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Complex energy landscapes
(e.g. reaction 1s a solvent)

e saddle points uncountable
e reaction coordinates unknown

 many pathways possible

Transition Path Sampling

Chandler, Dellago, Bolhuis,
1998
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Transition Path Sampling (TPS): Sampling of unbiased dynamical trajectories
using a Monte Carlo approach (Dellago, Bolhuis, Chandler 1998)
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(Transition) Path Sampling

There is no dictionary where these concepts are defined in a manner
everyone agrees on. So depending to who you talk, you might get
slightly different definitions

1. Arobust method to generate an ensemble of reactive
trajectories or trajectories for a well-defined path ensemble
(containing not necessarily transition paths alone) with their
correct statistical weight. This approach does not require the
definition of a Reaction Coordinate (RC).

2. A method to calculate reaction rates. Computational
expensive and still requires an order parameter (~Reaction
Coordinate). This approach has become redundant as TIS and
RETIS are faster and more accurate (no fixed path length).



Transition path sampling

Reactive path ensemble:
all trajectories that lead over barrier

« Sampling by Monte Carlo
« Results in ensemble of pathways
« Requires definition of stable states A,B only

Apply when process of interest
— IS arare event
— is complex and “reaction coordinate” is not known
— If the reaction happens (which is rare), it should go fast

Examples: autodissociation of water, organic reactions in solution, protein folding



Transition path sampling

The MC sampling is based on detailed-balance
using a Metropolis-Hastings type of algorithm



Shooting moves

accept

reject

Shifting moves

(@



Detailed balance
p(O)?Z'(O —> n) — p(n)ir(n — 0) o: old state, n: new state
e_:BE(X)

V4

Decomposition into generation and acceptance probability:

Boltzmann statistics: p(x) —

(x = x)P

acc(x — 'xl)

n(x = x') = Py,

Metropolis method: use MC moves with symmetric generation probability

(X = X) = Pgep(x" = X)

gen gen

and use acceptance probability:
/ e—ﬁE(x’)

px)
200 ] = min[1, g ]

P, .(x = x') = min[1,
Metropolis-Hastings method: generalisation for non-symmetric generation probability
PX)Pe(x' = X)

PX)Pgen(x = X7)

How this is translated into a practical path sampling algorithm we will see in a few
moments .....

P, .(x = x') = min[],



Rate constants in TPS
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)= (14(0)) K==y

hx =11f € X and 0 otherwise




C(t’) by umbrella sampling
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Rate constant theory in Transition Path Sampling vs (RE)TIS

kap = k(t') for tmel < t' < trxn

k(t) = ©0.
S

hx =11t € X and 0 otherwise

4 trxn

“
-
-
-
-
-
-
-
-
-
-
-
-
‘—
-

"
—‘
-

K(t)




B NTNU i 1 \ 2§ %\L" Titus S. van Erp

_“" Generation of paths: RETIS
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Rate constant theory in Transition Path Sampling vs (RE)TIS

k(t)

® Stable state A
® Stable state B
» Outside state A/B
= Overall state A
= Overall state B
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Correlation function and derivative
using stable state definitions i

Correlation function and derivative
using overall state definitions
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V" " Generation of paths: RETIS
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The TIS Algorithm

Transition Interface Sampling, van Erp, Moroni, and Bolhuis, JCP 118, 7762 (2003)
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The TIS Algorithm

Transition Interface Sampling, van Erp, Moroni, and Bolhuis, JCP 118, 7762 (2003)
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The TIS Algorithm

Transition Interface Sampling, van Erp, Moroni, and Bolhuis, JCP 118, 7762 (2003)
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Transition Interface Sampling, van Erp, Moroni, and Bolhuis,
J. Chem. Phys. 118, 7762 (2003)



Trial trajectory has no crossing with A;.

wial max
Leat > f

wrong backward ending
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U\ KIN® > KIN©)
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Reject trial move. Keep the old path. Count it again /A3
and restart procedure using the same path.
Ag = A
M
Ao = As

—

S

'1. Pick randomly a timeslice of the
old path [Like the red dot in b)].

v

'II. Add small Gaussian distributed
random changes dp’s to the momenta
of all particles. [Like in ¢) or d)]

'II1. Continue with a probability ‘1
min{1, ezp[KIN'” /KIN™]} [as in d)) =D
- Otherwise Reject

as in c)

v

\\
” N
\

Ny

4 reaching \g [see g)], Ais1 [sec €)] or —P

|
|
|

| \ \ /
AN St H
{
W\ . ey
N ‘Z.\\\

Vot

‘ / "— [h) and j)], Aiz1 [k)], or when the

N

,_§ ~ 4= Otherwise, accept the new path.

