Free Energy and Phase equilibria

Thermodynamic integration 7.1 Chemical potentials 7.2 Overlapping distributions 7.2 Umbrella sampling 7.4

Why free energies?

• Reaction equilibrium constants $A \leftrightarrow B$

$$K = \frac{[B]}{[A]} = \frac{p_B}{p_A} = \exp\left[-\beta(G_B - G_A)\right]$$

- Examples:
 - Chemical reactions, catalysis, etc....
 - Protein folding, binding: free energy gives binding constants
- Phase diagrams
 - Prediction of thermodynamic stability of phases,
 - Coexistence lines
 - Critical points
 - Triple points
 - First order/second order phase transitions

Phase diagrams

Along the liquid gas coexistence line increasing the pressure and temperature at constant volume the liquid density becomes lower and the vapor density higher.

Critical point: no difference between liquid and vapor Triple point: liquid, vapor and solid in equilibrium.

How do we compute these lines?

Phase equilibrium

Criteria for equilibrium (for single component)

$$T_{I} = T_{II} \qquad P_{I} = P_{II} \qquad \mu_{I} = \mu_{II}$$

Chemical potential

$$\mu = \left(\frac{\partial F}{\partial N}\right)_{V,T} = \left(\frac{\partial G}{\partial N}\right)_{P,T} = G_m$$

If $\mu_{I} > \mu_{II}$: transport of particles from phase I to phase II.

Stable phase: lowest chemical potential (for single phase: lowest Gibbs free energy)

Relation thermodynamic potentials

Helmholtz free energy: F = U - TS

Gibbs free energy: G = F + PV

Suppose we have F(n,V,T)

Then we can find G from F from:

$$P = -\left(\frac{\partial F}{\partial V}\right)_{n,T} \qquad \qquad G = F - V\left(\frac{\partial F}{\partial V}\right)_{n,T}$$

All thermodynamic quantities can be derived from F and its derivatives

Phase equilibria from F(V,T)

Common tangent construction

Common tangent construction

Helmholtz Free Energy Perspective

Common tangent construction

Gibbs Free Energy Perspective

Only equilibrium when P,T is on coexistence line.

We need F or μ

• So equilibrium from F(V) alone or from P and μ

$$F(V) = F(V_0) + \int_{V_0}^{V} \left(\frac{\partial F}{\partial V}\right)_{N,T} dV = F(V_0) - \int P dV$$
$$F(\rho) = F(\rho_0) + N \int_{\rho_0}^{\rho} \frac{P(\rho')}{\rho^2} d\rho'$$

- So in fact for only 1 point of the equation of state the F is needed
- For liquid e.o.s even from ideal gas

$$\beta F(\rho)/N = \beta F^{id}(\rho)/N + \int_0^{\rho} \frac{\beta P(\rho') - \rho'}{\rho^2} d\rho'$$

Statistical Thermodynamics

Partition function

$$Q_{NVT} = \frac{1}{\Lambda^{3N} N!} \int d\mathbf{r}^N \exp\left[-\beta U(\mathbf{r}^N)\right]$$

Ensemble average

$$\langle A \rangle_{NVT} = \frac{1}{Q_{NVT}} \frac{1}{\Lambda^{3N} N!} \int d\mathbf{r}^N A(\mathbf{r}^N) \exp[-\beta U(\mathbf{r}^N)]$$

Probability to find a particular configuration

$$P(\mathbf{r}^{N}) = \frac{1}{Q_{NVT}} \frac{1}{\Lambda^{3N} N!} \int d\mathbf{r}^{N} \delta(\mathbf{r}^{N} - \mathbf{r}^{N}) \exp\left[-\beta U(\mathbf{r}^{N})\right] \propto \exp\left[-\beta U(\mathbf{r}^{N})\right]$$

Free energy

 $\beta F = -\ln(Q_{NVT})$

Ensemble average versus free energy

Generate configuration using MC: $\{\mathbf{r}_1^N, \mathbf{r}_2^N, \mathbf{r}_3^N, \mathbf{r}_4^N \mathsf{L}, \mathbf{r}_M^N\}$

$$\overline{A} = \frac{1}{M} \sum_{i=1}^{M} A(\mathbf{r}_{i}^{N}) \approx \frac{\int d\mathbf{r}^{N} A(\mathbf{r}^{N}) \exp[-\beta U(\mathbf{r}^{N})]}{\int d\mathbf{r}^{N} \exp[-\beta U(\mathbf{r}^{N})]} = \langle A \rangle_{NVT}$$

