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What is coarse graining? 

Answer: grouping things together and treating them as one object 

You are already familiar with the concept. 

n-Alkane United atom model 

Quantum MD Classical MD 



What is mesocopic simulation? 

Answer: extreme coarse graining to treat things on the mesoscopic scale 
(The scale ~ 100nm which is huge by atomic standards but where fluctuations  
are still relevant) 

long polymer 

100nm 



What are the benefits of coarse graining? 

P 

N 

CO 

C 

All-atom model 
118 atoms 

Coarse-grained model 
10 sites 

Why stop there? Eg. this lipid 

l lc 

CPU per time step at least 100 times less (or even better) 
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Maximum time-step  

Longer time-steps possible 



All-atomic model Full information 
(but limited scale) 

RDFs for selected 
degrees of freedom 

Effective potentials 
for selected sites 

Effective 
potentials 

Properties on a larger 
length/time scale 

MD simulation 
Coarse-graining – 
simplified model 

Reconstruct potentials 
(inverse Monte Carlo) 

Increase 
scale 

Coarse graining with inverse Monte Carlo 



Model Properties 
direct 

inverse 
Interaction 
potential 

Radial distribution 
functions 

• Effective potentials for coarse-grained models from "lower level"  
simulations  

• Effective potential = potential used to produce certain characteristics of 
the real system 

• Reconstruct effective potential from experimental RDF 

Inverse Monte Carlo 



Consider Hamiltonian with pair interaction: 

Make “grid approximation”: 

Hamiltonian can be  
rewritten as: 

Where Vα=V(Rcutα/M)  - potential within α-interval, 
            Sα - number of particle’s pairs with distance  
            between them within α-interval 

α=1,…,M 

 Sα is an estimator of RDF: 

(A.Lyubartsev and A.Laaksonen, Phys.Rev.A.,52,3730 (1995))  

Vα 

|    |    |    |    |    |    | 
Rcut 

Inverse Monte Carlo 



In the vicinity of an arbitrary point in the space of 
Hamiltonians one can write: 

where 

β = 1/kT,    

Inverse Monte Carlo 

with 



Choose trial values  Vα
(0) 

Direct MC 

Calculate   <Sα> 
(n)  and differences  

Δ<Sα>(n) = <Sα >(n) - Sα* 

Solve linear  equations system    

Obtain ΔVα
(n) 

New potential:  Vα
(n+1) =Vα

(n) +ΔVα
(n) 
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Inverse Monte Carlo 



Starting from a square plain piece of membrane, 325x325 Å, 3592 lipids: 
(courtesy of Alexander Lyubartsev ) 

cut plane 

Example: vesicle formation 



The dispersed phase problem 

Many important problems involve one  boring species (usually 
a solvent) present in abundance and  another intersting speices 
that is a large molecule or molecular structure. 

Examples  

• Polymer solutions 
• Colloidal suspensions 
• Aggregates in solution 

This is very problematic  



The dispersed phase problem 

Consider a polymer solution at the overlap concentration 
(where the polymers roughly occupy all space) 

 Polymers are long molecules consisting of a large number N (up to many 
millions) of repeating units. For example polyethylene 

L~N1/2b 

where b is of the order of the monomer size  



The dispersed phase problem 

Volume fraction of momomers  

Volume fraction of solvent 
(assuming solvent molecules similar in size to monomers)  

Number of solvent molecules per polymer 

So, if N=106, not unreasonable, we need 109 solvent molecules 
per polymer 



Configurations change on the time-scale it takes the polymer to diffuse a distance 
of its own size τD. From the diffusion equation root mean squared displacement Δ 
as a function of time t is  

Experimentally:  b (polyethylene) = 5.10-10m 
                           b(DNA)              = 5.10-8m 
So for N=106      lp(polyethylene)  = 5.10-7m (1/2µ) 
                           lp(DNA)              = 5.10-5m (50µ) 

Use Stokes-Einstein to estimate  

k=Boltzmann’s constant 
T=Temperature 
η=shear viscosity of solvent 

kT(room temp.)~4.10-14 gcm2/s2 

η(water)~0.01 g/cm s 

So 

Time-scale 
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Throw it away and reduce the role of the solvent to: 

1) Just including the thermal effects (i.e the 
fluctutations that jiggle the polymer around) 

2) Including the thermal and fluid-like like behaviour  
of the solvent. This will include the “hyrodynamic interactions” 
between the monomers. 

