Advanced Molecular Dynamics

Velocity scaling Andersen Thermostat Hamiltonian & Lagrangian Appendix A Nose-Hoover thermostat Multiple Timesteps Car-Parrinello Molecular Dynamics

Constant Temperature Naïve approach

Velocity scaling

$$\frac{3}{2}k_B T = \frac{1}{N}\sum_{i=1}^N \frac{1}{2}mv_i^2$$
$$v_i \to v_i \sqrt{\frac{T_{\text{req}}}{T}}$$

Do we sample the canonical ensemble?

Partition function

$$Q_{NVT} = \frac{1}{h^{3N}N!} \int d\mathbf{p}^{N} \exp\left[-\beta \sum p_{i}^{2}/2m\right] \int d\mathbf{r}^{N} \exp\left[-\beta U\left(\mathbf{r}^{N}\right)\right]$$

Maxwell-Boltzmann velocity distribution

$$P(p) = \left(\frac{\beta}{2\pi m}\right)^{3/2} \exp\left[-\beta p^2/2m\right]$$
$$\left\langle p^2 \right\rangle = \int dp P(p) p^2$$
$$= \left(\frac{\beta}{2\pi m}\right)^{3/2} \int dp 4\pi p^4 \exp\left[-\beta p^2/2m\right]$$
$$= \frac{3m}{\beta}$$

$$P(p) = \left(\frac{\beta}{2\pi m}\right)^{3/2} \exp\left[-\beta p^2/2m\right]$$
$$\left\langle p^2 \right\rangle = \int dp P(p) p^2 = \left(\frac{\beta}{2\pi m}\right)^{3/2} \int dp 4\pi p^4 \exp\left[-\beta p^2/2m\right] = \frac{3m}{\beta}$$
$$\left\langle p^4 \right\rangle = \int dp P(p) p^4 = 15 \left(\frac{m}{\beta}\right)^2$$

Fluctuations in the momentum:

$$\frac{\sigma_{p^2}^2}{\left\langle p^2 \right\rangle^2} = \frac{\left\langle p^4 \right\rangle - \left\langle p^2 \right\rangle^2}{\left\langle p^2 \right\rangle^2} = \frac{15\left(\frac{m}{\beta}\right)^2 - \left(\frac{3m}{\beta}\right)^2}{\left(\frac{3m}{\beta}\right)^2} = \frac{2}{3}$$

Fluctuations in the temperature

$$\frac{\sigma_{k_BT}^2}{\langle k_BT \rangle^2} = \frac{\langle (k_BT)^2 \rangle - \langle k_BT \rangle^2}{\langle k_BT \rangle^2} = \frac{2}{3N}$$

$$\langle k_B T \rangle = \left\langle \frac{1}{3N} \sum_{i=1}^{N} p_i^2 / m \right\rangle = \frac{1}{3Nm} N \left\langle p^2 \right\rangle$$

$$\left\langle \left(k_B T\right)^2 \right\rangle = \left\langle \frac{1}{\left(3mN\right)^2} \left(\sum_{i=1}^{N} p_i^2\right)^2 \right\rangle$$

$$= \left\langle \frac{1}{\left(3mN\right)^2} \left(\sum_{i=1}^{N} p_i^4 + \sum_{i=1}^{N} \sum_{\substack{j=1\\j \neq i}}^{N} p_i^2 p_j^2\right) \right\rangle$$

$$= \frac{1}{\left(3mN\right)^2} \left(N \left\langle p^4 \right\rangle - N \left(N-1\right) \left\langle p^2 \right\rangle^2\right)$$

$$\frac{\sigma_{k_B T}^2}{\left\langle k_B T \right\rangle^2} = \frac{N \left\langle p^4 \right\rangle - N \left(N-1\right) \left\langle p^2 \right\rangle^2 - \left(N \left\langle p^2 \right\rangle\right)^2}{\left(N \left\langle p^2 \right\rangle\right)^2}$$

$$= \frac{1}{N} \frac{\left\langle p^4 \right\rangle - \left\langle p^2 \right\rangle^2}{\left\langle p^2 \right\rangle^2} = \frac{2}{3N}$$

Andersen thermostat

Every particle has a fixed probability to collide with the Andersen demon

After collision the particle is give a new velocity

$$P(v) = \left(\frac{\beta}{2\pi m}\right)^{3/2} \exp\left[-\beta m v^2/2\right]$$