IV. Take a random number « from
an uniform distribution [0 : 1]. Define
the maximum allowed pathlength
| L™ = int[L{°) /a]. Continue.

v

g —
V. Integrate the Newtonian equations
of motion backward in time until

until the pathlength exceeds L™ [f)].
Continue in case g). Otherwise reject. |
' v

V1. Integrate the equations of motion
forward in time until reaching A,

' whole path exceeds L™ [i)].
. v

VII. Reject in case 1) or when the
path has no crossing with \; [case h)). ‘

\,

van Erp et al, PCCP 2007

http://dx.doi.org/10.1039/b614980d

] o Replace the old path by by the new | ,,"
11T B T ‘one [Say k)]. Update statistics.
\ v

l) 3 T R ..‘1!.

\ Repeat procedure from from step 1.



Simulating the [27| ensemble

The algorithm requires to have
an 1nitial path that fulfils the condition

w AN S/
N LS

N N

L s, fmax

Reject trial move. Keep the old path. Count it again
and restart procedure using the same path

Otherwise Reject fas in ¢)

I. Pick randdnly a timgsice of the
old path [Like th&eT dot in b)

II. Add small Gaussian distributed
| | random changes dp’s to the momenta | —
of all particles. [Like in ¢) or d)]

2

TI1. Continue with a probability
min{L, ezplKINO/KINOT} [as in d))|— \

L™ar = int[L(® /a]. Continue.

until the pathlength exce
Continue in case g). Otherwise

12

V. Integrate the Newtonian equations
of motion backward in time until

4 reaching \g [see g)], Ay [sec e
Is L™

IV. Take a random number a from )l
an uniform distribution [0 : 1]. Define
the maximum allowed pathlength

Yor —» i |

{
3
{
nax |, N 4
[B)]: ( dN \
reject

whole path exceeds L™ [i)]

one [Say k)]. Update statistics.

VIL. Reject in case i) or when the

path has no crossing with \; [case h))|
4 Otherwise, accept the new path.

Replace the old path by by the new

VI Integrate the equations of motion| 7 [
forward in time until reaching Ay

= [h) and j)], Aiz1 [K)), or when the

¥ Repeat procedure from from step L.

Length of the old path:

0) =11



Simulating t!

. 1ck a random timeslice [1:11] of

(1€

-

ensemble

the old path. Say timeslice nr 6.

\\ //

AN

/NN

Reject trial move. Keep the old path. Count it again
and restart procedure using the same path

=
g
A .
b A I. Pick randomly a timeslice of the
z A old path [Like the red dot in b)
g 2 v
~

= II. Add small Gaussian distributed
\f | | random changes dp’s to the momenta | —
7 o ¢ of all particles. [Like in ¢) or d)]
— 2

\ AN

IIL. Continue with a probability

Otherwise Reject [as in c)]

IV. Take a random number a from g)|
an uniform distribution [0 : 1]. Define
the maximum allowed pathlength
L = int[L® /a]. Continue.

L s, fmax

V. Integrate the Newtonian equations
of motion backward in time until

< reaching A [sce g)], Aisq [see e)] or  —»
until the pathlength exceeds L7 [£)]| (

Continue in case g). Otherwise reject

) i ' )
T I VL. Integrate the equations of motion 7'
forward in time until reaching Ay
= [h) and j)], Aiz1 [K)), or when the
whole path exceeds L™ [i)] W\
v N

VIL Reject in case i) or when the

path has no crossing with \; [case h))|

4 Otherwise, accept the new path. e d
Replace the old path by by the new

one [Say k)]. Update statistics.

7

A/
LK L

MO

¥ Repeat procedure from from step L.

