Free energies and phase transitions

Why Free Energies?

• Reaction equilibrium constants $A \leftrightarrow B$

$$K = \frac{[B]}{[A]} = \frac{p_B}{p_A} = \exp\left[-\beta(G_B - G_A)\right]$$

- Examples:
 - Chemical reactions, catalysis, etc....
 - Protein folding, binding: free energy gives binding constants

- Phase diagrams
 - Prediction of thermodynamic stability of phases,
 - Coexistence lines
 - Critical points
 - Triple points
 - First order/second order phase transitions

Phase Diagrams

Along the liquid gas coexistence line increasing the pressure and temperature at constant volume the liquid density becomes lower and the vapor density higher.

Critical point: no difference between liquid and vapor Triple point: liquid, vapor and solid in equilibrium.

How do we compute these lines?

Condition for phase coexistence in a one-component system:

$T_1 = T_2$

$P_1 = P_2$

$\mu_1 = \mu_2$

The Gibbs "Ensemble"

NVT Ensemble

NVT Ensemble

Gibbs Ensemble

Equilibrium!

Distribute n₁ particles over two volumes
Change the volume V₁
Displace the particles

$$Q_{\rm G}(N,V,T) \equiv \sum_{n_1=0}^{N} \frac{1}{V\Lambda^{3N} n_1!(N-n_1)!} \int_0^V dV_1 V_1^{n_1} (V-V_1)^{N-n_1} \\ \int d\mathbf{s}_1^{n_1} \exp[-\beta U(\mathbf{s}_1^{n_1})] \int d\mathbf{s}_2^{N-n_1} \exp[-\beta U(\mathbf{s}_2^{N-n_1})]$$

$$Q_{\rm G}(N,V,T) \equiv \sum_{n_1=0}^{N} \frac{1}{V\Lambda^{3N} n_1! (N-n_1)!} \int_0^V dV_1 V_1^{n_1} (V-V_1)^{N-n_1} \int d\mathbf{s}_1^{n_1} \exp[-\beta U(\mathbf{s}_1^{n_1})] \int d\mathbf{s}_2^{N-n_1} \exp[-\beta U(\mathbf{s}_2^{N-n_1})]$$

Distribute n_1 particles over two volumes:

$$\binom{N}{n_1} = \frac{N!}{n_1!(N-n_1)!}$$

$$Q_{\rm G}(N,V,T) \equiv \sum_{n_1=0}^{N} \frac{1}{V\Lambda^{3N} n_1! (N-n_1)!} \int_0^V dV_1 V_1^{n_1} (V-V_1)^{N-n_1} \\ \int d\mathbf{s}_1^{n_1} \exp[-\beta U(\mathbf{s}_1^{n_1})] \int d\mathbf{s}_2^{N-n_1} \exp[-\beta U(\mathbf{s}_2^{N-n_1})]$$

Integrate volume V₁

$$Q_{\rm G}(N,V,T) \equiv \sum_{n_1=0}^{N} \frac{1}{V\Lambda^{3N} n_1! (N-n_1)!} \int_0^V dV_1 V_1^{n_1} (V-V_1)^{N-n_1} \\ \int d\mathbf{s}_1^{n_1} \exp[-\beta U(\mathbf{s}_1^{n_1})] \int d\mathbf{s}_2^{N-n_1} \exp[-\beta U(\mathbf{s}_2^{N-n_1})]$$

Displace the particles in box 1 and box2

$$Q_{\rm G}(N,V,T) \equiv \sum_{n_1=0}^{N} \frac{1}{V\Lambda^{3N} n_1! (N-n_1)!} \int_0^V dV_1 V_1^{n_1} (V-V_1)^{N-n_1} \int d\mathbf{s}_1^{n_1} \exp[-\beta U(\mathbf{s}_1^{n_1})] \int d\mathbf{s}_2^{N-n_1} \exp[-\beta U(\mathbf{s}_2^{N-n_1})]$$

Probability distribution

$$N(n_1, V_1, \mathbf{s}_1^{n_1}, \mathbf{s}_2^{N-n_1}) \propto \frac{V_1^{n_1}(V - V_1)^{N-n_1}}{n_1!(N - n_1)!} \exp\left\{-\beta [U(\mathbf{s}_1^{n_1}) + U(\mathbf{s}_2^{N-n_1})]\right\}.$$

Particle displacement

Volume change

Particle exchange

Acceptance rules

$$N(n_1, V_1, \mathbf{s}_1^{n_1}, \mathbf{s}_2^{N-n_1}) \propto \frac{V_1^{n_1} (V - V_1)^{N-n_1}}{n_1! (N - n_1)!} \exp\left\{-\beta [U(\mathbf{s}_1^{n_1}) + U(\mathbf{s}_2^{N-n_1})]\right\}$$