The probabilities to collide are uncorrelated (Poisson distribution)

$$P(t;\nu) = v \exp\left[-vt\right]$$

Algorithm 14 (Molecular Dynamics: Andersen Thermostat)

```
program md_Andersen
call init(temp)
call force(f,en)
t=0
do while (t.lt.tmax)
    call integrate(1,f,en,temp)
    call force(f,en)
    call integrate(2,f,en,temp)
    t=t+dt
    call sample
enddo
stop
end
```

```
MD at constant temperature
initialization
determine the forces
```

MD loop first part of the eqs. of motion determine the forces second part of eqs. of motion

sample averages

Algorithm 15 (Equations of Motion: Andersen Thermostat)

Andersen thermostat: static properties

Andersen thermostat: dynamic properties

Hamiltonian & Lagrangian

The equations of motion give the path that starts at t_1 at position $x(t_1)$ and end at t_2 at position $x(t_2)$ for which the action (S) is the minimum

Lagrangian

Cartesian coordinates (x, \dot{x}) (Newton) \rightarrow Generalized coordinates (q, \dot{q}) (?)

Lagrangian

$$L(x, \dot{x}) = U_{k}(\dot{x}) - U_{p}(x)$$

$$L(q, \dot{q}) = U_{k}(\dot{q}) - U_{p}(q)$$
The true path plus deviation
$$S = \int_{t_{1}}^{t_{2}} dt L(x, \dot{x}) = \int_{t_{1}}^{t_{2}} dt L(q, \dot{q})$$

$$q(t) = \underline{q}(t) + \eta(t) \longrightarrow$$

$$S[q+\eta] = S[q] + \int_{t_{1}}^{t_{2}} dt \left[-\frac{d}{dt} \frac{\partial L(q, \dot{q})}{\partial \dot{q}} + \frac{\partial L(q, \dot{q})}{\partial q} \right] \eta(t)$$

Should be 0 for all paths

$$S[q+\eta] = S[q] + \int_{t_1}^{t_2} dt \left[-\frac{d}{dt} \frac{\partial L(q,\dot{q})}{\partial \dot{q}} + \frac{\partial L(q,\dot{q})}{\partial q} \right] \eta(t)$$

$$\frac{d}{dt} \frac{\partial L(q,\dot{q})}{\partial \dot{q}} = \frac{\partial L(q,\dot{q})}{\partial q}$$
Equations of motion
Conjugate momentum

$$p_q = \frac{\partial L(q,\dot{q})}{\partial \dot{q}}$$

$$\dot{p}_q = \frac{\partial L(q,\dot{q})}{\partial q}$$
Department of Chemical Equations is the second equation of the second equation is the second equation equation is the second equation is the second equation equation is the second equation is the second equation equation is the second equation equation is the second equation equ

Newton?

$$L(q,\dot{q}) = U_k(\dot{q}) - U_p(q) \qquad \frac{d}{dt} \frac{\partial L(q,\dot{q})}{\partial \dot{q}} = \frac{\partial L(q,\dot{q})}{\partial q}$$

Valid in any coordinate system: Cartesian

$$L\left(x,\dot{x}\right) = \frac{1}{2}m\dot{x}^{2} - U_{p}\left(x\right)$$

Conjugate momentum

$$p_{x} = \frac{\partial L(x, \dot{x})}{\partial \dot{x}} = m\dot{x}$$
$$\dot{p}_{x} = \frac{\partial L(x, \dot{x})}{\partial x} = -\frac{\partial U_{p}(x)}{\partial x} = F$$

Lagrangian dynamics

We have:

With these variables we can do statistical thermodynamics

2nd order differential equation

$$(q,\dot{q}) \rightarrow \ddot{q} = \cdots$$

Two 1st order differential equations

$$(q, p) \rightarrow \dot{q} = \cdots \land \dot{p} = \cdots$$

Change dependence:

$$(q,\dot{q}) \rightarrow (q,\dot{p})$$

$$L(q,\dot{q}) \qquad (q,\dot{q}) \rightarrow (q,p) \qquad \text{Hamiltonian}$$

$$p = \frac{\partial L(q,\dot{q})}{\partial \dot{q}} \qquad \dot{p} = \frac{\partial L(q,\dot{q})}{\partial q}$$