Generate configuration using MD: $\{\mathbf{r}_1^N, \mathbf{r}_2^N, \mathbf{r}_3^N, \mathbf{r}_4^N \mathsf{L}, \mathbf{r}_M^N\}$

$$\overline{A} = \frac{1}{M} \sum_{i=1}^{M} A(\mathbf{r}_{i}^{N}) \approx \frac{1}{T} \int_{0}^{T} dt A(t) \int \approx \langle A \rangle_{_{MVT}} \qquad \text{ergodicity}$$
$$\beta F = -\ln Q_{_{NVT}} = -\ln \frac{1}{\Lambda^{^{3N}} N!} \int d\mathbf{r}^{N} \exp\left[-\beta U(\mathbf{r}^{N})\right]$$

F is difficult, because requires accounting of phase space volume More general integration method from known state: TI

Thermodynamic integration

- Known reference state $\lambda=0$
- unkown target state $\lambda=1$

$$F(\lambda = 1) - F(\lambda = 1) = \int_{\lambda=0}^{\lambda=1} d\lambda \left(\frac{\partial F(\lambda)}{\partial \lambda}\right)_{N,V,T}$$

Coupling parameter

$$U(\lambda) = (1 - \lambda)U_{I} + \lambda U_{II}$$

$$Q_{NVT}(\lambda) = \frac{1}{\Lambda^{3N} N!} \int dr^{N} \exp[-\beta U(\lambda)]$$

Thermodynamic integration

$$\left(\frac{\partial F(\lambda)}{\partial \lambda}\right)_{N,T} = -\frac{1}{\beta} \frac{\partial}{\partial \lambda} \ln(Q) = -\frac{1}{\beta} \frac{1}{Q} \frac{\partial Q}{\partial \lambda}$$
$$= \frac{\int dr^{N} (\partial U(\lambda) / \partial \lambda) \exp[-\beta U(\lambda)]}{\int dr^{N} \exp[-\beta U(\lambda)]}$$
$$= \left\langle \frac{\partial U(\lambda)}{\partial \lambda} \right\rangle_{\lambda}$$
Free energy as ensemble average!
$$F(\lambda = 1) - F(\lambda = 0) = \int d\lambda \left\langle \frac{\partial U(\lambda)}{\partial \lambda} \right\rangle_{\lambda}$$

Example

• In general

$$U(\lambda) = (1 - \lambda)U_{I} + \lambda U_{II}$$
$$\left\langle \frac{\partial U(\lambda)}{\partial \lambda} \right\rangle_{\lambda} = \left\langle U_{II} - U_{I} \right\rangle_{\lambda}$$

• Specific example

$$U(\lambda) = U^{LJ} + \lambda U^{\text{dipole-dipole}}$$

$$U(0) = U^{LJ}$$

$$U(1) = U^{\text{Stockm}}$$

$$V(1) = U^{\text{Stockm}}$$

$$V(\lambda) = (-\lambda)^{\lambda}$$

Free energy of solid

λ7

More difficult. What is reference? Not the ideal gas.

Instead it is the Einstein crystal: harmonic oscillators around r₀

$$U(\lambda;r^{N}) = (1-\lambda)U(r^{N}) + \lambda U(r_{0}^{N}) + \lambda \sum_{i=1}^{N} \alpha(r_{i}-r_{i})^{2}$$

$$F = F_{ein} + \int_{\lambda=0}^{\lambda=1} d\lambda \left\langle \frac{\partial U(\lambda)}{\partial \lambda} \right\rangle_{\lambda}$$

$$F = F_{ein} + \int_{\lambda=0}^{\lambda=1} d\lambda \left\langle -U(r^{N}) + U(r_{0}^{N}) + \sum_{i=1}^{N} \alpha (r_{i} - r_{i})^{2} \right\rangle_{\lambda}$$

Hard sphere freezing

ρ

Thermodynamic perturbation

System 0: N, V, T, U_0

Two systems:

System 1: N, V, T, U_1

$$Q_0 = \frac{V^N}{\Lambda^{3N} N!} \int d\mathbf{s}^N \exp(-\beta U_0) \qquad Q_1 = \frac{V^N}{\Lambda^{3N} N!} \int d\mathbf{s}^N \exp(-\beta U_1)$$

$$\Delta \beta F = \beta F_1 - \beta F_0 = -\ln(Q_1/Q_0)$$
$$= -\ln \frac{\int d\mathbf{s}^N \exp[-\beta (U_1 - U_0)] \exp[-\beta U_0]}{\int d\mathbf{s}^N \exp(-\beta U_0)}$$

$$\Delta \beta F = -\ln \left\langle \exp \left[-\beta \left(U_1 - U_0 \right) \right] \right\rangle_0$$

