

V =
Vj expi, j∑ − Ei

kBT
−
pVj

kBT
⎡

⎣
⎢

⎤

⎦
⎥

Δ N , p,T( ) = −kBT
∂ lnΔ
∂p

⎛
⎝⎜

⎞
⎠⎟ T ,N

Ensemble average:

dG = −SdT +Vdp + µidNi∑Thermodynamics

V = ∂G
∂p

⎛
⎝⎜

⎞
⎠⎟ T ,NHence:

G
kBT

= − lnΔ N , p,T( )
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Monte Carlo 
Simulations
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NPT EnsemblePartition function:

  
QNPT = βP

N !Λ3N dV exp −βPV⎡⎣ ⎤⎦V
N dsN∫ exp −βU sN ; L( )⎡

⎣
⎤
⎦∫

Probability to find a particular configuration:

   
N NPT V ,sN( )∝V N exp −βPV⎡⎣ ⎤⎦exp −βU sN ; L( )⎡

⎣
⎤
⎦

Sample a particular configuration:
• Change of volume 
• Change of reduced coordinates

Acceptance rules ??

  
QNPT = βP

N !Λ3N dV exp −βPV⎡⎣ ⎤⎦ dr N∫ exp −βU r N( )⎡
⎣

⎤
⎦∫

Scaled coordinates:  sx = rx Lx
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Probability to generate Probability to generate 
state n from o

Probability to be in state N(o)

Detailed Balance
o n

In equilibrium we do not want to disrupt the distribution 
by our MC process

K o→ n( ) = K n→ o( )

K o→ n( ) = N o( )α o→ n( )acc o→ n( )

Probability to accept the Probability to accept the 
attempted move from n to o

For the flow from o to n:
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Imposing detailed balance: K o→ n( ) = K n→ o( )
 K o→ n( ) = N o( )α o→ n( )acc o→ n( )

If we sample the NPT ensemble

with

 K n→ o( ) = N n( )α n→ o( )acc n→ o( )...and for the 
reverse move:

 N o( ) =VoNe−βPVoe−βU o( )
 N n( ) = CVnNe−βPVn e−βU n( )and

Suppose we change the position of a 
randomly selected particles

 

acc o→ n( )
acc n→ o( ) =

N n( )α n→ o( )
N o( )α o→ n( )

= e−βΔU
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In the NPT ensemble we also need to sample the volume

 N o( ) =VoNe−βPVoe−βU o( )
 N n( ) = CVnNe−βPVn e−βU n( )and

The acceptance rule now reads:

 

acc o→ n( )
acc n→ o( ) =

N n( )α n→ o( )
N o( )α o→ n( )

= Vn
Ne−βPVn e−βU n( )

Vo
Ne−βPVoe−βU o( )

= Vn
Vo

⎛
⎝⎜

⎞
⎠⎟

N

e−βPΔVe−βΔU
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Algorithm: NPT

Randomly change the position of a 
particle

Randomly change the volume
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NPT simulations
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Adsorption
(and an excuse to do the grand-canonical ensemble)
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Experimental System:
 Carbon Capture

Metal Organic Framework

Partial pressure

lo
ad

in
g

CO2

N2

CO2

desorption

CO2/N2 N2adsorption

What are the appropriate 
thermodynamic variables?
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MOF

PCO2T

PN2

PT

At constant temperature we measure 
the weight increase as a function of 
partial pressure of the gas

Experimental setup
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Thermodynamics of adsorption
What is the thermodynamic 
language of adsorption?

What are the equilibrium 
conditions?

Can we make a molecular 
model of adsorption?
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Pressure in Solids
How do we look at pressure in a solid?

1atm?

Gas

1atm?

Gas + solid

Is pressure in a solid defined?
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Pressure
p = − ∂F

∂V
⎛
⎝⎜

⎞
⎠⎟ T ,N

In a solid the free energy 
change to change the volume 
can be anisotropic 

Is described by a stress tensor

Unlike a fluid a solid can resist 
strain; forces are much larger

Does the adsorption isotherm of 
a brick change if we stand on it?
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Pressure in a solid

∂F
∂V

⎛
⎝⎜

⎞
⎠⎟ T ,N

= ∞

Let us assume that in the 
pressure range of the isotherm 
the solid does not deform

We cannot change the volume of our solid; 
hence pressure is not defined inside the solid.