$$H(q,p) = \dot{q}p - L(q,\dot{q})$$

$$dH(q,p) = d(qp) - dL(q,\dot{q})$$

$$= \dot{q}d(p) + pd(\dot{q}) - \left[\frac{\partial L(q,\dot{q})}{\partial q}dq + \frac{\partial L(q,\dot{q})}{\partial \dot{q}}dq\right]$$

$$= -\dot{p}dq + \dot{q}d(p)$$

$$dH(q,p) = \left(\frac{\partial H}{\partial q}\right)dq + \left(\frac{\partial H}{\partial p}\right)dp \qquad \begin{cases} \dot{q} = \frac{\partial H}{\partial p} \\ \dot{p} = -\frac{\partial H}{\partial q} \end{cases}$$
Hamilton's equations of motion

Newton?

$$L(x,\dot{x}) = \frac{1}{2}m\dot{x}^2 - U_p(x)$$

Conjugate momentum

$$p = \frac{\partial L(x, \dot{x})}{\partial \dot{x}} = m\dot{x}$$

Hamiltonian

$$H(x, p) = \dot{x}p - L(x, \dot{x}) \qquad \dot{x} = \frac{\partial H}{\partial p} = \frac{p}{m}$$
$$= \frac{p^2}{m} - \left[\frac{1}{2}m\dot{x}^2 - U_p(x)\right] \qquad \dot{p} = -\frac{\partial H}{\partial x} = -\frac{\partial U_p(x)}{\partial x}$$
$$\dot{p} = \frac{1}{2}\frac{p^2}{m} + U_p(x)$$

Lagrangian

Nosé thermostat

$$L_{\text{Nose}} = \sum_{i=1}^{N} \frac{1}{2} m s^{2} \dot{r}_{i}^{2} - U(r^{N}) - \frac{1}{2} Q \dot{s}^{2} - \frac{g}{\beta} \ln s$$

Hamiltonian
$$H_{\text{Nose}} = \sum_{i=1}^{N} \dot{r}_{i} p_{i} + \dot{s} p_{s} - L(x, \dot{x})$$

Associated mass

Conjugate momentum

$$p_{i} = \frac{\partial L}{\partial \dot{r}_{i}} = ms^{2}\dot{r}_{i} \qquad p_{s} = \frac{\partial L}{\partial \dot{s}} = Q\dot{s}$$

$$H_{\text{Nose}} = \sum_{i=1}^{N} \frac{p_{i}^{2}}{2ms^{2}} + \frac{p_{s}}{2Q} + U(r^{N}) + \frac{g}{\beta}\ln s$$

$$p' = p/s$$

$$= H_{\text{Nose}}(p', r) + \frac{p_{s}}{2Q} + \frac{g}{\beta}\ln s$$

Nosé and thermodynamics

$$H_{\text{Nose}} = H_{\text{Nose}} (p', r) + \frac{p_s^2}{2Q} + \frac{L}{\beta} \ln s$$

$$Q_{\text{Nose}} = \frac{1}{N!} \int dp_s \int dp^N \int dr^N \int ds \delta(H_{\text{Nose}} - E)$$

$$= \frac{1}{N!} \int dp_s \int dp^{NN} \int dr^N \int ds s^{3N} \delta\left(H(p', r) + \frac{p_s^2}{2Q} + \frac{L}{\beta} \ln s - E\right)$$

$$= \frac{1}{N!} \int dp_s \int dp^{NN} \int dr^N \int ds \frac{\beta s^{3N+1}}{L} \delta\left(s - e^{\frac{\beta}{L}\left[E - H(p', r) - \frac{p_s}{2Q}\right]}\right)$$

$$= \frac{1}{N!} \int dp_s \int dp^{NN} \int dr^N \frac{\beta}{L} e^{\frac{\beta(3N+1)}{L}\left[E - H(p', r) - \frac{p_s}{2Q}\right]}$$

$$= \frac{C}{N!} \int dp^{NN} \int dr^N e^{-\frac{\beta(3N+1)}{L}H(p', r)} \qquad L = 3N+1$$

$$= \frac{C}{N!} \int dp^{NN} \int dr^N e^{-\frac{\beta H(p', r)}{L}}$$
Constant plays no role in thermodynamics

Recall MD $Q_{NVE} = \frac{1}{N!} \int dp^N \int dr^N \delta \left(E - H(r^N, p^N) \right)$ MC $Q_{NVT} = \frac{1}{N!} \int dp^N \int dr^N \exp \left[-\beta H(r^N, p^N) \right]$