Chemical potential

$$Q_{NVT} = \frac{V^N}{\Lambda^{3N} N!} \int ds^N \exp\left[-\beta U(s^N;L)\right]$$

$$\beta F = -\ln(Q_{NVT})$$

$$= -\ln\left(\frac{V^{N}}{\Lambda^{3N}N!}\right) - \ln\left(\int ds^{N} \exp\left[-\beta U(s^{N};L)\right]\right)$$

$$= -N\ln\left(\frac{1}{\Lambda^{3}\rho}\right) + N - \ln\left(\int ds^{N} \exp\left[-\beta U(s^{N};L)\right]\right)$$

$$\beta F = \beta F^{IG} + \beta F^{ex}$$

$$\mu = \left(\frac{\partial F}{\partial N}\right)_{V,T}$$

$$\beta \mu^{IG} = \left(\frac{\partial \beta F^{IG}}{\partial N}\right)_{V,T} \beta \mu^{ex} = \left(\frac{\partial \beta F^{ex}}{\partial N}\right)_{V,T}$$

Widom test particle insertion

$$\beta \mu = \left(\frac{\partial \beta F}{\partial N}\right)_{V,T}$$

$$\beta \mu = \frac{\beta F(N+1) - \beta F(N)}{N+1-N}$$

$$= -\ln \left(\frac{Q(N+1)}{Q(N)}\right)$$

$$= -\ln \left(\frac{V^{N+1}}{\sqrt{\Lambda^{3N+3}(N+1)!}}\right) - \ln \left(\frac{\int ds^{N+1} \exp\left[-\beta U(s^{N+1};L)\right]}{\int ds^{N} \exp\left[-\beta U(s^{N};L)\right]}\right)$$

$$= -\ln \left(\frac{V}{\Lambda^{3}(N+1)}\right) - \ln \left(\frac{\int ds^{N+1} \exp\left[-\beta U(s^{N+1};L)\right]}{\int ds^{N} \exp\left[-\beta U(s^{N};L)\right]}\right)$$

$$\beta \mu = \beta \mu^{IG} + \beta \mu^{ex}$$

$$\beta \mu^{ex} = -\ln \left(\frac{\int ds^{N+1} \exp\left[-\beta U(s^{N+1};L)\right]}{\int ds^{N} \exp\left[-\beta U(s^{N+1};L)\right]}\right)$$

Widom test particle insertion

$$\beta\mu^{ex} = -\ln\left(\frac{\int ds^{N+1} \exp\left[-\beta U(s^{N+1};L)\right]}{\int ds^{N} \exp\left[-\beta U(s^{N};L)\right]}\right)$$

$$U(s^{N+1};L) = \Delta U^{+} + U(s^{N};L)$$

$$\beta\mu^{ex} = -\ln\left(\frac{\int ds^{N} \int ds_{N+1} \exp\left[-\beta (\Delta U^{+} + U(s^{N};L))\right]}{\int ds^{N} \exp\left[-\beta U(s^{N};L)\right]}\right)$$

$$= -\ln\left(\frac{\int ds_{N+1} \int ds^{N} \left\{\exp\left[-\beta \Delta U^{+}\right]\right\}\exp\left[-\beta U(s^{N};L)\right]}{\int ds^{N} \exp\left[-\beta U(s^{N};L)\right]}\right)$$

$$= -\ln\left(\int ds_{N+1} \left\langle \exp\left[-\beta \Delta U^{+}\right]\right\rangle\right) \qquad \text{Ghost particle!}$$

Algorithm 16 (Widom Test Particle Insertion)

```
subroutine Widom
xtest=box*ranf()
call ener(xtest,entest)
wtest=wtest
+ +exp(-beta*entest)
return
end
```

excess chemical potential via the addition of test particles generate a random position determine energy update Boltzmann factor in (7.2.5)

Hard spheres

$$\beta \mu^{ex} = -\ln \left(\int \mathrm{ds}_{N+1} \left\langle \exp\left[-\beta \Delta U^{+}\right] \right\rangle_{NVT} \right)$$

$$U(r) = \begin{cases} \infty & r \le \sigma \\ 0 & r > \sigma \end{cases}$$

$$\exp\left[-\beta\Delta U^{+}\right] = \begin{cases} 0 & \text{if overlap} \\ 1 & \text{no overlap} \end{cases}$$

 $\left\langle \exp\left[-\beta\Delta U^{+}\right]\right\rangle$ probability to insert a test particle!

