
Other ensembles?
In the thermodynamic limit the thermodynamic properties are
independent of the ensemble: so buy a bigger computer …

However, it is most of the times much better to think and to carefully
select an appropriate ensemble.

For this it is important to know how to simulate in the various
ensembles.

But for doing this wee need to know the Statistical Thermodynamics
of the various ensembles.



Example (1):
 vapour-liquid equilibrium mixture

Measure the composition of the
coexisting vapour and liquid
phases if we start with a
homogeneous liquid of two
different compositions:
– How to mimic this with the N,V,T

ensemble?
– What is a better ensemble?
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Example (2):
adsorption of water in porous medium

Clay layers can swell upon
adsorption of water:
– How to mimic this in the N,V,T

ensemble?
– What is a better ensemble to use?



Ensembles

• Micro-canonical ensemble: E,V,N
• Canonical ensemble: T,V,N
• Constant pressure ensemble: T,P,N
• Grand-canonical ensemble: T,V,µ



Constant pressure ensemble:
constant N,P,T

Consider a small system that can exchange
volume and energy  with a large reservoir
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Hence, the probability to find Ei,Vi:
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Grand-canonical ensemble:
constant µ,V,T

Consider a small system that can exchange
particles and energy with a large reservoir
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Hence, the probability to find Ei,Ni:
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Relating macroscopic observables to
microscopic quantities

Example:

Heat capacity

Pressure

Diffusion coefficient



Computing transport coefficients from an
EQUILIBRIUM simulation.

How?

Use linear response theory (i.e. study decay of fluctuations in
an equilibrium system)

Linear response theory in 3 slides:



Consider the response of an observable A due to an
external field fB that couples to an observable B:

For small fB we can linearize:

For simplicity, assume that



Hence

Now consider a weak field that is switched off at t=0.

fB

ΔA

0
t



Using exactly the same reasoning as in the static case, we
find:



Simple example: Diffusion



Average total displacement:

Mean squared displacement:



Macroscopic diffusion equations

Fick’s laws:

(conservation law)

(constitutive law)



Combine:

Initial condition:

Solve:



Compute mean-squared width:



Integrating the left-hand side by parts:



Or:

This is how Einstein proposed to measure the
diffusion coefficient of Brownian particles







(“Green-Kubo relation”)



Other examples: shear viscosity



Other examples: thermal conductivity



Other examples: electrical conductivity



The Monte Carlo Method

Aim: to compute thermal averages of
equilibrium systems.

Where  i labels all eigenstates of the system, and



Classical limit: replace the SUM over quantum states by an
INTEGRAL of phase space

Where H is the Hamiltonian of the system and β=1/kT

In replacing the sum by an integral, we have attributed a
“volume” h3N to every quantum state



Problem:

We cannot compute the sum over all quantum states
(because there are so many)

And we cannot compute the classical integral either (except
the integration over momenta).

Consider “normal” numerical integration

100 particles, 3 dimensions, 10 points in every direction.

Requires 10300 points for a very poor estimate of the
integral…



Similar problem
(but much less
serious):

Measure the
depth of the Nile
by quadrature…



Brute-force Monte Carlo (“Random sampling”)

(M random points ri in (hyper)volume VN )



BETTER
STRATEGY:

IMPORTANCE

SAMPLING



We wish to perform a RANDOM WALK in
configuration space, such that

The number of times that each point is visited,
is proportional to its Boltzmann weight.



Then

How do we achieve that?



Whatever our rule is for moving from
one point to another, it should not
destroy the equilibrium distribution.

That is: in equilibrium we must have



Stronger condition:

For every pair {n,o}.

Detailed Balance



Now we construct the transition probabilities

Then, detailed balance implies that:



Often, we choose

Then it follows that



Metropolis, Rosenbluth,Rosenbluth,

Teller and Teller choice:



Kirkwood’s objection:

“If a trial move has been rejected, one should not count
the original state AGAIN…”

Counter-example:

Ideal gas on a lattice.