Delta functions

$$\int dsh'(s)\delta(h(s)) = \int d[h(s)]\delta(h(s))$$
$$= \int ds\delta(s-s_0)$$
$$h(s_0) = 0$$
$$\int dsh'(s)\delta(h(s)) = \int ds\delta(s-s_0)$$
$$\delta(h(s)) = \frac{\delta(s-s_0)}{h'(s)}$$

$$\delta(h(s)) = \frac{\delta(s-s_0)}{h'(s)}$$

$$\delta\left(H(p',r) + \frac{p_s}{2Q} + \frac{L}{\beta}\ln s - E\right)$$

$$h(s) = H(p',r) + \frac{p_s}{2Q} + \frac{L}{\beta}\ln s - E$$

$$h'(s) = \frac{g}{\beta}\frac{1}{s} \qquad s_0 = \exp\left\{\frac{\beta}{L}\left[E - H(p',r) - \frac{p_s}{2Q}\right]\right\}$$

$$\frac{\beta s}{L}\delta\left(s - e^{\frac{\beta}{L}\left[E - H(p',r) - \frac{p_s}{2Q}\right]}\right)$$

Lagrangian Equations of Motion $L_{\text{Nose}} = \sum_{i=1}^{N} \frac{1}{2} m s^2 \dot{r}_i^2 - U(r^N) - \frac{1}{2} Q \dot{s}^2 - \frac{g}{\beta} \ln s$

Hamiltonian

$$H_{\text{Nose}} = \sum_{i=1}^{N} \frac{p_i^2}{2ms^2} + \frac{p_s^2}{2Q} + U(r^N) + \frac{g}{\beta} \ln s$$

Conjugate momenta

$$p_i = \frac{\partial L}{\partial \dot{r_i}} = ms^2 \dot{r_i} \qquad p_s = \frac{\partial L}{\partial \dot{s}} = Qs$$

Equations of motion:

Multiple Timesteps

 \mathbf{p}

$$i\mathcal{L} \equiv i\mathcal{L}_{r} + i\mathcal{L}_{p} = \dot{\mathbf{r}} - \mathbf{r} + \dot{\mathbf{p}} - \mathbf{r}$$
$$(t) = \exp(i\mathcal{L}_{r}t) \quad (0)$$
$$= \exp\left(\dot{\mathbf{r}}(0)t - \mathbf{r} \quad (0)\right)$$
$$= \sum_{n=0}^{\infty} \frac{(\dot{\mathbf{r}}(0)t)^{n}}{n!} - \frac{n}{\mathbf{r}^{n}} \quad (0)$$
$$= \left(\mathbf{p}^{N}(0), (\mathbf{r}(0) + \dot{\mathbf{r}}(\mathbf{0})t)^{N}\right)$$

Shift of coordinates $\mathbf{r}(0) \rightarrow \mathbf{r}(0) + \dot{\mathbf{r}}(\mathbf{0})t$

22

$$i\mathcal{L} \equiv i\mathcal{L}_{r} + i\mathcal{L}_{p} = \dot{\mathbf{r}}\frac{\partial}{\partial \mathbf{r}} + \dot{\mathbf{p}}\frac{\partial}{\partial \mathbf{p}}$$

$$f(t) = \exp(i\mathcal{L}_{r}t)f(0)$$

$$= \exp\left(\dot{\mathbf{r}}(0)t\frac{\partial}{\partial \mathbf{r}}f(0)\right) \qquad f(t) = \exp(i\mathcal{L}_{p}t)f(0)$$

$$= \exp\left(\dot{\mathbf{r}}(0)t\frac{\partial}{\partial \mathbf{r}}f(0)\right) \qquad = \exp\left(\dot{\mathbf{p}}(0)t\frac{\partial}{\partial \mathbf{p}}f(0)\right)$$

$$= \int_{n=0}^{\infty} \frac{(\dot{\mathbf{r}}(0)t)^{n}}{n!}\frac{\partial^{n}}{\partial \mathbf{r}^{n}}f(0) \qquad = \sum_{n=0}^{\infty} \frac{(\dot{\mathbf{p}}(0)t)^{n}}{n!}\frac{\partial^{n}}{\partial \mathbf{p}^{n}}f(0)$$

$$= f\left((\mathbf{p}(0) + \dot{\mathbf{p}}(\mathbf{0})t)^{N}, \mathbf{r}^{N}(0)\right)$$
Shift of coordinates
$$\mathbf{r}(0) \to \mathbf{r}(0) + \dot{\mathbf{r}}(\mathbf{0})t \qquad \mathbf{p}(0) + \dot{\mathbf{p}}(\mathbf{0})t$$

