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Statistical Thermodynamics

BasLC assumptlow

For an isolated system (NVE) any microscopic
configuration is equally likely

Cowscqvcewcc

All of statistical thermodynamics and
equilibrium thermodynamics
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Ideal ga
Let us again make an ideal gas
We select:
(1) N particles,
(2) Volume V,

(3) initial velocities
+ positions

This fixes; V/n, U/n

Basic assumption

For an isolated system any microscopic
configuration is equally likely
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~ What is the probability to find this configuration? |

The system has the same kinetic energy!!

Our basic assumption must be seriously wrong!

... but are we doing the statistics correctly?
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I.. lets look at our statistics correctly

~.| What is the probability to
find this conﬁgura’rion?

Basic assumption:

7):

|

total # of configurations

number 1 can be put in M positions, number 2 at M
positions, etc

Total number of configurations: MN  with

the larger the volume of the gas the more
configurations
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v

What is the probability to find the 9 (A_V)N

molecules exactly at these 9 positions?
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What is the probability to find the 9 (A_V)N

molecules exactly at these 9 positions?
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What is the probability to find the 9 (A_V)N

molecules exactly at these 9 positions?
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v

What is the probability to find the 9 (A_V)N

molecules exactly at these 9 positions?
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What is the probability to
find this configuration?

exactly equal as to any

This is reflecting the microscopic reversibility
of Newtons equations of motion. A microscopic
system has no “sense” of the direction of time

Are we asking the right question?
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These are microscopic properties; no irreversibility

Thermodynamic is about macroscopic properties:

Measure densities: what is the
probability that we have all our
N gas particle in the upper half?

N P(empty)

1 0.5

@505

0.5 x 0.5 x 0.5

10 -301
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Summary

O On a microscopic level all configurations are equally
likely

O On a macroscopic level; as the number of particles
IS extremely large, the probability that we have a
fluctuation from the average value is extremely low
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e, > £, Dasicassumption -j

@ Let us look at one of ourf
O examples; let us assume
@ that the total system is
O isolate but heat can flow
o ®® NVE,@® betweenl and 2.

All micro states will be equally likely!

.. but the number of micro states that give an
particular energy distribution (Ei,E-E;) not ..

.. 50, we observe the most likely one ...
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‘In a macroscopic system we will observe the most likely one |

Ni(E1) x N2(E —E4)
ZE_EJ\G HEgI e e —1g7]
The summation only depends on the total energy:

PAE] Bk = CoCNGiE | e NGiEE R

IHP(E1 ) Ez) =InC+ lnN1 (E] ) e lnNz(E = E] )
We need to find the maximum
dlnP(E1,E2) e dlnN(E1 g Ez)
dE; - dE;

d[In N7 (Eq7) +1In N3 (E — Eq)]
dE;

e B =

— 0

—
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We need to find the maximum
d[InN7(Eq) +In N> (E —Eq)]
dE;

dlnN1(E1) _dlnNz(E—E1)

—()

dE, dE;
As the total energy is constant
B —=ulEieles
slle = —dllE—15 ] = =l

Which gives as equilibrium condition:

dlnN;(E1) dInN3(E3)
dE; = dE>
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Let us define a property o 1 coipy
(almost S, but not quite) : S — ln‘ﬁ( )
Equilibrium if: dIn®)t, (El) 3 dIn‘), (E2>
dE, dE,
0S8, oS
OE,

OE,

Ny W Ny .V,

*

And for the total system: S =8+,

For a system at constant energy, volume and number of
particles the S” increases until it has reached its maximum

value at equilibrium

What is this magic property S?
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Canonical Ensemble




d law

e 2"
Entropy of an isolated system can only

increase; until equilibrium were it ftakes its
maximum value

Most systems are at constant temperature and
volume or pressure?