Hence,

For these adsorption studies the pressure of the gas 
phase is not the preferred thermodynamic variable!
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Equilibrium
A solid phase α and a large reservoir 
which is the fluid phase β 

Question:  When are these 
two systems in equilibrium?

Equilibrium: 

α

β
Total system NVE: dS ≥ 0 dS = dSα + dSβ ≥ 0

dSβ =
1
T
dUβ +

p
T
dVβ −

µi

T
dNi

β
i∑

dSα + dSβ =
1
Tα

− 1
T

⎛
⎝⎜

⎞
⎠⎟
dUα −

µi
α

Tα
− µi

T
⎛
⎝⎜

⎞
⎠⎟
dNi

α
i∑

Tα = T ∧ µi
α =µi

Equilibrium: the adsorbed gas has 
an equal temperature and chemical 
potential as the reservoir
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µVT ensemble
(Grand-canonical ensemble)
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Grand-canonical ensemble

Classical
Legrendre transformation
A small system that can exchange heat and 
particles with a large bath

Statistical
Taylor expansion of a small reservoir
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Legendre Transformation
The energy is a natural function of the entropy, 
volume, and number of particles of component i

Legendre transformations, to get μVT:

Conjugate variables

dU = TdS − pdV + µidNi∑U =U S,V ,Ni( )

S : T = ∂U
∂S

⎛
⎝⎜

⎞
⎠⎟V ,Ni

V : p = − ∂U
∂V

⎛
⎝⎜

⎞
⎠⎟ S ,Ni

Ni : µi =
∂U
∂Ni

⎛
⎝⎜

⎞
⎠⎟ S ,V ,N j

Y ≡U −TS − µN →Y = Y T ,V ,µ( )
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Y free energy
dU = TdS − pdV + µdN

Required Legrendre transformation:

dY = −SdT − pdV − Ndµ
Y ≡U −TS − µN →Y = Y T ,V ,µ( )

This can be rewritten using
Y = G − pV( )− µN = µN − pV( )− µN = − pV

or
d − pV( ) = −SdT − pdV − Ndµ
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constant  T and µ 
Total system is isolated and 
the volume is constant
First law

Box 1:  constant chemical potential and temperature 

Second law dS ≥ 0

1st law:

The bath is very large and the small changes do not 
change μ or T; in addition the process is reversible

or dU1 = −dUb

2nd law:

1

dU1 + dUb = 0
or 

exchange energy and 
particles

dU = TdS − pdV + µdN = 0

dN1 + dNb = 0 dNb = −dN1

dS1 + dSb = dS1 +
1
Tb
dUb −

µb

Tb
dNb ≥ 0
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dS1 + dSb = dS1 +
1
Tb
dUb −

µb

Tb
dNb ≥ 0

We can express the changes of the bath in terms of 
properties of the system

dS1 −
1
T
dU1 +

µ
T
dN1 ≥ 0 d TS1 −U1 + µN1( ) ≥ 0

d U −TS − µN( ) ≤ 0

G ≡U −TS + pV
G = µN

For the Gibbs free energy we can write:

− pV =U −TS − µN

d − pV( ) ≤ 0

or

or
Hence, for a system at constant temperature 
and chemical potential pV increases and 
takes its maximum value at equilibrium 

d pV( ) ≥ 0Giving:
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µ,V,T ensemble
Consider a small system that can 
exchange particles and energy 
with a big reservoir

 
lnΩ E − Ei ,N − N j ,( ) = lnΩ E,N( )− ∂ lnΩ

∂E
⎛
⎝⎜

⎞
⎠⎟V ,N

Ei −
∂ lnΩ
∂N

⎛
⎝⎜

⎞
⎠⎟ E ,V

N j +

S = kB lnΩ
The terms in the expansion follow from 
the connection with Thermodynamics:

dS = 1
T
dU + p

T
dV − µ

T
dN

∂S
∂U

⎛
⎝⎜

⎞
⎠⎟V ,N

= 1
T

∂S
∂N

⎛
⎝⎜

⎞
⎠⎟ E ,V

= − µ
T
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Hence, the probability to find Ei,Nj:

lnΩ E − Ei ,N − N j( ) = lnΩ E,N( )− Ei

kBT
+ µ
kBT

N j

 
lnΩ E − Ei ,N − N j ,( ) = lnΩ E,N( )− ∂ lnΩ

∂E
⎛
⎝⎜

⎞
⎠⎟V ,N

Ei −
∂ lnΩ
∂N

⎛
⎝⎜

⎞
⎠⎟ E ,V

N j +

ln
Ω E − Ei ,N − N j( )