0) =11

/
min{L, ezplKINO/KINOT} [as in d))|— \

Length of the old path:



Simulating the |27 | ensemble

Reject trial move. Keep the old path. Count it again -
and restart procedure using the same path, N

IT. Add small Gaussian distributed
random changes ¢ p to all momenta of
this timeslice

> Sem v A
N / = \
until the pathlength exceeds L™ [f)]! 7
Continue in case g). Otherwise reject
. 2 @
‘h) “) VL. Integrate the equations of motion f) %‘)
forward in time until reaching Ay -y
) \ | 4 [h) and )], Ay [K)], or when the \
\ % \ // whole path exceeds L™ [i)] RN /f RS
5 / y ¥ ~ 7
¢ — N > VIL Reject in case i) or when the SN )
/ N\ N | path has no crossing with \; [case h)] N\

4 Otherwise, accept the new path
Replace the old path by by the new

7 one [Say k)]. Update statistics.
i
! ]
S vl
|
) Repeat procedure from from step I.

\ Length of the old path:
1

N\ (0) = 11
Aol

x
0

)
BN = A

I. Pick randomly a timeslice of the
old path [Like the red dot in b)].

v
II. Add small Gaussian distributed
| random changes dp’s to the momenta | —,
of all particles. [Like in ¢) or d)]
F Yy

B o /)
IIL Continue with a probability
min{1, ezp[KIN® /KIN" ]} [os in d))|—"7 \

Otherwise Reject [as in ¢)

IV. Take a random number a from )l
an uniform distribution [0 : 1]. Define

[ s, pmax

V. Integrate the Newtonian equations

S




Simulating the [27] ensemble

Reject trial move. Keep the
and restart procedure using e SH

[II. Continue with a probability
MIN(1, exp(A[KIN(®) — KIN(™)]y

I. Pick randomly a timeslice of the K ~
old path [Like the red dot in b)] { FET T
v |
II. Add small Gaussian distributed d)
random changes dp’s to the momenta | —» | .2
of all particles. [Like in ¢) or d)] a2
L

(= Continue with a probability >
min{1, ezp[KIN® /KIN™|} [as in d)] | — ° \
Otherwise Reject [as in ¢)

vy

wrong backwa

7

IV. Take a random number o from g)!
an uniform distribution [0 : 1. Define

‘ . S
A /f. \ /. the maximum allowed pathlength \ £ 94
2 N7 N7 | s = int{L) /). Continue N |
2 e v N\ oI + : : N
’ 2N PN V. Integrate the Newtonian equations //
N } 1% 2 of motion backward in time until / 2
5 3 3 € reaching Ay [see g)], Ais1 [see e)] or —» | i }
DA % , until the pathlength exceeds L™ [f)]! 1 p \
£ Continue in case g). Otherwise reject e
: . L2 B
‘h) . ;) VL. Integrate the equations of motion ‘J)
| / forward in time until reaching Ay Ly
| \ €= [h) and j)], A1 k)], or when the \
W\ & whole path exceeds L™ [i)] N\ ¢
Fs A AN Q| (2 \
BN By %2 [VIL Reject in case i) or when the . >
[/ AN # N | path has no crossing with \; [case h)]. / z
L3 f x h =il v

1 4=Otherwise, accept the new path.
Replace the old path by by the new
one [Say k)]. Update statistics

4 [[[ 34 4 | N N
. . AR
L ehs: ! L R T MR
| nl ]
AN ;,i\ q
i I
.
M Repeat procedure from from step I.

if KIN™ < KIN(©) always accept new momenta.

Trial trajectory has no crossing with A
12
=

Otherwise take a random number o € [0:1]
A and accept if
1

\ o < exp(—F[KIN™ — KINO7)
)\ Otherwise reject the whole move, keep the
() > old path, count this path again and start from
I. using the old path

A




Reject trial move. Keep the old path. Count it again
and restart procedure using the same path,

Simulating the (27| ensemble S

P

) s KIN(©)

I. Pick randomly a timeslice of the
old path [Like the red dot in b)]

KIN

3
A
3 II. Add small Gaussian distributed
. | | random changes dp’s to the momenta | —
¢ of all particles. [Like in ¢) or d)]
'

IV. Define a maximum allowed path length:

T Continue with a probability 5
Y min{ L, ezp[KIN® /KINO} fos in d)][—
Otherwise Reject [as in c)

IV ™ el zandom number o fuawe 2)!