Detailed Balance:

$$K(o \to n) = K(n \to o)$$

$$N(o) \times \alpha(o \to n) \times \operatorname{acc}(o \to n) = N(n) \times \alpha(n \to o) \times \operatorname{acc}(n \to o)$$

$$\frac{\operatorname{acc}(o \to n)}{\operatorname{acc}(n \to o)} = \frac{N(n) \times \alpha(n \to o)}{N(o) \times \alpha(o \to n)}$$

$$\frac{\operatorname{acc}(o \to n)}{\operatorname{acc}(n \to o)} = \frac{N(n)}{N(o)}$$

Displacement of a particle in box 1

$$N(n_1, V_1, \mathbf{s}_1^{n_1}, \mathbf{s}_2^{N-n_1}) \propto \frac{V_1^{n_1}(V - V_1)^{N-n_1}}{n_1!(N - n_1)!} \exp\left\{-\beta[U(\mathbf{s}_1^{n_1}) + U(\mathbf{s}_2^{N-n_1})]\right\}$$

$$N(n) \propto \frac{V_1^{n_1} (V - V_1)^{N - n_1}}{n_1! (N - n_1)!} \exp\left\{-\beta [U_1(n) + U(\mathbf{s}_2^{N - n_1})]\right\}$$

$$N(o) \propto \frac{V_1^{n_1} (V - V_1)^{N - n_1}}{n_1! (N - n_1)!} \exp\left\{-\beta [U_1(o) + U(\mathbf{s}_2^{N - n_1})]\right\}$$

$$\frac{\operatorname{acc}(o \to n)}{\operatorname{acc}(n \to o)} = \frac{\frac{V_1^{n_1}(V - V_1)^{N-n_1}}{n_1!(N - n_1)!} \exp\left\{-\beta[U_1(n) + U(s_2^{N-n_1})]\right\}}{\frac{V_1^{n_1}(V - V_1)^{N-n_1}}{n_1!(N - n_1)!} \exp\left\{-\beta[U_1(o) + U(s_2^{N-n_1})]\right\}}$$

Displacement of a particle in box 1

$$N(n_1, V_1, \mathbf{s}_1^{n_1}, \mathbf{s}_2^{N-n_1}) \propto \frac{V_1^{n_1}(V - V_1)^{N-n_1}}{n_1!(N - n_1)!} \exp\left\{-\beta [U(\mathbf{s}_1^{n_1}) + U(\mathbf{s}_2^{N-n_1})]\right\}$$

$$N(n) \propto \frac{V_1^{n_1} (V - V_1)^{N - n_1}}{n_1! (N - n_1)!} \exp\left\{-\beta [U_1(n) + U(\mathbf{s}_2^{N - n_1})]\right\}$$

$$N(o) \propto \frac{V_1^{n_1} (V - V_1)^{N - n_1}}{n_1! (N - n_1)!} \exp\left\{-\beta [U_1(o) + U(\mathbf{s}_2^{N - n_1})]\right\}$$

$$\frac{\operatorname{acc}(o \to n)}{\operatorname{acc}(n \to o)} = \frac{\exp\{-\beta[U_1(n)]\}}{\exp\{-\beta[U_1(o)]\}}$$

Acceptance rules

$$N(n_1, V_1, \mathbf{s}_1^{n_1}, \mathbf{s}_2^{N-n_1}) \propto \frac{V_1^{n_1}(V - V_1)^{N-n_1}}{n_1!(N - n_1)!} \exp\left\{-\beta[U(\mathbf{s}_1^{n_1}) + U(\mathbf{s}_2^{N-n_1})]\right\}.$$

Adding a particle to box 2

$$N(n) \propto \frac{V_1^{n_1-1}(V-V_1)^{N-(n_1-1)}}{(n_1-1)!(N-(n_1-1))!} \exp\left\{-\beta[U_1(n)+U_2(n)]\right\}$$
$$N(o) \propto \frac{V_1^{n_1}(V-V_1)^{N-n_1}}{n_1!(N-n_1)!} \exp\left\{-\beta[U_1(o)+U_2(o)]\right\}$$
$$\frac{\operatorname{acc}(o \to n)}{\operatorname{acc}(n \to o)} = \frac{N(n)}{N(o)}$$