What is the formulation for these systems?
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] 1 i
ant Tand V
We have our box 1 and a bath
1sp Total system is isolated and
the volume is constant
First law dU=dq—pdV =0
Second law dS >0
Box 1: constant volume and temperature

15t law: dUu; +dUy =0 or dilEs——dlil

The bath is so large that the heat flow does not influence the

temperature of the bath + the process is reversible

dU
2" law: dS;1 +dSy =dS; + gl > (

T
TdS; —dU; >0

Cons

- fixed volume but can
exchange energy
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fixed volume but can
exchange energy

) Total system is isolated and
1< the volume is constant

Box 1: constant volume
and temperature

2" law: TdS; — dU; > 0

dEl= IS 0
Let us define the Helmholtz free energy: A
A=U-TS

For box 1 we can write dA; <0

Hence, for a system at constant temperature and volume
the Helmholtz free energy decreases and takes its
minimum value at equilibrium
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d U0 u u b d uH dudH uuau i uad uauauuuyg uuauur
T T v | = g b ... T |

Canonical ensemble
Consider a small system that ca
exchange heat with a big reservoir

E E-E, :
InQ(E—E. )=InQ(F)- E.
nQ(E-F)=InQ(E)- a2 F +
Q(E-E) E
In =——
Q(E) s
Hence, the probability to find E;:
P(E)= Q(E-E))  exp(-E/k;T)

-Q(E_Ej)_ EJCXP(_EJ/kBT)

P(E,)o<exp(—E,/k,T)
Boltzmann distribution

—
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Thermodynamlcs
What is the average energy of the system?
exp(—BE,)
exp(—BE )

(E)= EP(E )=t

dln Y exp(-BE,)

dp
= dIn QN,V,T

Compare: dp
[E)F/T ): -
T
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Thermodynamics

First law of thermodynamics
dE =T7dS — pdV
Helmholtz Free energy:

F=E-TS
dFf =-SdT — pdV

OF/T 1 oF OF
— — F il
o1/T oT

+ —— =
T olT
=F+TS=EF
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What is the average energy of the system?

(E)=3. EP(E)-= 2

Compare:

YT

Monday, January 10, 2011
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]:E

exp(—BE,)
e p(—BE )

dln ) exp(-PE,)
Jp
dnQ,, ,
Jp
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Monte Carlo

Simulations




' “Statistical Thermodynamics: |
e canonical ensemble |

G- = A3NN'Jdr exp[ ,BU( )]

Ensemble average

1 1 Wl N
<A>NVT = O A3NN!jdr A(r )eXp[—ﬂU(r )]

Probability to find a particular configuration

R e e e )

Free energy

BF = —ln(QNVT)
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SUBROUTINE mcmove

o=int (ranf () *npart) +1
call ener (x(o), eno)
xn=x (o) + (ranf () -0.5) *delx
call ener (xn, enn)
if (ranf () .lt.exp(-beta

* (enn—eno)) x(o0)=xn
return
end

attempts to displace a particle

select a particle at random

energy old configuration

give particle random displacement
energy new configuration
acceptance rule (3.2.1)

accepted: replace x (o) by xn

Comments to this algorithm:

. Subroutine ener calculates the energy of a particle at the given position.

. Note that, if a configuration is rejected, the old configuration is retained.

. The ranf () is a random number uniform in [0, 1].

Monday, January 10, 2011
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In equilibrium we do not want to disrupt the distribution
by our MC process

For the flow from o to n: K(O = n) = K(n =2 0)

Probability to accept the

Probability to be in state N(o) attempted move from n to o

K(o—n)=M(0)a(o— n)acc(o— n)
Probability to generate

state n from o
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I U0 0 0dgag0g g oggoagggygognganagoe
X - & x| - - 5 x| - - xR X b - x| b - X X - X - - - b - x| ¢

Imposing .defail"ed_-bdulance: K(o— n) = K(n % 0) |

with  K(0o—n)=N(0)o(o— n)acc(o— n) 4

..and for the :
reverse move: K(” = 0) = ‘ﬂ(n)a(n =2 O)GCC(” e 0)