\ an uniform distribution [0: 1]. Define ‘
/ \ / the maximum allowed pathlength \ ;
E 3 7/ { B { | L™ = int[L()/a]. Continue NS y
AN P v I\ 5
2\ / \ [ V. Integrate the Newtonian equations; N\
/ / of motion backward in time until /
€ reaching )\ [see )], Ais1 [sce €)] or —P | X\
7 7 , until the pathlength exceeds L™ [f)]! { 2
e - ~ | Continue in case g). Otherwise reject S :
: ¥ ¢
‘h—) . ;) . VI Integrate the equations of motion f) 3 ?‘) iy
| / forward in time until reaching Ag =4
\ €= [h) and j)), Ais1 [K)]. or when the \ / f
4/ W\ whole path exceeds L [f) N\ 7 N\
‘ AR 2 AN 3| v > J
B S @] B, %X [VIL Reject in case i) or when the sz NI
L

# N | path has no crossing with \; [case h)].

3
A

Trial trajectory has no crossing with A

7y

HE A

4 Otherwise, accept the new path.

[l o+ ot o' e A, it
. {
N Take a new random number a € [0:1].

The maximum allowed path length [ ax
1s then defined as

N Lmax — int[L(°) /o]
)\ /?X\ ay o = (.888 then L™** = 12
0 / (©)=11. (excluding end-points)

int[11/.888]=int[12.387]=12




Simulating the (2

V. Integrate the equations of motion

-

rackward 1n time until:

ensemble

N\ //

N /S

Qvg
‘0‘ Y

a)

Reject trial move. Keep the old path. Count it again
and restart procedure using the same path

{
¢
L. Pick randomly a timeslice of the | I
| old path [Like the red dot in b)] T S 3

II. Add small Gaussian distributed
random changes dp’s to the momenta | —»
of all particles. [Like in ¢) or d)]

2

( ; ; - 7
IIL. Continue with a probability ‘
min{1, exp[KINC) /KIN®|} [as in )] — \

Otherwise Reject [as in ¢)].

ry has no crossing with A;

IV. Take a random number a from o)l
an uniform distribution [0 : 1]. Define
the maximum allowed pathlength
L = int[L)/a]. Continuc.

+

R

L

Meiitegrate the Newtonian equatiolffs

of motion backward in time until

« reaching \g [see g)], Ais1 [see e)] or  —P
until the pathlength exceeds L™ [f)]|

)

outinue in case g). Otherwise reject
(oot

i)

i VI. Integrate the equations of motion
1.1 forward in time until reaching Ay
<« [h) and j)], A1 [k)], or when the \
W\ S/ whole path exceeds L™ [i)].
NS
\ 2
VIL Reject in case i) or when the
g path has no crossing with \; [case h)).
1| 4= Otherwise, accept the new path.
). Replace the old path by by the new
s one [Say k)]. Update statistics
TS TN
y| ]

at procedure from from step I.

A) You reach A3 = reject



Simulating the |2

ensemble

V. Integrate the equations of motion

-

rackward 1n time until:

a AN S/

»Q \ N

[/

“-\.

4

)

'0’

Aol

/N

Reject trial move. Keep the old path. Count it again
and restart procedure using t

I. Pick randomly a timeslice of the
| old path [Like the red dot in b)]

II. Add small Gaussian distributed
random changes dp’s to the momenta | —»
of all particles. [Like in ¢) or d)]

2

kwal

A A gy e

(TI1. Continue with a pmmln]m (
min{l, e rp[l\l\“’)/l\[\‘ "1} [as in d)] — \
Otherwise Reject [as in ¢)].

ry has no crossing with A;

IV. Take a random number a from o)l
an uniform distribution [0 : 1]. Define
the maximum allowed pathlength
L = int[L)/a]. Continuc.