Moving a particle from box 1 to box 2

$$N(n) \propto \frac{V_1^{n_1-1}(V-V_1)^{N-(n_1-1)}}{(n_1-1)!(N-(n_1-1))!} \exp\left\{-\beta[U_1(n)+U_2(n)]\right\}$$

$$N(o) \propto \frac{V_1^{n_1}(V-V_1)^{N-n_1}}{n_1!(N-n_1)!} \exp\left\{-\beta[U_1(o)+U_2(o)]\right\}$$

$$\frac{\operatorname{acc}(o \to n)}{\operatorname{acc}(n \to o)} = \frac{\frac{V_1^{n_1-1}(V-V_1)^{N-(n_1-1)}}{(n_1-1)!(N-(n_1-1))!} \exp\left\{-\beta[U_1(n)+U_2(n)]\right\}}{\frac{V_1^{n_1}(V-V_1)^{N-n_1}}{n_1!(N-n_1)!}} \exp\left\{-\beta[U_1(o)+U_2(o)]\right\}$$

Moving a particle from box 1 to box 2

$$N(n) \propto \frac{V_{1}^{n_{1}-1}(V-V_{1})^{N-(n_{1}-1)}}{(n_{1}-1)!(N-(n_{1}-1))!} \exp\left\{-\beta[U_{1}(n)+U_{2}(n)]\right\}$$

$$N(o) \propto \frac{V_{1}^{n_{1}}(V-V_{1})^{N-n_{1}}}{n_{1}!(N-n_{1})!} \exp\left\{-\beta[U_{1}(o)+U_{2}(o)]\right\}$$

$$\frac{\operatorname{acc}(o \to n)}{\operatorname{acc}(n \to o)} = \frac{\frac{V_{1}^{n_{1}-1}(V-V_{1})^{N-(n_{1}-1)}}{(n_{1}-1)!(N-(n_{1}-1))!} \exp\left\{-\beta[U_{1}(n)+U_{2}(n)]\right\}}{\frac{V_{1}^{n_{1}}(V-V_{1})^{N-n_{1}}}{n_{1}!(N-n_{1})!}} \exp\left\{-\beta[U_{1}(o)+U_{2}(o)]\right\}$$

$$\frac{\operatorname{acc}(o \to n)}{\operatorname{acc}(n \to o)} = \frac{\frac{V_{2}}{n_{2}+1}}{\frac{V_{1}}{n_{1}}} \exp\left\{-\beta[\Delta U_{1}+\Delta U_{2}]\right\}$$

Algorithm 17 (Basic Gibbs Ensemble Simulation)

```
Gibbs ensemble simulation
PROGRAM mc_Gibbs
                                       perform ncycl MC cycles
do icycl=1,ncycl
  ran=ranf() * (npart+nvol+nswap)
  if (ran.le.npart) then
    call mcmove
                                       attempt to displace a particle
  else if (ran.le.(npart+nvol))
    call mcvol
                                       attempt to change the volume
  else
                                       attempt to swap a particle
    call mcswap
  endif
                                       sample averages
  call sample
enddo
end
```

Algorithm 18 (Attempt to Change the Volume in the Gibbs Ensemble)

```
SUBROUTINE mcvol
                                           attempt to change
                                           the volume
                                           energy old conf. box 1
 call toterg(box1,en10)
                                           and 2 (box1: box length)
 call toterg(box2,en2o)
                                           old volume box 1 and 2
 vo1=box1**3
 vo2=v-vo1
                                           random walk in \ln V_1/V_2
 lnvn=log(vo1/vol2) +
      (ranf()-0.5) *vmax
+
                                           new volume box 1 and 2
 v1n=v*exp(lnvn)/(1+exp(lnvn))
 v2n=v-v1n
                                           new box length box 1
 box1n=v1n**(1/3)
                                           new box length box 2
 box2n=v2n**(1/3)
 do i=1, npart
                                           determine which box
   if (ibox(i).eq.1) then
     fact=box1n/box1o
   else
     fact=box2n/box2o
   endif
                                           rescale positions
   x(i) = x(i) * fact
 enddo
                                           total energy box 1
 call toterg(box1n,en1n)
                                           total energy box 2
 call toterg(box2n,en2n)
 arg1=-beta*((en1n-en1o)+
```

```
new box length box 1
 box1n=v1n**(1/3)
                                          new box length box 2
 box2n=v2n**(1/3)
 do i=1, npart
   if (ibox(i).eq.1) then
                                          determine which box
     fact=box1n/box1o
   else
     fact=box2n/box2o
   endif
                                          rescale positions
   x(i) = x(i) * fact
 enddo
                                          total energy box 1
 call toterg(box1n,en1n)
                                          total energy box 2
 call toterg(box2n,en2n)
 arg1=-beta*((en1n-en1o)+
                                          appropriate weight function
+ (npbox(1)+1)*loq(v1n/v1o)/beta)
                                          acceptance rule (8.3.3)
 arg2=-beta*((en2n-en2o)+
+ (npbox(2)+1) * log(v2n/v2o) / beta)
 if (ranf().gt.exp(arg1+arg2)) then
   do i=1, npart
                                          REJECTED
                                          determine which box
     if (ibox(i).eq.) then
        fact=box1o/box1n
     else
        fact=box2o/box2n
     endif
                                          restore old configuration
     x(i) = x(i) * fact
   enddo
 endif
 return
 end
```

```
SUBROUTINE mcswap
 if (ranf().lt.0.5) then
   in=1
   out=2
else
   in=2
   out=1
 endif
xn=ranf()*box(in)
 call ener(xn,enn,in)
w(in) = w(in) + vol(in) *
+ \exp(-beta*enn) / (npbox(in)+1)
 if (npbox(out).eq.0) return
 ido=0
 do while (ido.ne.out)
    o=int(npart*ranf())+1
    ido=ibox(0)
 enddo
 call ener(x(o),eno,out)
 arg=exp(-beta*(enn-eno +
+ log(vol(out) * (npbox(in) +1) /
+ (vol(in) *npbox(out)))/beta))
```

attempts to swap a particle between the two boxes which box to add or remove

new particle at a random position energy new particle in box in update chemical potential (8.3.5)

if box empty return find a particle to be removed

energy particle o in box out

acceptance rule (8.3.4)

```
in=2
   out=1
 endif
 xn=ranf()*box(in)
call ener(xn,enn,in)
w(in) = w(in) + vol(in) *
+ \exp(-beta*enn) / (npbox(in)+1)
 if (npbox(out).eq.0) return
 ido=0
 do while (ido.ne.out)
    o=int(npart*ranf())+1
    ido=ibox(0)
 enddo
 call ener(x(o), eno, out)
 arg=exp(-beta*(enn-eno +
+ loq(vol(out) * (npbox(in) +1) /
+ (vol(in)*npbox(out)))/beta))
 if (ranf().lt.arg) then
   x(o) = xn
   ibox(o)=in
   nbox(out) = npbox(out) - 1
   nbox(in) =npbox(in) +1
endif
 return
 end
```

new particle at a random position energy new particle in box in update chemical potential (8.3.5)

if box empty return find a particle to be removed

energy particle o in box out

acceptance rule (8.3.4)

add new particle to box in

Analyzing the results (1)

Well below T_c

Approaching T_c

Analyzing the results (2)

Well below T_c

Approaching T_c

Analyzing the results (3)

Well below T_c

Approaching T_c

Condition for phase coexistence in a one-component system:

$T_1 = T_2$

$P_1 = P_2$

$\mu_1 = \mu_2$

Phase equilibria from F(V,T)

Common tangent construction

With normal Monte Carlo simulations, we cannot compute "thermal" quantities, such as S, F and G, because they depend on the **total volume of accessible phase space**.

F cannot be computed with importance sampling

$$\left\langle A \right\rangle_{NVT} = \frac{1}{Q_{NVT}} \frac{1}{\Lambda^{3N} N!} \int d\mathbf{r}^{N} A(\mathbf{r}^{N}) \exp\left[-\beta U(\mathbf{r}^{N})\right]$$

$$= \int d\mathbf{r}^{N} A(\mathbf{r}^{N}) P(\mathbf{r}^{N}) = \frac{\int d\mathbf{r}^{N} A(\mathbf{r}^{N}) P(\mathbf{r}^{N})}{\int d\mathbf{r}^{N} P(\mathbf{r}^{N})} P(\mathbf{r}^{N}) = \frac{\exp\left[-\beta U(\mathbf{r}^{N})\right]}{Q_{NVT} \Lambda^{3N} N!}$$

$$= \frac{\int d\mathbf{r}^{N} A(\mathbf{r}^{N}) C \exp\left[-\beta U(\mathbf{r}^{N})\right]}{\int d\mathbf{r}^{N} C \exp\left[-\beta U(\mathbf{r}^{N})\right]} = \frac{\int d\mathbf{r}^{N} \exp\left[-\beta U(\mathbf{r}^{N})\right]}{\int d\mathbf{r}^{N} \exp\left[-\beta U(\mathbf{r}^{N})\right]}$$

Generate configuration using MC:

$$\begin{cases} r_1^N, r_2^N, r_3^N, r_4^N \cdots, r_M^N \end{cases} \qquad \overline{A} = \frac{1}{M} \sum_{i=1}^M A(r_i^N) = \frac{\int dr^N A(r^N) P^{MC}(r^N)}{\int dr^N P^{MC}(r^N)} \\ \text{with} \qquad \qquad = \frac{\int dr^N A(r^N) C^{MC} \exp[-\beta U(r^N)]}{\int dr^N C^{MC} \exp[-\beta U(r^N)]} \\ P^{MC}(r^N) = C^{MC} \exp[-\beta U(r^N)] \qquad \qquad = \frac{\int dr^N A(r^N) \exp[-\beta U(r^N)]}{\int dr^N \exp[-\beta U(r^N)]} \\ = \frac{\int dr^N A(r^N) \exp[-\beta U(r^N)]}{\int dr^N \exp[-\beta U(r^N)]} \end{cases}$$

Solutions:

- 1. "normal" thermodynamic integration
- 2. "artificial" thermodynamic integration
- 3. "particle-insertion" method

How are free energies measured experimentally?

Then take the limit $V_0 \Rightarrow \infty$.

Not so convenient because of divergences. Better:

$$F^{ex}(V) = F(V) - F_{\text{id.gas}}(V)$$
$$= F^{ex}(V_0) + \int_{V_0}^{V} (-P^{ex}) dV$$
$$\Rightarrow 0, \text{ as } V_0 \Rightarrow \infty$$

This approach works if we can integrate from a known reference state - Ideal gas (" $T=\infty$ "), Harmonic crystal ("T=0"),

Otherwise: use "artificial" thermodynamic integration (Kirkwood)

Suppose we know F(N,V,T) for a system with a simple potential energy function U_0 : $F_0(N,V,T)$.

We wish to know $F_1(N,V,T)$ for a system with a potential energy function U_1 .

Consider a system with a mixed potential energy function $(1-\lambda)U_0 + \lambda U_1$: F_{λ}(N,V,T).

$$F_{\lambda}(N,V,T) = \operatorname{const} - kT \ln \int d\mathbf{r}^N \exp(-\beta(\lambda U_1 + (1-\lambda)U_0))$$

hence

$$\frac{\partial F_{\lambda}(N,V,T)}{\partial \lambda} = \frac{\int d\mathbf{r}^{N}(U_{1} - U_{0}) \exp(-\beta(\lambda U_{1} + (1 - \lambda)U_{0}))}{\int d\mathbf{r}^{N} \exp(-\beta(\lambda U_{1} + (1 - \lambda)U_{0}))}$$

-1

Or:

$$\frac{\partial F_{\lambda}(N, V, T)}{\partial \lambda} = \langle U_1 - U_0 \rangle_{\lambda}$$

And therefore

$$F_1(N, V, T) = F_0(N, V, T) + \int_0^1 \langle U_1 - U_0 \rangle_\lambda d\lambda$$

Free Enegy of Solids

More difficult. What is reference? Not the ideal gas.

Instead it is the Einstein crystal: harmonic oscillators around r_0 $U(\lambda; r^N) = (1 - \lambda) U(r^N) + \lambda U(r_0^N) + \lambda \sum_{i=1}^N \alpha (r_i - r_i)^2$ $F = F_{ein} + \int_{\lambda=0}^{\lambda=1} d\lambda \left\langle \frac{\partial U(\lambda)}{\partial \lambda} \right\rangle_{\lambda}$

$$F = F_{ein} + \int_{\lambda=0}^{\lambda=1} d\lambda \left\langle -U(r^N) + U(r_0^N) + \sum_{i=1}^N \alpha(r_i - r_i)^2 \right\rangle_{\lambda}$$

Example: Hard Sphere Freezing

Ρ

1. Nematic liquid crystal:

Start from isotropic phase. Switch on "magnetic field" and integrate around the I-N critical point

2. Modulated Phases (microphases):

Start from an oscillating field at the modulation of interest. Switch off the "magnetic field" while turning on the interaction.

The second derivative is ALWAYS negative:

$$\left(\frac{\partial^2 F}{\partial \lambda^2}\right)_{NVT\lambda} = -\beta \left(\left\langle (U_1 - U_0)^2 \right\rangle_{NVT\lambda} - \left\langle (U_1 - U_0) \right\rangle_{NVT\lambda}^2 \right) \le 0$$

Therefore:

$$\left(\frac{\partial F}{\partial \lambda}\right)_{NVT\lambda=0} \ge \left(\frac{\partial F}{\partial \lambda}\right)_{NVT\lambda}$$

Good test of simulation results...

Tracing Coexistence Curves

If we have a coexistence point on the phase diagram we can integrate along the line while maintaining coexistence.

P en T are equal along coexistence line

$$d\mu_{\alpha} = d\mu_{\beta}$$

Tracing Coexistence Curves

$$\begin{aligned} d\mu &= dg = -sdT + vdP \\ -s_{\alpha}dT + v_{\alpha}dp = -s_{\beta}dT + v_{\beta}dP \\ \frac{dP}{dT} &= \frac{s_{\beta} - s_{\alpha}}{v_{\beta} - v_{\alpha}} \end{aligned}$$
Clapeyron equation
$$\begin{aligned} \frac{dP}{dT} &= \frac{\Delta s}{\Delta v} = \frac{\Delta h}{T\Delta v} \\ \frac{dP}{dT} &= \frac{\Delta(u + Pv)}{T\Delta v} \end{aligned}$$

Chemical Potentials

Particle insertion method to compute chemical potentials

$$\mu \equiv \left(\frac{\partial F}{\partial N}\right)_{V,T}$$

But N is not a continuous variable. Therefore

$$\mu \approx \left(\frac{F(N+1,V,T) - F(N,V,T)}{(N+1) - N}\right)$$

$$F(N+1, V, T) - F(N, V, T) = -kT \ln \frac{Q(N+1, V, T)}{Q(N, V, T)}$$

Does that help?

Yes: rewrite

$$Q(N, V, T) = \frac{1}{N! \Lambda^{3N}} \int d\mathbf{r}^N \exp(-\beta U(\mathbf{r}^N))$$
$$= \frac{V^N}{N! \Lambda^{3N}} \int d\mathbf{s}^N \exp(-\beta U(\mathbf{s}^N; L))$$

s is a scaled coordinate: $0 \le s < 1$

 $\mathbf{r} = \mathbf{L} \mathbf{s}$ (is box size)

$$\frac{Q(N+1,V,T)}{Q(N,V,T)} = \frac{\int ds^{N+1} \exp(-\beta U(s^{N+1}))}{V}$$

$$\frac{1}{(N+1)\Lambda^3} \frac{\int d\mathbf{s}^N \exp(-\beta U(\mathbf{s}^N))}{\int d\mathbf{s}^N \exp(-\beta U(\mathbf{s}^N))}$$

Now write

$$U(\mathbf{s}^{N+1}) \equiv U(\mathbf{s}^N) + \Delta U(\mathbf{s}_{N+1}; \mathbf{s}^N)$$

then

$$\frac{Q(N+1,V,T)}{Q(N,V,T)} =$$

$$\frac{V}{(N+1)\Lambda^3} \int d\mathbf{s}_{N+1} \langle \exp(-\beta \Delta U(\mathbf{s}_{N+1};\mathbf{s}^N)) \rangle$$

And therefore

$$\mu \approx \left(\frac{F(N+1,V,T) - F(N,V,T)}{(N+1) - N}\right)$$
$$\mu = -kT \ln \left(\frac{V}{(N+1)\Lambda^3} \int d\mathbf{s}_{N+1} \langle \exp(-\beta \Delta U(\mathbf{s}_{N+1},\mathbf{s}^N)) \rangle\right)$$

$$-kT\ln\left(\frac{V}{(N+1)\Lambda^3}\right) = kT\ln(\rho\Lambda^3) = \mu^{\text{id.gas}}$$

So, finally, we get:

$$\mu = \mu^{\text{id.gas}} - kT \ln \left(\int d\mathbf{s}_{N+1} \langle \exp(-\beta \Delta U(\mathbf{s}_{N+1}, \mathbf{s}^N)) \rangle \right) \equiv \mu^{\text{id.gas}} + \mu^{\text{ex}}$$

Interpretation:

- 1. Evaluate ΔU for a random insertion of a molecule in a system containing N molecule.
- 2. Compute $\exp(-\beta \Delta U)$
- 3. Repeat M times and compute the average "Boltzmann factor" $\langle \exp(-\beta \Delta U) \rangle$

4. Then
$$\mu^{ex} = -kT \ln \langle \exp(-\beta \Delta U) \rangle$$

Algorithm 16 (Widom Test Particle Insertion)

```
subroutine Widom
xtest=box*ranf()
call ener(xtest,entest)
wtest=wtest
+ + +exp(-beta*entest)
return
end
```

excess chemical potential via the addition of test particles generate a random position determine energy update Boltzmann factor in (7.2.5)

Lennard-Jones fluid

Other ensembles: NPT

Hard spheres

$$\beta \mu^{ex} = -\ln \left(\int \mathrm{ds}_{N+1} \left\langle \exp\left[-\beta \Delta U^{+}\right] \right\rangle_{NVT} \right)$$

$$U(r) = \begin{cases} \infty & r \le \sigma \\ 0 & r > \sigma \end{cases}$$

$$\langle \exp\left[-\beta\Delta U^{+}\right] \rangle = \begin{cases} 0 & \text{if overlap} \\ 1 & \text{no overlap} \end{cases}$$

Probability to insert a test particle!