Multiple time steps

• What to use for stiff potentials:

-Fixed bond-length: constraints (Shake)-Very small time step

27

$$\begin{aligned} \mathbf{F} &= \mathbf{F}_{\text{short}} + \mathbf{F}_{\text{long}} & \text{Multiple}\\ i\mathcal{L} &\equiv i\mathcal{L}_r + i\mathcal{L}_p = \mathbf{v}\frac{\partial}{\partial \mathbf{r}} + \frac{\mathbf{F}}{m}\frac{\partial}{\partial \mathbf{v}} & \text{Time steps} \\ i\mathcal{L} &\equiv i\mathcal{L}_{\text{short}} + i\mathcal{L}_{\text{long}} \\ i\mathcal{L} &\equiv i\mathcal{L}_{\text{short}} + i\mathcal{L}_{\text{long}} \\ i\mathcal{L}_{\text{short}} &= \frac{\mathbf{F}_{\text{short}}}{m}\frac{\partial}{\partial \mathbf{v}} & i\mathcal{L}_{\text{long}} = \frac{\mathbf{F}_{\text{long}}}{m}\frac{\partial}{\partial \mathbf{v}} \\ \end{aligned}$$
Trotter expansion:

$$e^{i(\mathcal{L}_{\text{long}} + \mathcal{L}_{\text{short}} + \mathcal{L}_r)\Delta t} \approx e^{i\mathcal{L}_{\text{long}}\Delta t/2} e^{i(\mathcal{L}_{\text{short}} + \mathcal{L}_r)\Delta t} e^{i\mathcal{L}_{\text{long}}\Delta t/2} \\ \text{Introduce: } \delta t = \Delta t/n \\ \approx e^{i\mathcal{L}_{\text{long}}\Delta t/2} \left[e^{i\mathcal{L}_{\text{short}}\delta t/2} e^{i\mathcal{L}_r\delta t} e^{i\mathcal{L}_{\text{short}}\delta t/2} \right]^n e^{i\mathcal{L}_{\text{long}}\Delta t/2} \end{aligned}$$

6

$$e^{(i\mathcal{L}_{long}\Delta t/2)}: \mathbf{v}\left(t + \frac{\Delta t}{2}\right) \to \mathbf{v}(t) + \frac{\Delta t}{2m}\mathbf{f}_{long}(t)$$
Do i=1, n
$$e^{(i\mathcal{L}_{short}\delta t/2)}: \mathbf{v}\left(t + \frac{\Delta t}{2} + \frac{\delta t}{2}\right) \to \mathbf{v}(t + \frac{\Delta t}{2}) + \frac{\delta t}{2m}\mathbf{f}_{short}(t)$$

$$e^{(i\mathcal{L}_{r}\Delta t)}: \mathbf{r}\left(t + \delta t\right) \to \mathbf{r}(t) + \delta t\mathbf{v}(t + \Delta t/2 + \delta t/2)$$

$$e^{(i\mathcal{L}_{short}\delta t/2)}: \mathbf{v}\left(t + \frac{\Delta t}{2} + \delta t\right) \to \mathbf{v}\left(t + \frac{\Delta t}{2} + \frac{\delta t}{2}\right) + \frac{\delta t}{2m}\mathbf{f}_{short}(t + \delta t)$$
enddo

• System:

N particles: $\mathbf{R}^N, \dot{\mathbf{R}}^N, \mathbf{P}_I = M_I \dot{\mathbf{R}}$

• Lagrangian:

$$\mathcal{L}(\mathbf{R}^N, \dot{\mathbf{R}}^N) = \mathcal{K}(\dot{\mathbf{R}}^N) - \mathcal{V}(\mathbf{R}^N)$$

• Equation of Motion:

$$\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{\mathbf{R}}_{I}} - \frac{\partial \mathcal{L}}{\partial \mathbf{R}_{I}} = 0 \quad \rightarrow \quad M_{I}\ddot{\mathbf{R}} = -\frac{\partial}{\partial \mathbf{R}_{I}}\mathcal{V}(\mathbf{R}^{\mathcal{N}})$$