F 

v’ 

v 

The ultimate solvent coarse graining 

Hydrodynamic interactions 



The Langevin Equation  
(fluctuations only) 

Solve  a Langevin equation for the big phase: 

is a random force with the property 

is  the sum of all other forces 

-γv is the friction force, here the friction coefficient is related to the monomer 
diffusion coeffiient by  D=γkT 

Force on particle i 

Forbert HA, Chin SA. Phys Rev E 63, 016703 (2001) 
Many ways to solve this equation 

It is basically a thermostat. 



The Andersen thermostat  
(fluctuations only) 

Use an Andersen thermostat: A method that satisfies detailed balance 
(equilibium properties correct) 

Integrate the equations of motion with a normal velocity Verlet 
algorithm 

Then with a probability ΓΔt (Γ is a “bath” collision probability) set 

Where θi is a Gaussian random number with zero mean and unit variance. 
(i.e. take a new velocity component from the correct Maxwellian) 
Gives a velocity autocorrelation function C(t)=<v(0)v(t)> 

Identical to the Langevin equation with γ/m=Γ



Andersen vs Langevin 

Question: Should I ever prefer a Langevin thermostat to an Andersen 
thermostat? 

Answer: No. Because Andersen satisfies detailed balance you can use 
longer time-steps without producing significant errors in the equilibrium 
properties 

(who cares that it is not a stochastic differential equation)  



Brownian Dynamics 
(fluctuations and hydrodynamics) 

Use Brownian/Stokesian dynamics 

Integrates over the inertial time in the Langevin equation and solve the 
corresponding Smoluchowski equation (a generalized diffusion equation). 
As such, only particle positions enter. 

are “random” displacements that satisfy   

and      is the mobility tensor   

D.L. Ermak and J.A. McCammon, J. Chem. Phys. 969, 1352 (1978) 
“Computer simulations of liquids”, M.P. Allen and D.J. Tildesley, (O.U. Press, 1987) 



A. J. Banchio and J. F. Brady  J. Chem. Phys. 118, 10323 (2003) 

If the mobility tensor is approximated by  

The algorithm is very simple. This corresponds to neglecting hydrodynamic 
interactions (HI) 

Including HI requires the pair terms. A simple approximation based on the 
Oseen tensor (the flow generated by a point force) is.  

For a more accurate descrition it is much more difficult but doable, see the work 
of Brady and co-workers.   

Brownian Dynamics 
(fluctuations and hydrodynamics) 



Brownian Dynamics 
(fluctuations and hydrodynamics) 

Limitations: 

• Computaionally demanding because of long range nature of mobility tensor 
• Difficult to include boundaries 
• Fundamentally only works if inertia can be completely neglected 

So should I just neglect hydrodynamics: NO 

(hydrodynamics are what make a fluid a fluid) 



An alternative approach: Keep a solvent but make it as simple as  
possible (strive for an “ising fluid”). 

What makes a fluid: 
• Conservation of momentum 
• Isotropy  
• Gallilean Invariance 
• The right relative time-scale 

time it takes momentum to diffuse l 

time it takes sound to travel l 

time it takes  to diffuse l 



Stochastic Rotational dynamics 

Advect  

A. Malevanets and R. Kapral, J. Chem. Phys 110, 8605 (1999). 

collide 

random grid shift recovers 
 Gallilean invariance 



Stochastic Rotational dynamics 
Collide particles in same cell 

where the box centre of mass velocity is  

with Ncell the number of particles in a given cell. R is the matrix for  
a rotation about a random axis 
Advantages: 
• Trendy 
• Computationally simple 
• Conserves mometum 
• Conserves energy 
Disadvantages 
• Does not conserve angular momentum 
• Introduces boxes 
• Isotropy? 
• Gallilean invariance jammed in by grid shift 
• Conserves energy (need a thermostat for non-equilibrium simulations) 

basically rotates the 
relative velocity vector  



Stochastic Rotational dynamics 

Equation of state: Ideal gas 

Parametrically: exactly the same as all other ideal gas models 
must fix 

• number of particles per cell (cf ρ) 
• degree of rotation per collision (cf Γ) 
• number of cells traversed before velocity is decorrelated (cf Λ) 

Time-scales  

Transport coefficients: theoretical results accurate in the wrong range of 
parameters. For realistic parameters, must callibrate. 