Problems with Widom method:

Low insertion probability yields poor statistics.

For instance:

Trial insertions that consist of a sequence of intermediate steps.

Examples: changing polymer conformations, moving groups of atoms, ...

What is the problem with polymer simulations?

ACCEPTANCE OF RANDOM INSERTION DEPENDS ON SIZE

What is the problem with polymer simulations?

ACCEPTANCE OF RANDOM INSERTION DEPENDS ON SIZE

ANALOGY:

Finding a seat in a crowded restaurant.

Next: consider the random insert molecule (polymer).

Waiter! Can you seat 100 persons... together please!

Random insertions of polymers in dense liquids usually fail completely...

(Partial) Solution: Biased insertion.

Thijs Vlugt's lecture later this week...

Interpretation:

1. Evaluate ΔU for a random **REMOVAL** of a molecule in a system containing N+1 molecule.

What is wrong?

```
\exp(+\beta\Delta U)
```

is not bounded. The average that we compute can be dominated by INFINITE contributions from points that are NEVER sampled.

What to do?

Consider: $p_{0}(\Delta U) \equiv \frac{\int \exp(-\beta U_{N})\delta(\Delta U - U_{N+1} + U_{N})}{\int \exp(-\beta U_{N})}$ $= \frac{\int \exp(-\beta U_{N})\delta(\Delta U - U_{N+1} + U_{N})}{Q_{N}}$ And also consider the distribution

$$p_1(\Delta U) \equiv \frac{\int \exp(-\beta U_{N+1})\delta(\Delta U - U_{N+1} + U_N)}{\int \exp(-\beta U_{N+1})}$$

 p_0 and p_1 are related:

$$p_1(\Delta U) = \frac{\int \exp(-\beta(U_N + \Delta U))\delta(\Delta U - U_{N+1} + U_N)}{Q_{N+1}}$$
$$= \exp(-\beta\Delta U) \frac{\int \exp(-\beta U_N)\delta(\Delta U - U_{N+1} + U_N)}{Q_{N+1}}$$
$$= \exp(-\beta\Delta U) \frac{p_0(\Delta U)Q_N}{Q_{N+1}}$$

 $\ln p_1(\Delta U) = \beta (\Delta F - \Delta U) + \ln p_0(\Delta U)$ $f_0(\Delta U) \equiv \ln p_0(\Delta U) - 0.5\beta\Delta U$ $f_1(\Delta U) \equiv \ln p_1(\Delta U) + 0.5\beta\Delta U$ Fit f_0 and f_1 to two polynomials that only differ by a constant. Simulate system 0: compute f_0 Simulate system 1: compute f_1 $f_1(\Delta U) \equiv C_1$

 $f_0(\Delta U) \equiv C_0 + a\Delta U + b\Delta U^2 + c\Delta U^3$

 $\beta \Delta F = C_1 - C_0$

Chemical potential

System 0: N-1, V, T, U + 1 ideal gas

System 1: N, V, T, U

$$\Delta\beta F = \beta F_1 - \beta F_0 \equiv \beta \mu^{ex}$$

$$\Delta U = U_1 - U_0$$

System 0: test particle energy System 1: real particle energy $\beta \mu^{ex} = f_1 (\Delta U) - f_0 (\Delta U)$

Does it work for hard spheres?

consider $\Delta U=0$

$$f_1(0) = f_0(0) + \beta \mu$$

$$f_1(0) = \ln(1) + (constant)$$

$$f_0(0) = \ln(P_{acc}) + (constant)$$

$$\beta \mu = -\ln(P_{acc})$$

Non-Boltzmann sampling $\langle A \rangle_{NVT_1} = \frac{1}{Q_{NVT_1}} \frac{1}{\Lambda^{3N} N!} \int d\mathbf{r}^N A(\mathbf{r}^N) \exp[-\beta_1 U(\mathbf{r}^N)]$ $dr^{N}A(r^{N})exp[-A]$ Why are we not using this? T₁ is arbitrary! $\beta \beta_2 U(\mathbf{r}^N) - \beta_2 U(\mathbf{r}^N)$ $dr^{N}A(r^{N})exp[-\beta_{1}U]$ $\mathbf{p}[\beta_2 U(\mathbf{r}^N) - \beta_2 U(\mathbf{r}^N)]$ $|xp| - \beta_1 U$ We only need a single)exp simulation! We perform a simulation at $T=T_2$ zxp[β/ and we determine A at $T=T_1$ $\frac{\langle A \exp[(\beta_2 - \beta_1)U] \rangle_{NVT_2}}{\langle \exp[(\beta_2 - \beta_1)U] \rangle_{NVT_2}}$ 68