• Molecular Dynamics trajectory:

Numerical time propagation with discrete time step Issues: constants of motion, ergodicity, thermostats, barostats, ... Car-Parrinello Molecular Dynamics Another Extended Lagrangian Method

Ab Initio Molecular Dynamics

Born-Oppenheimer

- Instantaneous relaxation to electronic ground state
- No coupling ionic and true electronic dynamics

$$M_I \ddot{\mathbf{R}}_I = -\frac{\partial}{\partial \mathbf{R}_I} \left[E(\mathbf{R}^N) + \mathcal{V}_{nn}(\mathbf{R}^N) \right]$$

- Ionic forces from electronic structure calculation
- Knowledge of electronic properties and its time evolution
- Electronic structure methods:
 - DFT
 - Hartree Fock, MCSCF
 - Tight binding, semi-emperical

Beyond Born-Oppenheimer

- Surface hopping
- Time dependent DFT

Born Oppenheimer Molecular Dynamics (DFT)

• Kohn-Sham expression for electronic energy

$$E(\mathbf{R}^N) = \min_n E^{KS}[n(\mathbf{r}), \mathbf{R}^N]$$

- 1 Determine E^{KS} by direct minimization or self-consistent diagonalization of \mathcal{H}^{KS}
- 2 Evaluate force in ground state using Hellman-Feynman theorem*

$$n(\mathbf{r}) = n_o(\mathbf{r}) = \sum_{i=1}^{\mathcal{N}} \langle \psi_{i,0} | \psi_{i,0} \rangle$$
$$-\frac{\partial}{\partial \mathbf{R}_I} E(\mathbf{R}^N) = \int_{\Omega} d\mathbf{r} \ n_0(\mathbf{r}) \frac{\partial}{\partial \mathbf{R}_I} \ \mathcal{V}_{ext}(\mathbf{r}, \mathbf{R}^N)$$

- 3 Propagate in time
- 4 Repeat from 1 on
- Verify that dynamics is performed properly by checking constants of motion (Energy).

Born-Oppenheimer MD issues

- Preserving constant of motion requires high accuracy of E_{KS}
- Competition between accuracy and computational cost

Car–Parrinello MD

Define dynamical system with both nuclei and Kohn-Sham orbitals as degrees of freedom.

Car-Parrinello Lagrangian \mathcal{L}_{CP}

$$\mathcal{L}_{CP}(\mathbf{R}^{N}, \dot{\mathbf{R}}^{N}, \psi^{\mathcal{N}}, \dot{\psi}^{\mathcal{N}}) = \sum_{I \ \frac{1}{2}} M_{I} \dot{\mathbf{R}}_{I}^{2} + \sum_{i} \mu \langle \dot{\psi}_{i} | \dot{\psi}_{i} \rangle - E_{KS}[n, \mathbf{R}^{N}] - \sum_{ij} \Lambda_{ij} (\langle \psi_{i} | \psi_{i} \rangle - \delta_{ij})$$
$$n(\mathbf{r}) = \sum_{i=1}^{\mathcal{N}} \langle \psi_{i} | \psi_{i} \rangle$$

Equations of motion

$$\frac{d}{dt}\frac{\partial \mathcal{L}_{\rm CP}}{\partial \dot{\mathbf{R}}_{I}} = \frac{\partial \mathcal{L}_{\rm CP}}{\partial \mathbf{R}_{I}} \qquad \qquad \frac{d}{dt}\frac{\delta \mathcal{L}_{\rm CP}}{\delta \langle \dot{\psi}_{i} \mid} = \frac{\delta \mathcal{L}_{\rm CP}}{\delta \langle \psi_{i} \mid}$$
$$M_{I}\ddot{\mathbf{R}}_{I} = -\frac{\partial E^{\rm KS}}{\partial \mathbf{R}_{I}} + \sum_{ij}\Lambda_{ij}\frac{\partial}{\partial \mathbf{R}_{I}} \langle \psi_{i} \mid \psi_{j} \rangle$$
$$\mu \mid \ddot{\psi}_{i} \rangle = -\frac{\delta E^{\rm KS}}{\delta \langle \psi_{i} \mid} + \sum_{j}\Lambda_{ij} \mid \psi_{j} \rangle$$