For an analysis see 
J.T. Padding abd A.A. Louis, Phys. Rev. Lett. 93, 2201601 (2004) 



Dissipative Particle Dynamics 
part 1: the method  

First introduced by Koelman and Hoogerbrugge as an “off-lattice lattice 
gas” method with discrete propagation and collision step.  
P.J. Hoogerbrugge and  J.M.V.A. Koelman, Europhys. Lett. 19, 155 (1992) 
J.M.V.A. Koelman  and P.J. Hoogerbrugge and , Europhys. Lett. 21, 363 (1993) 

This formulation had no well defined equilibrium state (i.e. corresponded 
to no known statistical ensemble). This didn’t stop them and others using 
it though. 

The formulation usually used now is due to Espanol and Warren.  
P. Espanol and P.B. Warren, Europhys. Lett. 30, 191, (1995). 

Particles move according to Newton’s equations of motion: 



Dissipative Particle Dynamics  

So what are the forces? 

They are three fold and are each pairwise additive 

The “conservative” force:  

where; 

Is a “repulsion” parameter 
Is an interaction cut-off range parameter 

rc 

rij 



Dissipative Particle Dynamics  

What is the Conservative force? 
Simple: a repulsive potential with the form 

U(r) 
aijrc 

rc It is “soft” in that, compared to molecular dynamics 
it does not diverge to infinity at any point (there is 
no hard core repulsion. 

The “dissipative” force 

Component of relative 
 velocity along line of centres 



Dissipative Particle Dynamics  

What is the Dissipative force? 

• A friction force that dissipates relative momentum 
(hence kinetic energy) 
• A friction force that transports momentum 
 between particles 

rc 

? 
ωd 

The random force: 



Fluctuation Dissipation  

rc 

ωd 

1 

To have the correct canonical distribution function 
(constant NVT) the dissipative (cools the system) 
and random (heats the system) forces are related: 

The weight functions are related 

As are the amplitudes  

For historical (convenient?) reasons 
ωd is given the same form as the 
conservative force 



DPD as Soft Particles and a Thermostat 

Without the random and dissipative force, this 
would simply be molecular dynamics with a soft 
repulsive potential. 

With the dissipative and random forces the system 
has a canonical distribution, so they act as a 
thermostat. 

These two parts of the method are quite separate 
but the thermostat has a number of nice features. 

Local 
Conserves Momentum 

Gallilean Invariant  



Integrating the equations of motion  

How to solve the DPD equations of motion is itself something of an issue. 
The nice property of molecular dynamics type algorithms (e.g. satisfying 
detailed balance) are lost because of the velocity dependent dissipative force. 
This is particularly true in the parametrically correct  regime 

Why is this important? 

• Any of these algorithms are okay if the time-step is small enough 

• The longer a time-step you can use, the less computational time your  
simulations need 

How long a time step can I use? 

• Beware to check more than that the temperature is correct 

• The radial distribution function is a more sensitive test. The temperature 
can be okay while other equilibrium properties are severely inaccurate. 
L-J.Chen, Z-Y Lu, H-J ian, Z-Li, and C-C Sun, J. Chem. Phys. 122, 104907 (2005) 



P. Espanol and P.B. Warren, Europhys. Lett. 30, 191, (1995). 

Euler-type algorithm 

Integrating the equations of motion  

And note that, because we are solving a stochastic differential equation  

(Applies for all the following except the LA thermostat) 



Integrating the equations of motion  

R.D. Groot and P.B. Warren, J. Chem. Phys. 107, 4423, (1997). 

Modified velocity Verlet algorithm 

Here λ is an adjustable parameter in the range 0-1  

• Still widely used 
• Actually equivalent to the Euler-like scheme  



Integrating the equations of motion  

Self-consistent algorithm: 
I Pagonabarraga, M.H.J. Hagen and D. Frenkel,  Europhys. Lett.  42, 377, (1998). 

Updating of  velocities is performed iteratively 

• Satisfies detailed balance (longer time-steps possible) 
• Computationally more demanding 



Which method should I use? 

1) It depends on the conservative force (interaction potential). The time 
step must always be small enough such that the conservative equations 
of motion adequately conserve total energy. To check this, run the  
simulation without the thermostat and check total energy. 

2) If this limits the time-step the methods that satisfy detailed balance 
lose their advantage.   

3) If not, use the self-consistent or LAT methods. Never Euler or modified 
Verlet. 

4) There are some much better methods that  still do not strictly 
satisfy detailed balance (based on more sophisticated Langevin-type 
algorithms). 
W.K. den Otter and J.H.R. Clarke, Europhys. Lett.  53, 426 (2001). 
T. Shardlowe, SIAM J. Sci. Comput. (USA) 24, 1267 (2003). 