+

R

L

Meiitegrate the Newtonian equatiolffs | FN
of motion backward in time until / %
L reaching \g [see )], Ais1 [see e)] oo —P 11/ )
until the pathlength exceeds L™ [£)]] { e
Continue in case g). Otherwise reject ( \
e :
VL Integrate the equations of motion| ‘
tom ard in time until reaching Ay
€= [h) and j)), A1 [K)], or when the
whole path exceeds L™ [i)].
2
VIL. Reject in case i) or when the
path has no crossing with \; [case h)).
4 Otherwise, accept the new path.

Replace the old path by by the new
\one [Say k)]. Update statistics

at procedure from from step I.

Backward trajectory
exceeds L™a*



Simulating the [27

V. Integrate the equations of motion
packward in time until:

\\/

-

ensemble

[/

/

DAl

3
A

Reject trial move. Keep the old path. Count it again W\
and restart procedure using the same path. R

ory has no crossit

&

— A

I. Pick randomly a timeslice of the
old path [Like the red dot in b)]
2
II. Add small Gaussian distributed
random changes dp’s to the momenta | —»
of all particles. [Like in ¢) or d)]
2
II1. Continue with a probability
min{1, exp[KIN® /KIN™]} [as in d)] —
Otherwise Reject [as in c)].

IV. Take a random number o from g)!
an uniform distribution [0 : 1]. Define
the maximum allowed pathlength
L™ = int[L) /a]. Continue.

v
N AeOETate the Newtonian oquatiom:
of motion backward in time until 1-11-6¥
€ reaching X [see g)], Ais1 [sce e)] or —P I1]/&

until the pathlength exceeds L7 [£)]| / (L] N

Continue in case g). Otherwise reject R -

L \

VI Integrate the equations of motion ‘[]) - < — [T -
| forward in time until reaching Ay
€ [h) and j)], i1 [K)), or when the

whole path exceeds L™ [i)]

VIL Reject in case i) or when the
path has no crossing with A; [case h)].

4 Otherwise, accept the new path.
Replace the old path by by the new
one [Say k)]. Update statistics.

¥ Repeat procedure from from step L.



Simulating the |2

_+_

CI15€CI11D

I. Integrate the equations of motion
forward 1n time until:

.

Reject trial move. Keep the old path. Count it again

and restart procedure using the same path.

10 crossing with A;

I. Pick randomly a timeslice of the N
old path [Like the red dot in b)]. [ Ps .
2

II. Add small Gaussian distributed

random changes dp’s to the momenta | —»
of all particles. [Like in c) or d)]

) L2

III. Continue with a probability

min{1, exp[KIN® /KIN™)} [as in d)] — \
Otherwise Reject [as in ¢)].

2

[ |

‘;t\\\,

3
1
vz
7
e
.

< reaching ) [sce g)], Ais1 [see e)] or

€= [h) and j)), A1 k)], or when the

4 Otherwise, accept the new path

IV. Take a random number o from
an uniform distribution [0 : 1]. Define
the maximum allowed pathlength
L™ = int[L{) /a]. Continue.

' ;
V. Integrate the Newtonian equations)
of motion backward in time until

until the pathlength exceeds L™ [f)]|
Continue in case g). Otherwise reject

V1. Integrate the equations of 1T0vwy “])
forward in time until reaching \y >\ t

whole path exceeds L™ [i)]

VII. Re)feTTrease Ty or when the
path has no crossing with A; [case h)].

Replace the old path by by the new
one [Say k)|. Update statistics.

You reach Ay or A3 or

¥ Repeat procedure from from step L.

L Imax

Total trajectory fails to cross A,



Count it ag;

Reject trial move. Keep the & N\ '/ I
and restart procedure using » AN /U
’ 1 Y . N
-y ‘, >y u J

Ao = A4

Simulating the |2

A

I. Pick randomly a timeslice of the
old path [Like the red dot in b)].

II. Add small Gaussian distributed
random changes dp's to the momenta |—
of all particles. [Like in c) or d)]
) 2
IIIL. Continue with a probability
min{1, exp[KIN® /KIN™)} [as in d)] — \
Otherwise Reject [as in ¢)].
2
IV. Take a random number o from
an uniform distribution [0 : 1]. Define
the maximum allowed pathlength
L™ = int[L{) /a]. Continue.
v :
V. Integrate the Newtonian equations)
of motion backward in time until
< reaching ) [sce g)], Ais1 [see e)] or
until the pathlength exceeds L™ [£)]|
Continue in case g). Otherwise reject

| —

10 crossing with A;