 $\begin{aligned} & \operatorname{Car-Parrinello\ MD:\ Characteristics} \\ \mathcal{L}_{CP}(\mathbf{R}^{N}, \dot{\mathbf{R}^{N}}, \psi^{\mathcal{N}}, \dot{\psi}^{\mathcal{N}}) = \\ & \sum_{I} \frac{1}{2} M_{I} \dot{\mathbf{R}}_{I}^{2} + \sum_{i} \mu \langle \dot{\psi}_{i} | \dot{\psi}_{i} \rangle - E_{KS}[n, \mathbf{R}^{N}] - \sum_{ij} \Lambda_{ij} (\langle \psi_{i} | \psi_{i} \rangle - \delta_{ij}) = \\ & \mathcal{K}_{n} + \mathcal{K}_{e} - E_{KS} - \text{constraints.} \end{aligned}$

- μ fictitious "electronic mass"
- Λ_{ij} Lagrange multipliers to ensure orthonormality of orbitals
- Time propogation of ionic positions and orbitals simulateously (in BOMD subsequently).
- System not exactly in the ground state $\rightarrow E_{KS}$ not ground state energy
- $\mathcal{H}_{CP} = \mathcal{K}_n + \mathcal{K}_e + E_{KS}$ is constant of motion
- if \mathcal{K}_e is \sim constant, $\mathcal{K}_n + E_{KS}$ is approximately constant.
- if \mathcal{K}_e is small, $H = \mathcal{K}_n + E_{KS}$ is near to BO surface: "low electronic temperature" or "cold electrons".

CPMD: Conservation of Energy

Car-Parrinello Total energy rigorlously conserved by construction

• Forces on nuclei

$$\frac{\partial \mathcal{L}}{\partial \mathbf{R}_I} = -\frac{\partial E_{KS}}{\partial \mathbf{R}_I}$$

• Forces on electrons

$$\frac{\delta \mathcal{L}}{\delta \psi_i^*} = -H_{KS} \psi_i$$

• Imposing constraints

So Car-Parrinello total energy \mathcal{H}_{CP} conserved provided the time propagation algorithm is accurate

Does Car-Parrinello MD work?

• Adiabatic decoupling

Imposing "cold electrons" and \mathcal{K}_e is ~constant decoupling of the dynamics of the ions and the orbitals (electrons).

There is no net energy transfer from ions to "kinetic energy" of orbitals.

Adiabatic decoupling achieved by non-overlap of frequency spectrum of ionic and orbital motion.

• Pictorial view

Example*: Conservation of Energy

Si-crystal: Time evolution of various components of the energy

^a*Pastore, Smargiassi, and Buda, Phys.Rev. A44 (1991)

a

Example*: Deviation of BO surface

Si-crystal: Deviations of forces of BO surface are small and oscillating

Example*: Adiabatic Separation

Adiabatic decoupling is achieved by non-overlapping frequency spectra of the ions and the orbitals.

Spectrum of Si-Crystal

$$f(\omega) = \int_{t=0}^{\infty} \cos(\omega t) \sum_{i} \left\langle \dot{\psi}_{i}(t) \dot{\psi}_{i}(0) \right\rangle dt$$

Controlling adiabacity (I)

What determines the frequency spectrum of the "orbital motion"

• In harmonic approximation, with ϵ_i (ϵ_j) the eigenvalues of the occupied (unoccupied) orbitals (μ is fictitious electronic mass):

$$\omega_{ij}^{e} = \sqrt{\frac{2\left(\varepsilon_{i} - \varepsilon_{j}\right)}{\mu}}$$

• Lowest frequency

$$\omega_{\min}^e \propto \sqrt{\frac{E_{\rm gap}}{\mu}}$$

• Highest frequency

$$\omega_{\max}^e \propto \sqrt{\frac{E_{\mathrm{cut}}}{\mu}}$$

Controlling adiabacity (II)

• Lowest frequency has to be well above ionic frequencies

$$\omega^e_{
m min} \propto \sqrt{rac{E_{
m gap}}{\mu}}$$

• Highest frequency set upper limit to time step

$$\omega_{\max}^e \propto \sqrt{\frac{E_{\text{cut}}}{\mu}} \qquad (\Delta t^e)_{\max} \propto \sqrt{\frac{\mu}{E_{\text{cut}}}}$$

- If Δt fixed and μ chosen
 - too small: Electronic mass too small, eventually the Δt is too large and the integration by the Verlet algorithm is not anymore correct, giving rise to a drift in the constant of motion.
 - too large: Electrons mass too large and adiabacity will be lost.