5) For a review see 
P. Nikunen, M. Karttunen and I. Vattulainen, Comp. Phys. Comm. 153, 407 (2003). 



Alternatively, change the method 

• The complications arise because the stochastic differential equation 
is difficult to solve without violating detailed balance (see Langevin 
vs Andersen thermostats) 

In the same spirit let us modify the Andersen scheme such that  

• Bath collisions exchange relative momentum between pair of particles 
by taking a new relative velocity from the Maxwellian distribution for 
relative velocities  

• Impose the new relative velocity in such a way that linear and angular 
momentum is conserved. 

• Following the same arguments as Andersen, detail balance is satisfied 

Leads to the Lowe-Andersen thermostat  



The Lowe-Andersen thermostat 

Lowe-Andersen thermostat (LAT): 
C.P.Lowe,  Europhys. Lett.  47, 145, (1999). 

Here Γ is a bath collision frequency (plays a similar role to γ/m in DPD) 
• Bath collisions are processed for all pairs with rij<rc 
• The current value of the velocity is always used in the bath collision (hence 
the lack of an explicit time on the R.H.S.) 
• The quantity ξ is a random number uniformly distributed in the range 0-1 
• The quantity µij is the reduced mass for particles i and j, µij=mi mj/(mi+mj) 
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The Lowe-Andersen vs DPD 
(as a thermostat) 

• Conserve linear momentum (BOTH) 

• Conserve angular momentum (BOTH) 

• Gallilean invariant (BOTH)  

• Local (BOTH) 

• Simple integration scheme satisfies detailed balance (LA YES, DPD NO)  



Disadvantage?: It does not use weight functions wd and wr (or alternatively 
you could say it uses a hat shaped weight functions) 

But, no-one has ever shown these are useful or what form they should best take. The 
form ωr=(1-rij/rc) is only used for convenience (work for someone?) 

They could be introduced using a distance dependent collision probability 
In the limit of small time-steps LAT and DPD are actually equivalent! 
E.A.J.F. Peters, Europhys. Lett. 66, 311 (2004). 

Word of warning: in the LAT, bath collisions must be processed in a random order 

In simple terms: you can take a longer time-step with LA than with DPD without 
screwing things up.and there are no disadvantages so…. 

• Is the DPD thermostat ever better than the Lowe-Andersen thermostat? 

NO 

The Lowe-Andersen vs DPD 
(as a thermostat) 



Yes and in fact they have a number of advantages: 

1) Because they are Gallilean invariant they do not see translational 
motion as an increase in temperature. Nose-Hoover (which is not Gallilean 
invariant does) 
T. Soddemann , B. Dünweg and K. Kremer, Phys. Rev. E 68, 046702 (2003)  

2) Because they preserve hydrodynamic behavior, even in equilibrium 
they disturb the dynamics of the system much less than methods that do not 
(the Andersen thermostat for example) 



Example: a well know disadvantage of the Andersen thermostat is that at 
high thermostating rates diffusion in the system is suppressed (leading to  
inefficient sampling of phase space) 

whereas for the Lowe-Andersen thermostat it is not. 
E. A. Koopman and C.P. Lowe, J. Chem. Phys. 124, 204103 (2006) 

Lowe-Andersen 

Andersen 



3) Where is heat actually dissipated? At the boundaries of the system. 
Because these thermostats are local (whereas Nose-Hoover is global) 
one can enforce local heat dissipation. 

Carbon nanotube  
modelled by “frozen” 
carbon structure  

S. Jakobtorweihen,M. G. Verbeek, C. P. Lowe, F. J. Keil, and B. Smit Phys. Rev. Lett. 95, 044501 (2005)  

Heat exchange of diffusants with the nanotube modelled by local 
thermostating during diffusant-microtubule interactions 



DPD Summary 

• The dissipative and random forces combine to act as a thermostat 
(Fullfilling the same function as Nose-Hoover or Andersen thermostats 
in MD) 

• As a thermostat it has a number of advantages over some commonly 
used MD thermostats 

• The conservative force corresponds to a simple soft repulsive harmonic 
potential between particles, but in principle it could be anything 
(The DPD thermostat can also be used in MD 
T. Soddemann, B. Dunweg and K. Kremer, Phys. Rev.  E68, 046702 (2003) ) 

• The equations of motion are awkward to integrate accurately with 
large time-steps. Chose your algorithm and test it with care. 

• The Lowe-Andersen thermostat has the same features as the DPD 
thermostat but is computationally more efficient as it allows longer 
time-steps. 