If we sample the canonical ensemble
‘ﬁ(o) = Ce P 4nd ‘T((n) = Ce B\

Which gives for the acceptance rules:

acc(o—n) _ N(n)orfr—a) _ eZE; _ e
acc(n—o0) MN(o)oto—wn) ¢

Probability to generate state does not depend on n or o
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Metropolis acceptance rule
For the canonical ensemble

S L ol e i)

acc(n— o)

Metropolis rule:

| acc(o—>n)= min{l,exp[—ﬁ(U(n) = U(O))]}

| S

Assume AU<O
a(o—n)=1 and a(n—0)= exp[—ﬁ(U(o)— U(n))]

Hence acc(o — n) = 1

acc(n—o0) eXP[—,B(U(O) = U(”))]
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Other ensemble




Phase equilibria How do we measure
vapor-liquid equilibria
for a mixture?

How to mimic this
experiment in NVT
conditions?

Better solution: NPT
ensemble
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Example (3): swelling of clays

Deep in the earth clay layers can
swell upon adsorption of water:

How to mimic this in the NV, T
ensemble?

What is a better ensemble to
use?
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NPT ensemble




- b i X T

NPT ensemble

Classical
Legrendre transformation

A small system that can exchange heat and
volume with a large bath

Statistical

Taylor expansion of a small reservoir
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Gibbs free energy
dU =TdS — pdV + ) p.dN,

Required Legrendre transformation:

G=U-TS+pV —G=G(T,p)

dG =—SdT +Vdp + ) 1LdN,

If TPN are kept constant, the total Gibbs free
energy is constant and has its minimum value in
equilibrium
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Legendre Transformation
The energy is a natural function of the entropy, |
volume, and number of particles of component i

U=U(S,V,N,)  dU=TdS—pdV+) wdN,

Conjugate variables

U oU
SeEsl T Voo p—tl ==
( 3S )V,N,. ¢ ( Y )S,Nl

Legendre transformations, to get NPT:

G=U-TS+pV —>G=G(T,p,N)
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egrendre transf
We have a function that depends on  (x,x,,%;,...,X, )
and we would like (xlj_._,xr,urﬂj.”,u

f:f(xl,xz,x3,...,xn)

df = dx. et R
f ;ul xl ul [axl ]

Legrendre Transformation

2 =g(xl,...,x,,,um,...,un)
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Example: thermodynamics
E=E(S,V)
dE =1dS - pdV
We prefer to control T: S—T
Legendre transformation
F=U-TS
dF =dE-d(TS)
df =S8dT — pdV

F=F(T,V)

Helmholtz free energy
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Legendre transformation
I have all my information in L and how can 1 |

change my coordinates without loosing any
information?

L=L(X)

L

Suppose I would
like to use P

Would this work? [ = L(P)
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H=L-PX

If we know the slope and 7 %

the intercept we
reconstruct the curve

H=H(P)

as the envelope of tangent
lines (H(P) define all the
lines the “envelope” L)
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- exchange energy and
volume

“constant Tand p |
We have our box 1 and a bath

10

_r- Total system is isolated and
the volume is constant

First law ~ dU =dq — pdV =0
Second law dS > 0

Box 1: constant pressure and temperature
|5t [aw: dU; +dUp =0 or dU; = —dUy

G s =10 or el = =l
The bath is very large and the small changes do not

change P or T; in addition the process is reversible

du
ond |gqw: dS7 +dSy, =dS; + Tb I ]%dvb >0

1dS; —dUy; —pdV; >0
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exchange energy and COnStant fe and p
volume

'5 Total system is isolated and
1. the volume is constant

-

Box 1: constant pressure
and temperature

2" law: TdS; — dU;, —pdV1 >0

Let us define the d(Uy =TSy +pV1) <0
Gibbs free energy: G G — 0 ol

For box 1 we can write dGi7 <0

Hence, for a system at constant temperature
and pressure the Gibbs free energy decreases
and takes its minimum value at equilibrium
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N,P. T ensemb
Consider a small system that
can exchange volume and

energy with a big reservoir

:
an(V—Vl.,E—EZ.)zan(V,E)—(aan1El. _(alnﬂ Vg

-

le

oFE

The terms in the expansion follow from
the connection with Thermodynamics:

1 |
We have:  dS= dU+§dV—Z%dN,.