Problem for both MC and MD:

“non-ergodicity”

(i.e. the sampling is limited to a subset
of all possible states of the system)



Often, ergodicity problems occur at low
temperatures

(glasses, gels, disordered crystals, …)

ANALOGY:



The Non-ergodic ponds
…in summer

The ergodic ponds
…in spring



In Statistical Mechanics language:

“Glassy” energy landscapes.

At low temperatures, breaks up into many
“ponds”,

At high temperatures: one “ergodic” lake.



Parallel Tempering

COMBINE “summer”and “spring” in a
SINGLE Parallel simulation



In practice:

System 1 at
temperature T1

System 2 at
temperature T2

Boltzmann factor Boltzmann factor

Total Boltzmann factor



SWAP move

System 1 at
temperature T2

System 2 at
temperature T1

Boltzmann factor Boltzmann factor

Total Boltzmann factor



Ratio



Systems may swap temperature if their
combined Boltzmann factor allows it.
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Practical issues:

1. Boundary conditions

2. Time-saving devices



In small systems, boundary effects are always
large.

1000 atoms in a simple cubic crystal – 488
boundary atoms.

1000000  atoms in a simple cubic crystal – still
6% boundary atoms…



“Solution” : Periodic boundary conditions



The most time-consuming part of any simulation is the
evaulation of all the interactions between the molecules.

In general: N(N-1)/2  = O(N2)

But often, intermolecular forces have a short range:

Therefore, we do not have to consider interactions with far-
away atoms…



Verlet list



Link list



NOTE:

Long-ranged forces require special techniques.

1. Coulomb interaction (1/r in 3D)

2. Dipolar interaction (1/r3 in 3D)

…and, in a different context:

1. Interactions through elastic stresses (1/r in 3D)

2. Hydrodynamic interactions (1/r in 3D)

3. …



Beyond standard Monte Carlo



Metropolis, Rosenbluth,Rosenbluth, Teller and Teller:

Metropolis Monte Carlo:

1. generate trial moves

2. Move if accepted

3. Otherwise, stay where you are

Alternative: “symmetric rule”



Unsatisfactory?





In particular, if:

Then

(100% acceptance)

Solution of conflict: if we do not impose

then



100% acceptance can be achieved in special cases:
e.g. Swendsen-Wang algorithm

Discrete spin models (Potts, Ising).

Illustration: 2D Ising model:

Parallel nearest neighbor spins: energy –J

Anti-parallel nearest neighbor spins: energy +J



Snapshot: some neighbors are parallel,
others anti-parallel



Count number of bonds between parallel neighbors:  Np

Number of bonds between anti-parallel neigbors is:   Na

Total energy: U = (Na-Np) J



Now, make “bonds”. Bonds only form between parallel
neighbors. The probability to have a bond (red line) between
parallel neighbors is p (as yet undetermined). With a probability
1-p, parallel neighbors are not connected (blue dashed line).



Form clusters of all spins that are connected by bonds. Some
clusters are all “spin up” others are all “spin down”.  Let us
denote the number of clusters by M.



The probability to generate a particular
cluster structure where there are nc bonds
between Np pairs of parallel neighbors is:



Now randomly flip clusters. This yields a new cluster
configuration with probability P(flip) =(1/2)M.

Then reconnect parallel spins





New cluster structure!

Now make it into a Monte Carlo algorithm:







Moreover, we want 100% acceptance, i.e.:

Pacc(o→n) = Pacc(n→o) = 1



Hence:

But remember:



Combining this with:

we obtain:



100% acceptance!!!



ARE YOU HAPPY
NOW???



Yes
? No? No!

No! No!
No!

No!

No!
No!

No!
No!

No!

No!
No!

No!
No!



If we construct n clusters and we can flip each one
independently, then we have generated 2n possible
states…

…and yet we accept only one!

Why not?



Include “rejected” moves in the sampling

Dangerous?:

Metropolis “importance” sampling is based on
the earlier (Ulam/von Neumann) rejection
method applied to random MC sampling

Waste Recycling in MC SAMPLING



This is the key:



This, we can rewrite as:


