Molecular Simulation

Background




Why Simulation?

1. Predicting properties of (new) materials

2. Understanding phenomena on a molecular
scale

3. Simulating known phenomena ?



Example: computing the melting point of ice

Why bother?

This works better.




Why Simulation?

properties of (new) materials

phenomena on a
molecular scale.

Testing simulations by:
known phenomena.

Testing approximate theories by:
Computer “experiments”




The limits of Simulation

Brute-force simulations can never bridge all the
scales between microscopic
(nanometers/picoseconds) and macroscopic
(cells, humans, planets).

Hence: we need different levels of description
(“coarse graining”) - and we need input from
experiments at many different levels to validate
our models.




The limits of Experiments

Increasingly, experiments generate far more data
than humans can digest.

Result: “Experulation”.

Simulations are becoming an integral part of the
analysis of experimental data.




Why Simulation”?

We wish to predict the
macroscopic properties of
(classical) many-body systems.

Can this be done?



NEWTON: F=m a

LAPLACE:

Nous devons donc envisager l'état présent de l'universe comme l'effet
de son état antérieur et comme la cause de delui qui va suivre. Une
intelligence qui, pour un instant donné, connaitrait toutes les forces
dont la nature est animée et la situation respective des étres qui las

composent, si d'ailleurs elle était assez vaste pour soumettre ces
données a l'Analyse, embrasserait dans la méme formule les
mouvements des plus grands corps de l'univers et ceux du plus léger
atome : rien ne serait incertain pour elle, et l'avenir, comme le passé,
serait présent a ses yeux.

. =

“Translation” In principle ““Yes’.

Provided that we know the position, velocity and
interaction of all molecules, then the future behavior is

predictable,.. . BUT



... There are so many molecules.

This 1s why, before the advent of the computer, 1t was
impossible to predict the properties of real materials.

What was the alternative?
1. Smart tricks (“theory”)
Only works 1n special cases

2. Constructing model (“molecular lego”)...
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J.D. Bernal’s “ball-bearing model”
of an atomic liquid...



The computer age (1953...)
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With computers we can follow the behavior of hundreds to
hundreds of millions of molecules.



[ntermezzo:

Fssential Statistical Mechanics

A brief summary of:

Entropy, temperature, Boltzmann distributions
and the Second Law of Thermodynamics



The basics:
1. Nature 1s quantum-mechanical
2. Consequence:
Systems have discrete quantum states.

For finite “closed” systems, the number of
states 1s finite (but usually very large)

3. Hypothesis: In a closed system, every
state is equally likely to be observed.

4. Consequence: ALL of equilibrium
Statistical Mechanics and Thermodynamics



First: Simpler example (standard statistics)

Draw N balls from an infinite vessel that contains an
equal number of red and blue balls

Number of possibilities to draw Npg red balls

and Np blue balls: Q(Ng, Np) = x1n-




Most likely Np = Ng = N/2.
QN/2,N/2) = (wpzjicw




Now consider two systems with total energy E.

Q(Eq, Er) = Q1(N1, Vi, E1) X Qo(No, Vo, Ep)

This function is very sharply peaked (for macroscopic systems)



e l Now, allow energy exchange
| ool i B ‘ between 1 and 2.

The most likely energy distribution is the one
that maximizes €21 x £25.

It is more convenient (but equivalent) to max-
iImize |ﬂ(Ql X QQ).



So:

=0

(8 IN Q(El, B — El))
OF N.V.E

With:

In Q(El, B — El) = In Ql(El) + In QQ(E — El)



<8In Ql(E1)> | (aln QQ(E2)> .
! —
OE1 ) nywy 01 )N, v,

but dk> = —dFEq, hence:

(aln Ql(E1>> _ (8In QQ(E2>)
8E1 N1,Vq 8E2 No Vo

This 1s the condition for thermal equilibrium (“no
spontaneous heat flow between 1 and 27)

Normally, thermal equilibrium means: equal
temperatures. ..



Let us define:

B(E,V,N) = (

OInQ(E,V,N)
OF NV

Y

Then, thermal equilibrium 1s
equivalent to:

ﬁ(Elv V17 Nl) — 6(E27 V27 NQ)

This suggests that  is a function of T.

Relation to classical thermodynamics:



We know that, in equilibrium,
INn €2 IS @ a maximum.

Conjecture: InQ=S

Almost right.
Good features:
*Extensivity

*Third law of thermodynamics comes for
free

Bad feature:

o[t assumes that entropy is dimensionless
but (for unfortunate, historical reasons, it
1S not...)



We have to live with the past, therefore
S =k B In €2

With ky= 1.380662 1023 J/K

In thermodynamics, the absolute (Kelvin)
temperature scale was defined such that

0S 1 But we found (defined):

OE T

OF

B(E.V.N) = <8In Q(E,V, N))
N,V



And this gives the “statistical” definition of temperature:

1 <8In Q(E,V, N))
kB
N,V

OF

In short:

Entropy and temperature are both related to
the fact that we can COUNT states.




How large is Q27

For macroscopic systems, super-astronomically large.

For instance, for a glass of water at room temperature:

Q ~ 102 10%°

Macroscopic deviations from the second law of
thermodynamics are not forbidden, but they are
extremely unlikely.



A mathematical relation:
10-10%° £ g

A physical relation:
10-10%° = ¢



| | 'l Consider a “small” system
. || (amolecule, a virus, a
| | mountain) in thermal
| contact with a much larger
‘l | system (“bath™).

The total energy 1s fixed. The higher the energy of
the small system, the lower the energy of the bath.

What happens to the total number of
accessible states?



oln QB(E)
OF

In QB(E—Gi) = In QB(E) €; | O(l/E)

But, as f=1/kgT :

IN QB(E — 67;) = In QB(E) — Ei/kBT + O(l/E)

The probability that the small system 1s in a given (“labeled”)
state with energy €. 1s

Qp(E — €;)
282 pl —e)

P(e;) =



using
Qp(E —¢€;) = Qp(F)exp(—¢;/kpT)

(—e€;/kT)
Plei) = Zexeip( éz/B;‘CBT)

This 1s the Boltzmann distribution:

“Low energies are more likely than high
energies”



The probability to find the system in state / 1s:

__ exp(—P¢)
@
ﬁ — 1/kBT

Hence, the average energy 1s

1%

<E>=Ypea=Y € expc(g—ﬁei)



Therefore

olnQ

< E>=
op

This can be compared to the thermodynamic
relation

o (8F/T)
O1/T




This suggests that the partition sum
Q = ) _exp(—PB¢)
()
1s related to the Helmholtz free energy through

F = —kBTan



We have assumed qu
often we are interested J

ssical limit

2
2

B> 4 U(eN)
_ﬁE‘ . N N particles i 2™M;
E e "~ ,h3NN!//dp dr™ e

states 7

P3N > Volume of phase space

1 . . e
N > Particles are indistinguishable
Integration over the momenta can be carried out for most systems:
2 2 3N 2 %N
dp" expl- by dp ex P N el
[dp p{ﬁz,zm} [dp p{ﬁzm} (/3




Steps:

1. We can introduce functions of operators. E.qg.

<iled|i>=Y, <il&r|i >

Example. For an energy eigenstate i:

<i\e—ﬁH|i>:Z<z‘\( i!) \z'>:z( 5”!) =

—BE;



2. The “trace” of a quantum mechanical operator
does not depend on the basis set

Doani < UAlE>= ) 5 <JlAl7 >

Example:
Yoo <ileMis= Y < jle >
eigenstates i other states j

Q= ) ePPh= " <jlefHj>

eigenstates i other states j



3. We can write the unit operator I as

I= > j ><j|

complete set of states j

Example:

I= >  lg><g

all wavevectors q

The momentum p is related to the
wavevector q, via

P = hq = h{ng, ny, nz}zfﬁ



Now apply to partition function:

Q= ) ePh= " <jlefHj>

eigenstates i other states j

Choose for j the position eigenstates r:
Q = LZ < rlePRr >
NI
=

This we cannot compute.



Now write: H = K + U, then

[
Q = A Z < rle PEFD)p >

This, we can still not compute. What we can compute is:

K ye N _—BK
Z < gle PE|g >~ TIN dp™N e=P

q
or (possibly):

1 _ 1 _gU(+N
Z:ﬁz<r|e 6(U)|7“>=m/drNe pUr™)



We could use these simplifications if:
T _ _
But for non-commuting operators A and B,

6A—l—B # 6AeB

However: in the classical limit, we
can write

e—BK+U)  o—BK o—BU



In the classical limit we get:
1 _
Q = N Z <rle 5(K+U)|7“ >R
! k&

1 — —
ﬁz<r|e FUIr >< rlg >< qle PE|¢ >< ¢|r >

1 N_—guN)V N —BK 1
N'/dre ( )h3N/dp€ XW

Or...