Lennard-Jones fluid

Overlapping Distribution Method

$$\ln p_{1}(\Delta U) = \beta(\Delta F - \Delta U) + \ln p_{0}(\Delta U)$$

$$f_{0}(\Delta U) \equiv \ln p_{0}(\Delta U) - 0.5\beta\Delta U$$
Simulate system 0: compute f_{0}
Simulate system 1: compute f_{1}

$$f_{1}(\Delta U) \equiv \ln p_{1}(\Delta U) + 0.5\beta\Delta U$$

$$\beta\Delta F = f_{1}(\Delta U) - f_{0}(\Delta U)$$

$$f_{1}(\Delta U) \equiv C_{1} + a\Delta U + b\Delta U^{2} + c\Delta U^{3}$$

$$f_{0}(\Delta U) \equiv C_{0} + a\Delta U + b\Delta U^{2} + c\Delta U^{3}$$

$$\beta\Delta F = C_{1} - C_{0}$$
Fit f_{0} and f_{1} to two polynomials that only differ by the offset

Chemical potential

System 0: N-1, V,T, U + 1 ideal gas System 1: N, V,T, U

 $\Lambda II = II = II$

$$\Delta\beta F = \beta F_1 - \beta F_0 \equiv \beta \mu^{ev}$$

 $\Delta U = U_1 - U_0$

System 0: test particle energy

icle energy System 1: real particle energy $\beta \mu^{ex} = f_1(\Delta U) - f_0(\Delta U)$

Non-Boltzmann sampling

• Start with thermodynamic perturbation

$$\Delta\beta F = -\ln(Q_1/Q_0) = -\ln\left(\frac{\int ds^N \exp(-\beta U_1)}{\int ds^N \exp(-\beta U_0)}\right)$$
$$\exp(-\beta\Delta F) = \left(\frac{\int ds^N \exp(-\beta U_0)\exp(-\beta\Delta U)}{\int ds^N \exp(-\beta U_0)}\right)$$

 $\exp(-\beta\Delta F) = \left\langle \exp(-\beta\Delta U) \right\rangle_0$

Can we use this for free energy difference between arbitrary systems?

Bridging function

• Introduce function $\pi(s^N)$ altering distribution.

$$\exp(-\beta\Delta F) = \left(\frac{\int \mathrm{d}\mathbf{s}^N \pi(\mathbf{s}^N) \exp(-\beta U_1) / \pi(\mathbf{s}^N)}{\int \mathrm{d}\mathbf{s}^N \pi(\mathbf{s}^N) \exp(-\beta U_0) / \pi(\mathbf{s}^N)}\right)$$

$$\exp(-\beta\Delta F) = \frac{\left\langle \exp(-\beta U_1)/\pi \right\rangle_{\pi}}{\left\langle \exp(-\beta U_{01})/\pi \right\rangle_{\pi}}$$

• This approach is called umbrella sampling

Landau free energy

Many times free energy is needed as a function of a certain order paramter q

$$\beta F = -\ln \frac{1}{\Lambda^{3N} N!} \int dr^N \exp\left(-\beta U(r^N)\right)$$

$$\beta F(q) = -\ln \frac{1}{\Lambda^{3N} N!} \int d\mathbf{r}^N \delta(q(\mathbf{r}^N) - q) \exp(-\beta U(\mathbf{r}^N))$$

• Add and subtract bias potential w(q) to U

$$P(q) = \frac{\int d\mathbf{r}^{N} \delta(q'(\mathbf{r}^{N}) - q) \exp\left(-\beta(U(\mathbf{r}^{N}) + w(q') - w(q'))\right)}{\int d\mathbf{r}^{N} \exp\left(-\beta(U(\mathbf{r}^{N}) + w(q') - w(q'))\right)}$$

$$P(q) = \frac{\int d\mathbf{r}^{N} \delta(q'(\mathbf{r}^{N}) - q) \exp\left(-\beta(U(\mathbf{r}^{N}) + w(q'))\right) \exp(+\beta w(q'))}{\int d\mathbf{r}^{N} \exp\left(-\beta(U(\mathbf{r}^{N}) + w(q'))\right) \exp(+\beta w(q'))}$$

$$P(q) = \frac{\left\langle \delta(q - q') \exp(+\beta w(q')) \right\rangle_{biassystem}}{\left\langle \exp(+\beta w(q')) \right\rangle_{biassystem}}$$

$$P(q) = \frac{\exp(+\beta w(q))}{\left\langle \exp(+\beta w(q')) \right\rangle_{bias}} P_{bias}(q)$$

 $\beta F(q) = -\ln P(q) = -\ln P_{bias}(q) - \beta w(q) + const$

$$\beta F(q) = -\ln P(q) = -\ln P_{bias}(q) - \beta w(q) + const$$

- Best choice w(q)=-F(q)
- Means P_{bias} = constant: entire q-range is equally sampled.