T
(_)
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dInQ
oE

nQ(V-V,E-E)=nQ(V,E)- 2 V
LT kT
Q(E_EDV_VZ')__ E, _pVi

Q(E,V) gl
Hence, the probability to find E,V;:

nQ(V-V,E-E,)= an(V,E)—(

In

Q(E-E.V-V,) = eXp[—B(El.+le.)]
2 QE-EV=V) ¥ exp|-B(E +pV)]

o< exp| —B (E, + pV;) |

P(El.,Vl.)z
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Ensemble average:

V.exp| — =
_2,-,]- le s e
= A(N,p,T) 5

V)

Thermodynamics  dG =-SdT +Vdp+ ) dN,

e
AP

— —lnA(N,p,T)

G
k., T

o

Monday, January 10, 2011 46



Monte Carlo

Simulations




Partition F_t;n_c_’rl_c;n“ . NPT Ensemble
O = JdVexp ,BPV jdr exp[ ,BU( )}

= N'A3N

Scaled coordinates: s =r /L

D — N'A3N JdVexp ,BPV VNst exp[ ﬁU( )}

Probability fo find a particular configuration:

@PT (V,SN) o N exp[—,BPV}exp[—ﬁU(sN;L)D

Sample a particular configuration:
* Change of volume Acceptance rules ??
* Change of reduced coordinates 48
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In equilibrium we do not want to disrupt the distribution
by our MC process

For the flow from o to n: K(O = n) = K(n =2 0)

Probability to accept the

Probability to be in state N(o) attempted move from n to o

K(o—n)=M(0)a(o— n)acc(o— n)
Probability to generate

state n from o
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Imposing detailed balance: ~ K(0—>n)=K(n—>0) |

with K (0—n)=N(0)o(0— n)acc(o— n)

..and for the
reverse move: K(” B 0) = ‘ﬂ(n)a(n =2 O)GCC(” e 0)

If we sample the NPT ensemble
m(O) it VONe—BPVO ¢ PV and m(n) 5 CVnNe—ﬁPVn o BU ()

Suppose we change the position of a
randomly selected particles

acc(o — n) = N(n)otr—-a) _ Y
acc(n—o0) N(o)orfo—n)
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In the NPT ensemble we also need to sample the volume

m(O) = VONe—ﬁPVOe_ﬁU(O) and m( ) CVN —BPV, —,BU( )

The acceptance rule now reads:

acc(o—n) Nmotr—o0) _
acc(n— o) N(oyelo— n) V -BPY, —ﬁU(O)

N

N ,BPV —BU(n)

—pPAV _—pAU
€ﬁ €ﬁ
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Algorithm: NPT

O Randomly change the position of a
particle

O Randomly change the volume
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Algorithm 10 (Basic NPT-Ensemble Simulation)

+

PROGRAM mcnpt

ao icycl=l,ncycl
ran=ranf () * (npart+1) +1
i1f (ran.le.npart) then
call mcmove
else
call mcvel
endif
if (mod(icycl, nsamp)
call sample
enddo
end

~ M
.2J.V)

basic NPT ensemble simulation

perform ncycl MC cycles

perform particle displacement

perform volume change

sample averages

Monday, January 10, 2011
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SUBROUTINE mcmove

o=int (ranf () *npart) +1
call ener (x(o), eno)
xn=x (o) + (ranf () -0.5) *delx
call ener (xn, enn)
if (ranf () .lt.exp(-beta

* (enn—eno)) x(o0)=xn
return
end

attempts to displace a particle

select a particle at random

energy old configuration

give particle random displacement
energy new configuration
acceptance rule (3.2.1)

accepted: replace x (o) by xn

Comments to this algorithm:

. Subroutine ener calculates the energy of a particle at the given position.