Ω E,N( ) = − Ei

kBT
+ µ
kBT

N j

P Ei ,N j( ) = Ω E − Ei ,N − N j( )
Ω E − Ek ,N − Nl( )k ,l∑ ∝ exp − Ei

kBT
+ µNi

kBT
⎡

⎣
⎢

⎤

⎦
⎥
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Monte Carlo 
Simulations
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Detailed balance

74

µVT Ensemble
Partition function (scaled coordinates!):

Probability to find a particular configuration:

   
NµVT N ,sN( )∝ exp βµN( )V N

Λ3N N !
exp −βU sN ; L( )⎡

⎣
⎤
⎦

Sample a particular configuration:
• Change of the number of particles
• Change of reduced coordinates

Acceptance rules ??
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In the μVT ensemble we also need to change the number 
of particles

 
N o( ) = V No

No!Λ
3No

eβµNoe−βU o( )

 
N n( ) = C V Nn

Nn !Λ
3Nn

eβµNn e−βU n( )

and
Imposing detailed balance gives for the acceptance rule

 

acc N→ N +1( )
acc N +1→ N( ) =

N N +1( )α N +1→ N( )
N N( )α N→ N +1( )

=

V N+1

N +1( )!Λ3N+3 e
βµ N+1( )e−βU N+1( )

V N

N( )!Λ3N+3 e
βµNe−βU N( )

acc N→ N +1( )
acc N +1→ N( ) =

V
N +1( )Λ3 e

βµe−β U N+1( )−U N( )⎡⎣ ⎤⎦
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Exotic Ensembles
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Exotic ensembles
What to do with a biological membrane?
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Model membrane: Lipid bilayer

hydrophilic head group

two hydrophobic tails

water

water
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Periodic boundary conditions
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Questions

What is the surface tension of this 
system?

What is the surface tension of a 
biological membrane?

What to do about this?
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Phase diagram: alcohol
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Constant surface tension simulations: 
γ,V,T ensemble

Consider a small system that can 
exchange area and energy with a 
big reservoir

   
lnΩ E − Ei, A− Aj( ) = lnΩ E, A( )− ∂ lnΩ

∂E
⎛
⎝⎜

⎞
⎠⎟ A

Ei −
∂ lnΩ
∂A

⎛
⎝⎜

⎞
⎠⎟ E

Aj +

  
Aj , Ei

  

E − Ei ,
A− Aj

1/kBT ???
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E,V,A

First law of thermodynamic

dE = dq + dw
Conservation of energy: 

heat work

dq=TdS

dw=-pdV + γ dA
dE = TdS + γ dA

∂S
∂A

⎛
⎝⎜

⎞
⎠⎟ E

= − γ
T

γ is the surface tension
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Consider a small system that can 
exchange area and energy with a 
big reservoir

  

∂ lnΩ
∂A

⎛
⎝⎜

⎞
⎠⎟ N

=
∂S kB

∂A
⎛
⎝⎜

⎞
⎠⎟ N

= − γ
kBT

  
Aj , Ei

  

E − Ei ,
A− Aj

  
ln
Ω E − Ei , A− Aj( )

Ω E, A( ) = −
Ei

kBT
+
γ Aj

kBT

1/kBT

  

P Ei , Aj( ) = Ω E − Ei , A− Aj( )
Ω E − El , A− Ak( )l ,k∑

=
exp −β Ei − γ Aj( )⎡

⎣
⎤
⎦

exp −β El − γ Ak( )⎡⎣ ⎤⎦l ,k∑
∝ exp −β Ei − γ Aj( )⎡

⎣
⎤
⎦

   
lnΩ E − Ei, A− Ai( ) = lnΩ E, A( ) − ∂ lnΩ

∂E
⎛
⎝⎜

⎞
⎠⎟ A

Ei −
∂ lnΩ
∂A

⎛
⎝⎜

⎞
⎠⎟ E

Ai +
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Simulations at imposed surface 
tension

Simulation to a constant surface tension

Simulation box: allow the area of the 
bilayer to change in such a way that 
the volume is constant.