1 r
chassical = thN' /dTNde ﬁ[U( )+EK(p )]



Remarks

Define de Broglie thermal wavelength:

20\
As(hﬁ)

27Tm

Partition function:

O(N,V,T)= A”iN!fdrN exp[—/BU(rN )]



Check: 1deal gas

O(N,V,T)= A3]1N!fdrN exp [—ﬁU(rN )]

L ey o e
A3NN'f r _A3NN'

Free energy:

VN
ANV N!

pF = —ln( ) ~ N(ln,oA3 — 1)

Pressure:

Energy:

P=-(57) =5 (M) 1y
B |- A g 2



Relating macroscopic observables to
microscopic quantities

Examples:
Heat capacity
Pressure

Diffusion coefficient



Fluctuation expression for heat capacity.

Recall:

F = —kBTan

with

Q= Z exp(—pB¢;)



Or should it be:

A = —kBT|ﬂZ

with

7Z = Z exp(—pBe¢;)

There is a problem with the notation.

Also with the internal energy: E or U.



Heat capacity:

o, — 9F _ (OF (‘9_5>_ 1 ok
V= oar ~ \os)\oT) ~ kpT28p

Using our expression for E:

o 1 0 €; exp(—ﬁei)
Cv = kpT20.3 2 Q

7




Both the numerator and denominator depend on .

1 e2 exp(—pe;) -
k= F T2 (Z O -
And thus:
1
Chr =
¥ = kg T2

2,

| @

e; exp(—Be;)

Q

But you can also compute C,, directly from

Cy = (g_]%)N,V

(< E*> - < E>?)



COMPUTING THE PRESSURE:

F=—-FTInQ

1
~ R3N N

Q /drN exp[—Z/{(rN)/k:BT]

OF
= _p
oV



Introduce “scaled” coordinates:

r = Lis

vy N N
QUN,V.T) = i [ ds™ exp[-pu(s"; L)]






oInVH [ds™N exp[—puU(s?; L)]

P=knT
B P

b NkgT T@In [ds™ exp[—puU (s L)]

k
- B oV



312@ 1 3LSZ' 1

oV



~ NkgT
Vv

P

[dsN SN 3”3(5';\7) -3t exp[—BU(s™; L)]

[ds™ exp[—puU(st; L)]

~ NkgT g:au(rN) r,
Vv or; 3V

P

1=1




For pairwise additive forces:

J7F1
Then
NEkrgT 1
P="—"2" 1
V 3V



NkgT 1 Al
P=— " 3v< 2 f@'j'”>

RESICY
i and j are dummy variable hence:
N N
>, fiymi= 3 fer
t,J=1,i7] Jit=1,571

And we can write
N 1

N
> fiyri=o 3 (fij it i)
ij=TL,i] =T




But as action equals reaction (Newton’s 3 law):

f;j = —1;
And hence
N N
> (fij R i o VTR I‘j) = ),  fij-(ry—ry)
J,t=1,571 Jst=1,j71

Inserting this in our expression for the pressure, we get:

NkgT 1 2
P=——ter{ 2 firy
i,j=1,i7]

Where I'j; =T; — I



What to do if you cannot use the virial expression?

b OF F(V-AV)-F(V)

oV AV

When is it not possible to use the virial expression?



Other ensembles?

In the thermodynamic limit the thermodynamic properties are
independent of the ensemble.

However, it 1s useful to select an appropriate ensemble for
a given experimental condition.

It 1s important to know how to simulate in the various
ensembles.

But for doing this we need to know the Statistical Thermodynamics
of the various ensembles.



Example (1):
vapour-liquid equilibrium mixture

Measure the composition of the
vV coexisting vapour and liquid
phases if we start with a
homogeneous liquid of two
different compositions:

— How to mimic this with the N, V, T
ensemble?

— What is a better ensemble?
composition



Example (2):
adsorption of water 1n porous medium

Clay layers can swell upon
adsorption of water:

— How to mimic this inthe V,V,T
ensemble?