Dissipative particle dynamics 
part 2: why this form for the conservative force? 

“It is the effective interaction between blobs of fluid” 
No it isn’t, at least not unless you are very careful about what 
you mean by effective. 

In principle the conservative force can be anything you like, what 
are the reasons for this choice? Some common statements; 

“A soft potential that allows longer time-steps” 
Maybe, but relative to what? 

Factually: it is not a Lennard-Jones (or molecular-like) potential. 
It is the simplest soft potential with a force that vanishes at some distance 
rc 

As with any soft potential it has a simple equation of state in the fluid 
regime and at high densities. 



The equation of state of a DPD Fluid 

For a single component fluid with pairwise additive spherically 
symmetric interparticle potentails  the pressure P in terms of the radial 
distribution function g(r) is 

where ρ is the density. For a soft potential with 
range rc at high densities, ρ>>3/(4πrc

3) g(r)~1 so 
g(r) real fluid 

g(r) DPD fluid Where α is a constant. For DPD α=.101aijrc
4  

Note  though that : 
• If ρ is too high or kT too low the DPD fluid will  freeze  
making the method useless. 
• And α/kT  is not the the true second Virial coefficient 
 so this does not hold at low densities 

EoS 



Mapping a DPD Fluid to a real fluid 

R.D. Groot and P.B. Warren, J. Chem. Phys. 107, 4423, (1997). 

Match the dimensionless compressibility κ for a DPD fluid to that of real fluid  

For  a (high density) DPD fluid, from the equation of state 

For water κ-1~16 so in DPD aij=75kT/ρrc
4

Once the density is fixed, this fixes the repulsion parameter. 

You can use a similar procedure to map the dimensionless 
compressibility of other fluids. 



What’s right and what’s wrong 
By setting the dimensionless compressibility correctly we will get the 
correct thermodynamic driving forces FThfor small pressure gradients 
(the chemical potential gradient is also correct) 

P0 

P 

x 

FTh 

Technically, we reproduce the structure factor at long wavelengths 
correctly. 

But, other things are completely wrong, eg the compressibility factor 
P/ρkT 

And this assumes on DPD particle is one water molecule. If it represents 
n water molecules the ρ(real)=nρ(model) so aij must be naij(n=1). That 
is the repulsion parameter is scaled with n and if n>1 the fluid freezes. 
R.D. Groot and K.L. Rabone, Biophys. J. 81, 725 (2001). 



DPD for a given equation of state 
I. Paganabarraga and D. Frenkel, J. Chem. Phys 155, 5015 (2001) 

The basic idea is to “input” an equation of state. 
To do so a local “density” is defined  

where w is a weight function that vanishes for rij>rc 
The conservative force is the the derivative of the  free-energy 
 (as a function of ρ) w.r.t. the particle positions  

Where      is the excess free energy per partilce as calculated from the EoS 
Is the density really the density? 
Is it a free energy or a potential energy? 



DPD for a given equation of state 

Eg a van der Waals fluid 

where A and B are parameters (related to the critical properties 
of the fluid). Simplest EoS that gives a gas liquid transition. 



Case Study 
 Free energy of a spherically confined polymer 

• In Mesocopic modelling we have always thrown information out. The onus 
is on the user to justify what is in what is out and whether it matters. 

Effective potentials: potential between blobs is the (theoretical) effecive 
potential between long polymers 

Works up to a point: 
For higher degrees 
of confinement  
you need more blobs 



Case Study: The dynamics of biofilaments 
M. C. Lagomarsino, I. Pagoabarraga and C.P. Lowe 
Phys. Rev. Lett. 94, 148104 (2004). 
M. C. Lagomarsino, F.Capuani and C.P. Lowe, J. Theor. Biol. 
224, 205 (2003) 

Nature uses a lot of mesoscopic filaments for structure and transport 

Example, microtubules (which act as tracks for molecular motors) 

Globular protien 

We want to simulate the dynamics of these things in solutions.  
Without coarse graining – forget it 



Effective potential: The bending energy is that of an ideal elastic filament 

Case Study: The dynamics of biofilaments 



Mesoscopic model 

Fb 

Ft 

Fx 

Ff 

Fb - bending force (from the bending energy for a 
filament with stiffness κ that we described earlier) 

Ft - Tension force (satisfies constraint of no relative 
displacement along the line of the links) 

Ff - Fluid force (from the model discussed earlier, 
with F the sum of all non hydrodynamic forces) 

Fx - External force 

Solve equations of motion using a Langevin Equation!! 