Usually w(q) difficult to guess: windows

• Different windows have different potential w_i(q)

Boltzmann: $\exp(-\beta(U+w(q)))$

$$F(q) = -kT\ln P_{bias}(q) - w_{bias}(Q)$$

Reconstructing the free energy

Tracing coexistence curves

• If we have a coexistence point on the phase diagram we can integrate allong the line while maintaining coexistence.

Tracing coexistence curves

$$d\mu = dG_{m} = -S_{m}dT + V_{m}dP$$

$$-S_{m,\alpha}dT + V_{m,\alpha}dP = -S_{m,\beta}dT + V_{m,\beta}dP$$

$$\frac{dP}{dT} = \frac{S_{m,\beta} - S_{m,\alpha}}{V_{m,\beta} - V_{m,\alpha}}$$
equation
$$\frac{dP}{dT} = \frac{\Delta S_{m}}{\Delta M_{m}} = \frac{\Delta H_{m}}{\Delta M_{m}}$$

$$\frac{1}{dT} = \frac{1}{\Delta V_m} = \frac{1}{T\Delta V_m}$$

Clapyeron

$$\frac{dP}{dT} = \frac{\Delta (U + PV)_m}{T\Delta V_m}$$

Free Energy Calculations Application to Carbon Phase Transitions, Nucleation, and Planet Interiors

Why Carbon Phase Diagram?

Diamonds in the Sky!

Uranus, Neptune Interior rich in carbon Temperature and Pressures extreme 5000 K , 1 GPa

CH4: Laser heating in diamond- anvil cell (Bennedetti et al, Science 1999)

CH4: heating and pressuring in simulation (Scandolo,2003)

Why Carbon Phase Diagram?

de Heer et al, Science 2005:

Multi Wall Nanotubes from liquid carbon drops

"State" of Carbon Phase Diagram

Graphite-Diamond: Well Established

Graphite-Liquid : Significant Spread

Possibly maximum in PT plane

LLPT in Brenner potential

LLPT in DFT-PBE/BP absent (Galli et al, 2003, Ghiring. et al, 2004)

Diamond-Liquid : Large uncertainty

Few experiments reported show positive PT slope

Modeling of Carbon

~1990: DFT-MD of liquid structure (Galli et al)

~1990: Brenner potential (Brenner)

~1999: Phase diagram with Brenner potential (Ree et al)

~2004: DFT-MD of liquid EOS (Galli et al, Ghiringhelli et al)

1990-2005: Improvement of empirical potentials

LCBOP

Emperical Bond-Order Potential

Los and Fasolino (PRB 2003);

Improvement by Los et al. PRB 2004: <u>LCBOPI</u>; PRB 2005: <u>LCBOPII</u>

Validated by crystal structures, clusters, defect energies, liquid structure

Determining Coexistence Points (I)

Free-energy changes using

$$U_{\lambda} = (1 - \lambda)U^{*} + \lambda U^{\text{ref}}$$
$$F^{*} = F^{\text{ref}} + \int_{0}^{1} d\lambda \left\langle U^{\text{ref}} - U^{*} \right\rangle_{\lambda}$$

Free energy of initial state point (P=10 GPa, T=4000K)

Liquid: change LCBOP into LJ: $U^{ref} = U_{LJ}$

Graphite & Diamond: change LCBOP into Einstein Crystal

Determining Coexistence Points (I)

Free energy along isotherm T=4000K	
	$\beta\mu(\rho) = \frac{\beta F^*}{N} + \beta \left(\frac{a}{\rho^*} + b \ln\frac{\rho}{\rho^*} + b + c \left(2\rho - \rho^*\right)\right)$
	Liquid-Graphite: $P_{coex} = 6.7 +/- 0.6 \text{ GPa}$ Diamond-Liquid: $P_{coex} = 12.8 +/- 0.2 \text{ GPa}$ (Metastable)Graphite-Diamond: $P_{coex} = 15.1 +/- 0.3 \text{ GPa}$

Tracing Coexistence Lines

Use Clausius-Clapeyron from initial coexistince point

$$\mathrm{d}T/\mathrm{d}P = T\Delta v/\Delta h$$

Integration by higher-order predictor-corrector scheme

Calculated LCBOPI phase diagram

Calculated LCBOPI phase diagram