— What is a better ensemble to use?




Ensembles

Micro-canonical ensemble: E, V,N
Canonical ensemble: T, V,N
Constant pressure ensemble: 7,P,N
Grand-canonical ensemble: T,V u



Constant pressure simulations:

o ///////////////////////////% N,P,T ensemble
%VE s E-E, %

]

% % Consider a small system that can exchange
% % volume and energy with a large reservoir
.

an(V—Vl.’E—EZ.)=1nQ(V,E)—(8(1;;9) E, _(8(1;/9) Vg
4 E

Q(E_EwV_Vi) £ pV
Q(E,V) kT kT
Hence, the probability to find £, V;:
Q(E-E.V-V,) exp[-B (E, + pV;)]

Ej’kQ(E—Ej,V—Vk)= Ej’kexp[—[j’ (E,+pV, )]
«exp [-B (E, + pV,)]

In

P(EV,)-



Grand-canonical simulations:
] U, V, T ensemble

N, E, E—E.,
N-N,

Consider a small system that can exchange
particles and energy with a large reservoir

T , b

AN NN

. 1O O
an(N—Ni’E—EZ.)=an(N,E)—( 1 )E,-—( n )N,-+---

oE oN
Q(E,N) kT ' kT
Hence, the probability to find £, NV;:
Q(E — E;, N — N;) exp [—B(E; — pNi)]

P(Ey, N) = =

> ik SUE —E;,N—Ni) > j,kexp|-B(E; — pNg)]
~ exp [—B(E; — ulN;)]



Computing transport coefficients from an
EQUILIBRIUM simulation.

How?

Use linear response theory (i.e. study decay of fluctuations in
an equilibrium system)

Linear response theory in 3 slides:




Consider the response of an observable A due to an
external field f; that couples to an observable B:

H = Ho — [pB
For simplicity, assume that<A>o = (B >O =0

- Jexp|-B(Hg — fgpB)]A
BA) s = T expl—B(Ho — f5B)]

For small f; we can linearize:
exp[—BHp|BA
(AA) & 5fo
J exp[—-BHo]




e (AA) R [fp (BA)g

Now consider a weak field that 1s switched off at t=0.

" ~




Using exactly the same reasoning as in the static case, we
find:

(AA)(t) = Bfp (BA(1))g



Simple example: Diffusion



Average total displacement:

N
<Ar>= ) <Az;>=0
1=1

Mean squared displacement:



Macroscopic diffusion equations

Fick’s laws:

Oc(x,t) = O jau(x,t)
o0t | dor
(conservation law)

(constitutive law)

0.

0 c(xz,t)




Combine:

0 c(x,t) 02 c(x,t)
1D, —
o0t O 2

0.

Initial condition:

c(x,0) = 6(x)

Solve:



Compute mean-squared width:

<x2(t)> = /da: c(z, t)x?




2
t
%/dm r2c(z,t) = D/daz xza b, )

O 2
|

d <a32(t)>
dt

Integrating the left-hand side by parts:



Or:

2D = |Iim d<x2(t)>
t—00 dt

This 1s how Einstein proposed to measure the
diffusion coefficient of Brownian particles



Ax(t) = /O t dt’ vz ().

72
2D = |Iim 8< (t)>

t—00 ot

(22()) = <(/Ot dt! vx(t’)>2>




((fer)) =
— /ot /Ot dt'dt” <’Ua;(t,)vx(t”)>

=2 t i " s (o yos (8.

(v (v (t")) = (v (' — t")v2(0)).



t
2D = lim 2 [ dt” <fug;(t _ t”)vx(O)>

t—00 O

D :/O dr (vg(7)v£(0))

(“Green-Kubo relation™)



Other examples: shear viscosity

e ARG OYO)

N

1

0‘33?/ — Z (mzvag —|— 5 Z mijfy("“ij))
i=1 jFEi



Other examples: thermal conductivity

1 o ——
A= [ de GE05E®)

Coado .
]s = — E z;— | myvi + E v(7i;)
dt =7 2 e
1= JFi



Other examples: electrical conductivity

_ 1 > el el
Oe — VkBT/O dt <]a: (O)]a: (t)>

; N

.e _

Jo =Y qvi.
1=1