Yes! Detailed balance
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acc(o→ n)
acc(n→ o)

= N (n)
N (o)

Suppose we change:

  

acc(o → n)
acc(n→ o)

=
exp −β U sn

N ; Ln( ) − γ An
⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

exp −β U so
N ; Lo( ) − γ Ao

⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

  
= exp −β U n( ) −U o( )⎡⎣ ⎤⎦ − βγ An − Ao( ){ }

   
NγVT A,sN( )∝ exp −β U sN ; L( ) − γ A⎡

⎣
⎤
⎦

⎡
⎣

⎤
⎦

 

Lo → Ln

Ao → An

⎫
⎬
⎪

⎭⎪
Vo =Vn
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 γ(Ao) =  -0.3 +/- 0.6

γ(Ao) = 2.5 +/-  0.3

γ(Ao) = 2.9 +/-  0.3

Tensionless state: γ = 0 γ
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Non-Boltzmann 
sampling
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Non-Boltzmann sampling 
A NVT1

=
1

QNVT1

1
Λ3NN !

drN∫ A rN( )exp −β1U rN( )⎡⎣ ⎤⎦

=
drNA rN( )∫ exp −β1U rN( )⎡⎣ ⎤⎦
drN exp −β1U rN( )⎡⎣ ⎤⎦∫

=
drNA rN( )∫ exp −β1U rN( )⎡⎣ ⎤⎦exp β2U rN( ) − β2U rN( )⎡⎣ ⎤⎦
drN exp −β1U rN( )⎡⎣ ⎤⎦∫ exp β2U rN( ) − β2U rN( )⎡⎣ ⎤⎦

=
drNA rN( )∫ exp β2U rN( ) − β1U rN( )⎡⎣ ⎤⎦exp −β2U rN( )⎡⎣ ⎤⎦
drN∫ exp β2U rN( ) − β1U rN( )⎡⎣ ⎤⎦exp −β2U rN( )⎡⎣ ⎤⎦

=
Aexp β2 − β1( )U⎡⎣ ⎤⎦ NVT2

exp β2 − β1( )U⎡⎣ ⎤⎦ NVT2
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Non-Boltzmann sampling 
A NVT1

=
1

QNVT1

1
Λ3NN !

drN∫ A rN( )exp −β1U rN( )⎡⎣ ⎤⎦

=
drNA rN( )∫ exp −β1U rN( )⎡⎣ ⎤⎦
drN exp −β1U rN( )⎡⎣ ⎤⎦∫

=
drNA rN( )∫ exp −β1U rN( )⎡⎣ ⎤⎦exp β2U rN( ) − β2U rN( )⎡⎣ ⎤⎦
drN exp −β1U rN( )⎡⎣ ⎤⎦∫ exp β2U rN( ) − β2U rN( )⎡⎣ ⎤⎦

=
drNA rN( )∫ exp β2U rN( ) − β1U rN( )⎡⎣ ⎤⎦exp −β2U rN( )⎡⎣ ⎤⎦
drN∫ exp β2U rN( ) − β1U rN( )⎡⎣ ⎤⎦exp −β2U rN( )⎡⎣ ⎤⎦

=
Aexp β2 − β1( )U⎡⎣ ⎤⎦ NVT2

exp β2 − β1( )U⎡⎣ ⎤⎦ NVT2

T1 is arbitrary!

We only 
need a single 
simulation!

Why are we not using this?

We perform a simulation at 
T=T2 and 

we determine A at T=T1
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T1

T2

T5

T3

T4

E

P(
E)

Overlap becomes very small
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How to do parallel Monte Carlo

Is it possible to do Monte Carlo in 
parallel

Monte Carlo is sequential!