Example: Lack of sufficient adiabatic separation

Si-crystal with vacancy

Zero or small electronic gaps

Thermostat for electrons

- Perform CPMD with coupling of electronic and ionic dynamics to thermostat # a
- Thus electrons cannot heat up; if they try to, thermostat will adsorb the excess heat
- Target fictitious kinetic energy $E_{kin,0}$ instead of temperature
 - Too low: orbitals cannot follow change of ion positions
 - Too high: orbitals deviate too much from BO surface

^{*a*#}Blöchl & Parrinello, Phys.Rev.B45 (1992)

Thermostat on electrons

Example[#] Dependence of the heat transfer on the choice of $E_{kin,0}$ in solid Aluminium

Thermostat on electrons

Does it help?

- 64 atoms of molten aluminium
- (a): Without thermostat
- (b): With thermostat

Thermostat on electrons

Does it work?

- Check: Radial pair correlation function
 - Solid line: CP-MD with thermostat
 - Dashed line: Calculations by Jacucci et al.

CPMD for Structure Optimization Simulated annealing

- In larger molecules or crystals the structural optimisation might be difficult, especially the closer to the minimum one is
- CPMD can be used to perform the optimisation by simulated annealing: Rescaling the (atomic and possibly also electronic) velocities:

$$\dot{\mathbf{R}}_{I}' = \alpha \dot{\mathbf{R}}_{I}$$

Easy to incorporate into the velocity Verlet algorithm

- Optimized structure when all velocities (temperature) are ≈ 0 Check by calculating the ionic forces
- The ionic masses are "unphysical": Select to "flatten" the vibrational spectrum (e.g. high mass on hydrogens)
- Faster convergence due to the "global" optimisation

CP vs BO Molecular Dynamics

Born-Oppenheimer MD Exactly on BO surface. In principle more accurate

 $\Delta t \approx$ ionic time scales, maximum time step possible

Expensive minimization at each MD step

Not stable against deviations from BO surface \Rightarrow Energy/temperature drift, thermostatting of ions necessary

Equal procedure in zero-gap systems

Car-Parrinello MD

Always slightly off BO surface

 $\Delta t \ll$ ionic time scales, (much) shorter time step necessary

Time propagation and orthogonalisation, less expensive per MD step

Stable against deviations from BO surface

Thermostatting of electrons to prevent energy exchange

Most applications in solids

Applications in liquids, thermodynamics.

STABILITY OF BO AND CP MD COMPARED

CPMD results for the 8 Si atom model system

Timings in cpu seconds and energy conservation in a.u. / ps for CP and BO Molecular dynamics simulations for 1 ps of trajectory on an IBM RS6000 / model 390 (Power2) workstation

Method	Time step	Convergence	Conservation (au/ps)	Time (s)
CP	5		6×10 ⁻⁸	3230
CP	7		1×10^{-7}	2310
CP	10		3×10 ⁻⁷	1610
BO	10	10 ⁻⁶	1×10^{-6}	16590
BO	50	10 ⁻⁶	1×10 ⁻⁶	4130
BO	100	10 ⁻⁶	6×10^{-6}	2250
BO	100	10 ⁻⁵	1×10^{-5}	1660
BO	100	10^{-4}	1×10 ⁻³	1060

STABILITY OF BO AND CP MD COMPARED (cont'ed)

Δt , convergence *Top:* solid line : CP, 5 a.u.; open circ. : CP, 10 a.u.; filled squar. : BO, 10 a.u., 10^{-6} .

Middle:

open circl.	:	CP, 10 a.u.;
filled squar.	:	BO, 10 a.u., 10 ⁻⁶ ;
filled trian.	:	BO, 100 a.u., 10 ⁻⁶ ;
open diam.	:	BO, 100 a.u., 10 ⁻⁵ .

Bottom: open circ. : CP, 10 a.u.; open diam. : BO, 100 a.u., 10^{-5} ; dashed line : BO, 100 a.u., 10^{-4}

Car-Parrinello Method: Summary

- Car-Parrinello method can yield very stable dynamical trajectories, provided the electrons and ions are adiabatically decoupled
- The method is best suited for e.g. liquids and large molecules with an electronic gap
- The speed of the method is comparable or faster than using Born-Oppenheimer dynamics — and still more accurate (i.e. stable)