. Note that, if a configuration is rejected, the old configuration is retained.

. The ranf () is a random number uniform in [0, 1].

Monday, January 10, 2011
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R roclolh. 7ol Bhris ol
= A Y AR 5 <
"".'.3:'2"‘ gl Y % e )

'-.—.“.“."._'_.-.-'

SUBROUTINE mcvol attempts to change
the volume

call toterg(box, eno) total energy old conf.
vOo=boXxX**3 determine old volume
Invn=log(vo)+(ranf () -0.5) *vmax perform random walk in InV
vn=exp (1lnvn)
boxn=vn**(1/3) new box length
do 1=1,npart

x(1)=x(1)*boxn/box rescale center of mass
enddo
call toterg(boxn,enn) total energy new conf.
arg=-beta* ( (enn-eno) +p* (vn-vo)

+ - (npart+l)*log(vn/vo) /beta) appropriate weight function!

if (ranf().gt.exp(arg)) then acceptance rule (5.2.3)

do 1=1,npart REJECTED

¥ (1)=x(1) *box/boxn restore the old positions

enddo
endif
return
end
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. NPT simulations

6.0 o

40

20

0.0

0.0 0.2
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Adsorption

(and an excuse to do the grand-canonical ensemble)
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Experimental System:
Cal’bon Captu re CO2/N» adsorption

" OO
‘4. \ v <) .“
& ';\«:_*, é,. < {(‘;f{ Ry J -

2 : S,
X ho i -.{, 3
9 %4 A7

N2

Partial pressure

<::< desorption
CO2

What are the appropriate
thermodynamic variables?

Metal Organic Framework

Monday, January 10, 2011 58



At constant temperature we measure
the weight increase as a function of \§:>
partial pressure of the gas
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Thermodynamics of adsorption

What is the thermodynamic
language of adsorption?

What are the equilibrium
conditions?

Can we make a molecular
model of adsorption?
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Pressure in Solids
How do we look at pressure in a solid?
Is pressure in a solid defined?
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Pressure (apj
o

In a solid the free energy
change to change the volume
can be anisofropic

Is described by a stress tensor

>

0
[}

()

'&" -
'fh S-S )

) Y

Unlike a fluid a solid can resist ¥
strain; forces are much larger ;?:‘E;

Does the adsorption isotherm of
a brick change if we stand on it?
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Let us assume that in the
pressure range of the isotherm
the solid does not deform

Hence, (a_Fj >
Ve

We cannot change the volume of our solid;
hence pressure is not defined inside the solid.

For these adsorption studies the pressure of the gas
phase is not the preferred thermodynamic variable!
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*iiiiﬁ*”rfi*“frﬁ‘fbrrrrﬁ
Equilibrium
A solid phase & and a large reservoir
which is the fluid phase f
Question: When are these
two systems in equilibrium?

Total system NVE: dS 2 O dS=dS,+dS; 20

1 p Hi B
dSﬁdeUﬂlu—Ta{— b
dS.+dS;=i—-—lau ¥ [ H = N
T Wi 1

o
Equilibrium: Equilibrium: the adsorbed gas has
v o __ an equal temperature and chemical
Toc = aui =M, ; P

pofential as the reservoir
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uVT ensemble

(Grand-canonical ensemble)




Grand-canonical ensemble

Classical
Legrendre transformation

A small system that can exchange heat and
particles with a large bath

Statistical

Taylor expansion of a small reservoir
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Legendre Transformation
The energy is a natural function of the entropy, |
volume, and number of particles of component i

U=U(S,V,N,)  dU=TdS—pdV+) wdN,

Conjugate variables

U oU
S Voo p—tl ==
( 3S )V,Ni ¢ ( Y )S,Nl

Legendre transformations, to get YVT:

Y=U-TS—uN —Y=Y(T,V,u)
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Y free energy
dU =TdS — pdV + udN |
Required Legrendre transformation:
Y=U-TS—uN —Y=Y(T,V,u)
dY =—SdT — pdV — Ndu

This can be rewritten using

Y =(G~-pV)-uN=(uN~pV)-uN=-pV
or

d(—pV)=-8dT — pdV — Ndu
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e o e L L L L L
e constant Tand p }
Total system is isolated and
1> the volume is constant
V First law

dU =TdS — pdV + udN =0
Second law dS > 0

Box 1: constant chemical potential and temperature
st law: du; +dUp =0 or dilm=——"dil
dN,+dN, =0 or dN, =—dN,
The bath is very large and the small changes do not
change Y or T; in addition the process is reversible

2" law:

1
GS A s =g Ea g D
Tb Tb
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We can express the changés of the bath in terms of
properties of the system

1
s, ~—dU, +%le >0  d(TS,~U,+uN,)=0

d(U-TS—-uN)<0
For the Gibbs free energy we can write:

G=U-TS5+pV —pV=U-TS—uN

or
G =UuN
Giving:
: d(-pv)<0o  or d(pV)=z0
Hence, for a system at constant temperature
and chemical potential pV increases and

takes its maximum value at equilibrium
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u,V,T ensem
Consider a small system that can

exchange particles and energy
with a big reservoir

| :an(E,N)—(aan) El.—(
V.N

oE

The terms in the expansion follow from

the connection with Thermodynamics: S =k, In{2

el gy
e

2 )
U ), x ON /.y
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InQ(E-E,N-N,,)= an(E,N)—(ag;Q) E, —(
V.N

an(E—Ei,N—Nj):an(E,N)— kE;“ + k‘uT N,
B B

QIE-E ,N-N,

(E El’N NJ):_ Ei i U N
Q(E,N) bl ks s

Hence, the probability to find E,N;:

In

P(EN,)= Q(E-E.N-N,) b
i ZUQ(E—E,C,N—N,) X

E__ N,
i
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Monte Carlo

Simulations




'—_!*.!-...'.Q- .I- ,l.*...— ,.' !.-.!.._.!_.!—.!.—.!_.!l-.!- !_.!.- . !.- !-.!—.!.j
VT Ensemble |
Partition function (scaled coordinates!):
Eecxp(BUiMgyE -
QuVT :sz(‘) AV st exp[—BU(S ’L)i|
Probability to find a particular configuration:

NV
eXpEg‘;Nz exp[—ﬁU(sN;Lﬂ
Sample a particular configuration:

* Change of the number of particles Detailed balance
* Change of reduced coordinates

A e |

uvr

N (N,sN)oc

Acceptance rules ?? 24
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In the UVT ensemble we also need to change the number |
of particles_, AL
v BN, ,=BU(0) — —c o ving
NO!A3N" and Nn'A ;

Imposing detailed balance gives for the acceptance rule

acc(N—>N+1) N(N+1)ofivN—+l=N)
acc(N+1—N)  9N(N)o(H—-Nx])

N+1
v Bu(N+1) ,~BU(N~+1)

(e

N
4 PN ,=BUN)

(N)!A3N+3 €

U acc(N — N +1 V eﬁue—ﬁ[U(NH)—U(N)]
'acc(N+1%N (N+1)A3
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fitaf“iu‘lrfﬁ‘vd R Cf‘ R 'I: i ;‘{sﬁ\htﬂﬂ?‘ a*
L]

I
'B'E'R I-I'i i!_ s B R HEE B
PROGRAM mc_gc basic uVT ensemble

simulation
do icyel=1,ncycl perform ncycl MC cycles
ran=1int (ranf () * (npav+nexc) ) +1
if (ran.le.npart) then
call mcmove displace a particle
els
call mcexc exchange a particle
endif with the reservoir
if (mod(icycl,nsamp) .eq.0)
+ call sample sample averages
enddo
end

Comments to this algorithm:

This algorithm ensures that, after each MC step, detailed balance is obeyed.
Per cycle we perform on average npav attempts® to displace particles and
nexc attempts to exchange particles with the reservoir.

2. Subroutine memove attempts to displace a particle (Algorithm 2), subroutine
mcexc attempts to exchange a particle with a reservoir (Algorithm 13), and
subroutine sample samples quantities every nsamp cycle.
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SUBROUTINE mcexc

if (ranf().1t.0.5) then
i1f (npart.eq.0) return
o=1int (npart*ranf() )+1
call ener(x(o),eno)
arg=npart*exp (beta*eno)
/(2z*vol)
1f (ranf().lt.arg) then
X (o) =x(npart)
npart=npart-1
endif
else
xn=ranf () *box
call ener(xn,enn)
arg=zz*vol*exp(-beta*enn)
/(npart+1)
1f (ranf().lt.arg) then
X(npart+1l)=xn
npart=npart+1
endif
endift
return
end

attempt to exchange a particle

with a reservoir

decide to remove or add a particle
test whether there is a particle
select a particle to be removed
energy particle o

acceptance rule (5.6 .9)

accepted: remove particle o

new particle at a random position

energy new particle
acceptance rule (5.6.8)

accepted: add new particle

-
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Exotic Ensembles




What to do with a biological membrane?

Proteins
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- i

Model membrane: Lipid bilaye

hydrophilic head group

two hydrophobic tails

water

AR

water
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Questions

O What is the surface tension of this
system?

O What is the surface tension of a
biological membrane?

O What to do about this?
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Constant surface tension simulations:
v,V, T ensemble

Consider a small system that can
exchange area and energy with a
big reservoir

1/kgT 299

dlnQ
oE

InQ(E-E A— 4, )= an(E,A)—(
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Conservation of energy:

dE =dg

-‘Eﬁ

Y is the surface tension

dg=TdS @

dw=-pdV + ydA (a_sj =

)
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Consider a small system that can f:
exchange area and energy with a}
big reservoir | I/kgT

WQ(E-E A-4)= an(E,A)—(ag;Q] E _(8151149] A
A E

JImOEE oIS e
s
N

B

Q(E-E,A-4) E 74
Q(E, A)

In ——L 4
loslele I

P(5.4)- Q(E-E.A-4)

= zl,kQ(E_ E,A- Ak) 2 Zlykexp[—ﬁi
xeXp[_ﬁ(Ei_yAf)}
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Simulations at imposed surface
tension

O Simulation to a constant surface tension

O Simulation box: allow the area of the

bilayer to change in such a way that
the volume is constant.

Yes! Detailed balance
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g fpdoh bbb ol

acc(o—n) N(n)
acc(n—>0) N(0)

o

Suppose we change: L %L”}V

AO aAn

(N
a1 )

acc(o—n) cAp

acc(n — o) = eXp
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- Tensio

50 |

45}

40

Y(Ao)= -0.3+-06 3% |

Y(Ac) = 2.5 +/- 0.3 30 |
V(Ao) =2.9 +/- 0.3 25 |

20 |

15:

1 ok
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) l, ',\’, ]\‘?\\\I

tl‘dz
\

‘f | 1{1 "”
ATi W

L™ ."~
. A\

mole % alcohol

0O 10 20 30 40 50 60 70

o

Monday, January 10, 2011 90



Non-Boltzmann

sampling




- : Noln -Boltzmann samphng e
<A>NVT1 QNVT1 ASNN!JdrNA )CXP[ ﬁl ( ):| 3

: jdrNA(rN)exp[—ﬁlU(rN)]
JdrN exp[—,BlU(rN)]

. jdrNA(rN)exp[—ﬁlU(rN )]eXp[ﬁzU(rN) = ﬂzU(rN)}
J.drN exp[—ﬁlU(rN)}eXP[ﬁzU(rN) % ,BZU(rN)}

: JdrNA(rN)exp[ﬁzU(rN) = ﬁlU(fN)]eXP[_ﬁzU(rNﬂ
dr" exp| B,U (] - ﬁlU(fN)]eXP[_:BzU(rN)]
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e nBoItzmann sampllng i