We first have to know the fait of the 
current move before we can continue!
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Parallel Monte Carlo
Algorithm (correct?):
1. Generate k trial configurations in parallel
2. Select out of these the one with the lowest 

energy

3. Accept and reject using normal Monte Carlo 
rule:

  

P n( ) = exp −β Un( )⎡⎣ ⎤⎦
exp −β U j( )⎡

⎣
⎤
⎦j=1

g∑

  
acc o→ n( ) = exp −β Un −Uo( )⎡⎣ ⎤⎦
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Conventional acceptance ruleConventional acceptance rule

Conventional acceptance rules leads to a bias
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Why this bias?
Detailed balance!
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Detailed balance

  

acc(o→ n)
acc(n→ o)

= N (n) ×α(n→ o)
N (o) ×α(o→ n)

= N (n)
N (o)

  K(o→ n) = K(n→ o)

  K(o→ n) = N (o) ×α(o→ n) × acc(o→ n)

o n

  K(n→ o) = N (n) ×α(n→ o) × acc(n→ o)

?
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  K(o→ n) = N (o) ×α(o→ n) × acc(o→ n)

  

α(o→ n) =
exp −β Un( )⎡⎣ ⎤⎦

exp −β U j( )⎡
⎣

⎤
⎦j=1

g∑

  

α(n→ o) =
exp −β Uo( )⎡⎣ ⎤⎦

exp −β U j( )⎡
⎣

⎤
⎦j=1

g∑

  
α(o→ n) =

exp −β Un( )⎡⎣ ⎤⎦
W n( )

  
α(n→ o) =

exp −β Uo( )⎡⎣ ⎤⎦
W o( )
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acc(o→ n)
acc(n→ o)

= N (n) ×α(n→ o)
N (o) ×α(o→ n)

= N (n)
N (o)

  

acc(o→ n)
acc(n→ o)

=
N (n) ×

exp −β Uo( )⎡⎣ ⎤⎦
W o( )

N (o) ×
exp −β Un( )⎡⎣ ⎤⎦

W n( )

= W (n)
W (o)

  
α(o→ n) =

exp −β Un( )⎡⎣ ⎤⎦
W n( )   

α(n→ o) =
exp −β Uo( )⎡⎣ ⎤⎦

W o( )
with
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Modified acceptance ruleModified acceptance rule

Modified acceptance rule remove the bias exactly!
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But is there not a problem …?
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Detailed balance

nn

n

n

We imposed detailed balance.

    
b1,b2 ,b3,,bn ,,bk{ }

    
bn b1,b2 ,b3,,bk{ }

But there are many sets of trial orientations that o→n 
    

bn b1a ,b2a ,b3a ,,bka{ }

    
bn b1b ,b2b ,b3b ,,bkb{ }     

bn b1c ,b2c ,b3c ,,bkc{ }
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Detailed Balance?

  K(o→ n) = K(n→ o) o n
  K(o→ n) = N (o) ×α(o→ n) × acc(o→ n)

   

α(o→ n) =
exp −β Un( )⎡⎣ ⎤⎦

exp −β U j( )⎡
⎣

⎤
⎦j=1

k∑b{ }k−1

∑
    

bn b1,b2 ,b3,,bk{ } = bn b{ }k−1{ }

    
bo b1,b2 ,b3,,bk{ } = bo b{ }k−1{ }

   

α(o→ n) =
exp −β Un( )⎡⎣ ⎤⎦

exp −β U j( )⎡
⎣

⎤
⎦j=1

k∑b{ }k−1

∑
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o n

o n

   
bn b1{ }

k−1{ }
   

bn b2{ }
k−1{ }

   
bn b3{ }

k−1{ }
   

bn b∞{ }
k−1{ }

Detail balance: summation over all possible paths 
from o to n

  K(o→ n) = K(n→ o)
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o n

   
bn b2{ }

k−1{ }

   
bo b3{ }

k−1{ }

Super-detailed balance: detailed 
balance should hold for any two sets of 
paths that connect o and n and n and o

   
K o→ n b{ }k−1( ) = K n→ o b '{ }k−1( )
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Super detailed balance! 
Detailed balance?

   
K o→ n( ) = K o→ n b{ }k−1( )

b{ }k−1

∑
   
K n → o( ) = K n→ o b{ }k−1( )

b{ }k−1

∑

   
K o→ n( ) − K n→ o( ) = K o→ n b{ }k−1( )

b{ }k−1

∑ − K n→ o b '{ }k−1( )
b '{ }k−1

∑

   
K o→ n b{ }k−1( ) = K n→ o b '{ }k−1( )

Every single term in the first 
summation is equal to 

any term in the second
  
K o→ n( ) − K n→ o( ) = 0

Summation over all 
possible paths

Super detailed 
balance
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