Note that this is a quite generic problem: 
• MD (fixing bond lengths to integrate out fast vibrational degrees of freedom) 
• robotics 
• computer animation 

Step 2) Constraint forces are equal and opposite, directed along current 
connector vector (conserve linear and angular momentum).  Write in terms of  
scalar multipliers 

Imposing rigid constraints 

Step 1) Write the new positions in terms of the unconstrained positions (nc) 
and the as yet unknown constraint forces 



Imposing rigid constraints 

Step 3) Linearize (violations of the constraints are small) 

Or in matrix form… 

so 



Imposing rigid constraints 

Matrix inversion is an order n3 process so solve iteratively using SHAKE 

Simply satisfy successive linearized constraints even though satisfying one 
violates others 

Or 



For a linear chain matrix is tri-diagonal with  elements 

And inverting a tri-diagonal matrix in order n operations is trivial 
(for rings and branches the matrix can be diagonalized in order 
n operation to make the problem equivalent to the linear chain) 

Imposing rigid constraints 



Imposing rigid constraints 

this method is termed “Matrix inverted linearized constrains – SHAKE” 
A.G. Bailey and C.P. Lowe, J. Comp. Phys. 227, 8949  (2008). 

Milc SHAKE 

SHAKE 



Hybridizing MILC SHAKE and SHAKE 
e.g. All atom molecule of alkanes 

Using this labeling scheme the Jacobean is 



Hybridizing MILC SHAKE and SHAKE 
e.g. All atom molecule of alkanes 

Using this labeling scheme the approximate Jacobean is 



Performance of the MILCH SHAKE algorithm 

Eg. For hexane 

A.G. Bailey and C.P. Lowe, J. Comp. Chem. 30, 2485  (2009) 



Vf 

F 

The fluid force 

A simple model, a chain of rigidly connected 
point particles with a friction coefficient γ 



Vf 

F 

Why might this not give a complete picture? 

A simple model, a chain of rigidly connected point particles with  
a friction coefficient γ subject to an external force F 

Ff = -γ (v-vf) 

v 
Vf 



The Oseen tensor gives the solution to the fluid flow equations (on 
a small scale) for a point force acting on a fluid. This gives 
the velocity of the fluid due to the force on another bead as 

These equations are linear so solutions just add 

Stokesian dynamics without the  the fluctuations 



Approximate the solution as an integral. For 
a uniform perpendicular force. 

• s = the distance along a rod of unit length 
• b = is the bead separation 



Approximate the solution as an integral. For 
a uniform perpendicular force. 

• s = the distance along a rod of unit length 
• b = is the bead separation 

If the velocity is uniform the friction is 
higher at the end than in the middle  

• Constructing the mesoscopic model gives us a theory  



What happens with uniform force acting downwards? 

Sed = B= FL2/κ = ratio of bending to hydrodynamic forces 
If the filament is long enough, the bending modulus small enough or 
the force high enough, the filament bends significantly. 



B = 300 



B = 3000 



B = 15000 



B = 1, filament aligned at 450 



F 

F 

A component of the force perpendicular  
to the force bends it and moves it left.  

Aligned more perpendicular, 
higher friction force 

Aligned more parallel, 
lower friction force 

Why? 

So a torque acts on the fibre to rotate it towards the prependicular 



How long does it take to reorientate? 

From this we can; 
• work out what conditions are necessary 
in the real world to see the effect 
• work out when the approximation of  
neglecting diffusion and dipole orientation 
is sensible. 



Is this practically relevant? 

• For sedimentation (external force is gravity) , no. 
 Gravity is not strong enough. You’d need a ultracentrifuge 

• For a microtubule the bending modulus is known 
• and we estimate, B ~ 1 requires F~1 pN for a 10 micron 
• microtubule. This is reasonable on the micrometer scale. 

• Microtubules are barely charged and the charge is known, we estimate 
 an electric field of 100 V/m for B ~ 200 (L=30 microns). So it 
should be doable. 



But this only orientate the filament in a plane  (perpendicular to the force direction)  

What if we apply a force in a direction that rotates? 

Circularly polarised electric field 

Electric field as a function of time 



Circularly polarised electric field 

Dimensional Analysis 
30µ Microtubule in water, 

Field= 100 V/m  
Frequecy 1 Hz 

Movie time~real time 



Dimensional Analysis 
30m Microtubule in water, 

Field= 100 V/m  
Frequecy 1 Hz 

Movie time~real time 

Circularly polarised electric field 