1
<A>NVT1 QNVT ASNN'JdrNA )eXp[ ﬁl ( ):| "?:
_A"A(r" Jexp| -7 Why are we not using this?
. ey

T, is arbitrary!
. jdrij )exp[ BU (r I)LﬁzU(rN) - ﬂZU(rN)]
We only [ ﬁlU(ri“ xp[ﬁzU(rN) 2 ﬁzU(rN):I

need a Slngle : N\ P e N A | E n.v,/ I\T\j
simulation! [[3 S We perform a simulation at

Ap‘ B,U Y ) - T=T, and

<Aexp[ 132 ﬁ1 U]>NVT we determine A at T=T,

__{exp[(B.-B)U]), 5
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Overlap becomes very small
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How to do parallel Monte Carlo |

O Is it possible to do Monte Carlo in
parallel

O Monte Carlo is sequential!

O We first have to know the fait of the
current move before we can continue!

e
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Parallel Monte Carlo

Algorithm (correct?):
1. Generate Kk trial configurations in parallel

2. Select out of these the one with the lowest

energy
exp| -A(U,)]
Pln)= <
ijlexp[—ﬁ(Uj)}
3. Accept and reject using normal Monte Carlo

rule: ace(o— n)=exp| -B(U, - U, ) |
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Conventional acceptance rule

-5900

Conventional acceptance rules leads to a bias
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Detatled balance!
P K(o® n)=K(n ® o0)
K(o—>n)y=N@)xaoa(o —>n)<acc(o —> n)
K(rn —>0)=/Nm)<o(n —> o)><acc(n — o)

acc(o —>n) N@m)y<o(n—>0) N(n)
acc(n —> 0) N(o)x<xax(o —>n) N(o0)
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LK

K(o— n)=K(n— o)
K(o—> n)=N(o)Xa(o— n)Xacc(o— n)

K(n—o0)=N(n)Xo(n— o)xacc(n— o)

acc(o—n)  N(n)xamyso) N(n)
acc(n— 0) N(o)xafe=n) N(o) -




| | | | | | | | | | | | | | | | | | | | | |
| U ud ud ud i ududoddadaiaugl I I U U u I 1 I
3

K(o% n) N(o)xoc(o% n)Xacc(o% n)

exp| -B(U,)]
zilexp[—ﬁ( .
exp| -B(U, )]

o(o—n)=

o(o— n)=

o(n— o) =




o0 @ NGl
acc(n—0) N(o)xa(o—n)

e[
W (n)

o(o— n)=

N(n) X
acc(o—>n)

acc(n — o) =
N(o) X




Modified accep

""l'll

tance

L]

Modified acceptance rule remove the bias exactly!
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But IS there not a problem
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- Detailed balance
We imposed detailed balance.

{bn‘blb’be’bSb"”’bkb} {bn‘blc’bZC’b%’“"bkc}
{b bbb .-

15250 e

{bn‘bl,bz,b3,---,

{bn‘bla’bZa’b&z’”.’bka}
But there are many sets of trial orientations that o—n

104
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K(o— n)=K(n— o) 0

K(o—>n)=N(o)Xa(o— n)Xxacc(o— n)

{b,[b.b,.b,. b, 1= {bn\{b}k_l}
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Detail balance: summation over all possible paths

from o to n
K(o— n)=K(n— o)
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Super-detailed balance: detailed <
balance should hold for any two sets oF e
paths that connect o0 and n and n and o %"

ol @"7
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Super detailed balance! §

: Summation over all
Detailed balance? possible paths

K(o%n)z Z K(o%n‘{b}k_l) K(n%o)z Z K(n%o‘{b}k_l)

L Pl

K(o%n)—K(n%o): bz: K(o%n‘{b}k_l) 2 K(n%o‘{b'}k_l)

L LN

. K(o%n‘{b}k_l)zK(nﬁpo'}k_l)
Super defailed

balance Every single term in the first
summation is equal fo
K(o - n) — K(n — 0) =) any term in the second

108
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