Umbrella Sampling

• Start with thermodynamic perturbation.

$$\Delta\beta F = -\ln\left(Q_1/Q_0\right) = -\ln\left(\frac{\int d\mathbf{s}^N \exp(-\beta U_1)}{\int d\mathbf{s}^N \exp(-\beta U_0)}\right)$$
$$\exp\left(-\Delta\beta F\right) = \left(\frac{\int d\mathbf{s}^N \exp(-\beta U_0) \exp(-\beta\Delta U)}{\int d\mathbf{s}^N \exp(-\beta U_0)}\right)$$
$$\exp\left(-\Delta\beta F\right) = \langle \exp\left(-\beta\Delta U\right) \rangle_0$$

Can we use this for free energy difference between arbitrary systems?

Bridging Function

Introduce function $\pi(s^N)$ altering distribution.

$$\exp\left(-\Delta\beta F\right) = \left(\frac{\int d\mathbf{s}^N \pi(\mathbf{s}^N) \exp(-\beta U_1)/\pi(\mathbf{s}^N)}{\int d\mathbf{s}^N \pi(\mathbf{s}^N) \exp(-\beta U_0)/\pi(\mathbf{s}^N)}\right)$$
$$\exp\left(-\Delta\beta F\right) = \frac{\langle \exp(-\beta U_1)/\pi \rangle_{\pi}}{\langle \exp(-\beta U_0)/\pi \rangle_{\pi}}$$

This approach is called umbrella sampling

Landau Free Energy

Often the free energy is needed as a function of a certain order parameter q

$$\beta F = -\ln \frac{1}{\Lambda^{3N} N!} \int d\mathbf{r}^N \exp(-\beta U(\mathbf{r}^N))$$
$$\beta F(q) = -\ln \frac{1}{\Lambda^{3N} N!} \int d\mathbf{r}^N \delta(q'(\mathbf{r}^N) - q) \exp(-\beta U(\mathbf{r}^N))$$
$$\beta F(q) = -\ln P(q)$$

Umbrella Sampling

Add and subtract bias potential w(q) to U

$$P(q) = \frac{\int d\mathbf{r}^{N} \delta\left(q'(\mathbf{r}^{N}) - q\right) \exp\left[-\beta(U(\mathbf{r}^{N}) + w(q') - w(q'))\right]}{\int d\mathbf{r}^{N} \exp\left[-\beta(U(\mathbf{r}^{N} + w(q') - w(q'))\right]}$$

$$P(q) = \frac{\int d\mathbf{r}^{N} \delta\left(q'(\mathbf{r}^{N}) - q\right) \exp\left[-\beta(U(\mathbf{r}^{N}) + w(q'))\right] \exp\left(\beta w(q')\right)}{\int d\mathbf{r}^{N} \exp\left[-\beta(U(\mathbf{r}^{N} + w(q'))) \exp\left(\beta w(q')\right)\right]}$$

$$P(q) = \frac{\left\langle \delta\left(q'(\mathbf{r}^{N}) - q\right) \exp\left(\beta w(q')\right)\right\rangle_{\text{biased}}}{\left\langle \exp\left(\beta w(q')\right)\right\rangle_{\text{biased}}}$$

$$P(q) = \frac{\exp\left(\beta w(q)\right)}{\langle \exp\left(\beta w(q')\right) \rangle_{\text{biased}}} P_{\text{biased}}(q)$$

 $\beta F(q) = -\ln P(q) = -\ln P_{\text{biased}}(q) - \beta w(q) + \text{const}$

Umbrella Sampling

$$\beta F(q) = -\ln P(q) = -\ln P_{\text{biased}}(q) - \beta w(q) + \text{const}$$

Best choice w(q)=-F(q)

Means P_{biased} = constant: entire q-range is equally sampled.

Usually w(q) is difficult to guess: windows

Umbrella Sampling

Different windows have different potential w_i(q)

Reconstructing the Free Energy

Crystal Nucleation

Auer and Frenkel (2002)

2D Local and Global Packing

Perfect Hexagon

3D Global vs. Local Packing

FCC Unit Cell

Perfect Icosahedron

Spaepen (2000)

4D Local and Global Packing

24-cell (24 vertices)

Musin (2003)

4D Hard Sphere Phase Diagram

van Meel et al. (2009)

Order Parameter

Nucleation Barrier