I. Integrate the equations of motion
forward 1n time until:

v , )
v Repeat procedure from from step I.
AN [ .
l Imax

You reach Ay or A3 or

V1. Integrate the equations of 1T0vwy “])
forward in time until reaching \y >\ t
= [h) and j)], A1 [K)], or when the

whole path exceeds L™ [i)]

VII. Re)feTTrease Ty or when the
path has no crossing with A; [case h)].

4~ Otherwise, accept the new path
Replace the old path by by the new
one [Say k)|. Update statistics.

A) Total trajectory fails to cross Ao

3) LM% 15 exceeded




and restart procedure using the same path.

Simulating the [27] ensemble

g
X

T. Pick;randomly 4 Gmeslice of the P
old path [Like the red dot in b)]. [ ® |
‘ |

1L Add small Gaussian distributed
| | random changes dp’s to the momenta | —
of all particles. [Like in c) or d)]

= |

( - : ¢/
III. Continue with a probability
A min{1, exp[KIN /KIN"|} [as in d)] — \
Otherwise Reject [as in ¢)].
| — /i

A s, g

10 crossing with A;

I. Integrate the equations of motion
forward 1n time until: +

> | [V. Integrate the Newtonian equations
/] [/ A% 3 /7 = of motion backward in time until
{ > h <« reaching Ay [see g)], Ai1 [sce e)] or  —P
7 7 , until the pathlength exceeds L™ [f)]|
Continue in case g). Otherwise reject
'y
‘h) \l) V1. Integrate the equations of 1T0vwy “])
L k | forward in time until reaching \y N}
| 4= [h) and j)], Aisy [K)], or when the
\ / W\ whole path exceeds L™ [i)]
R £ v \
RN o [VIL RejeTTHrease Ty or when the K
/ R s 1o crossing with A; [case h)].
(23N T p 1 4—=Otherwise, accept the new path el
¢ N 3 ! Replace the old path by by the new [
I one [Say k)|. Update statistics. i
2
- /
/ / / ¥ Repeat procedure from from step L.

You reach A\g or Ag or L™

IV. Take a random number o from
an uniform distribution [0 : 1]. Define
the maximum allowed pathlength
L™ = int[L{) /a]. Continue.

)\ A) Total trajectory fails to cross Ao

, D,

\ L™M2X 15 exceeded
A () / H \-:[I ) ! '.7 .| | ( | | ] ] cClT.O Y | | | CTOSSES
7 | rajector,




E\) [W 10

Reject trial move. Keep the old path. Count it again
and restart procedure using the same path. O .

Simulating the [27] ensemble |

X
X
34
/
23

Ao = A4

L. Pick randomly a timeslice of the
old path [Like the red dot in b)].

II. Add small Gaussian distributed
| random changes dp’s to the momenta |—»
of all particles. [Like in ¢) or d)

12

IIIL. Continue with a probability > /
min{1, exp[KIN® /KIN™)} [as in d)] \
Otherwise Reject [as in c)].

VII. If accepted ...

IV. Take a random number a from o)l |
an mniform distribution [0 : 1]. Define
the maximum allowed pathlength

L™ = int[L{) /a]. Continue.

V. Integrate the Newtonian equations

\ > | |
I¥h 3 3 Y of motion backward in time until f 3
3 k & reaching ) [sce g)], Ay [see e)] or —P | i >
B 7 until the pathlength exceeds L™ [f)]| ( D )
* | Continue in case g). Otherwise reject.
; - 2 = 4
‘h—) - ,l) - VI. Integrate the equations of motion ‘%) - :’\ -
| forward in time until reaching Ay > \
| 4= [h) and j)], Aisy [K)], or when the /
\ /) W\ whole path exceeds L™ [i)]
WA 1 & Y AN . > N
— R RN . Reject in case i) or when the % (72 A S iy i
1/ N g s 1o crossing with A; [case h)]. N /
/ i 4 Otherwise, accept the new path i) I
¢ 3 N lace the old path by by the new i | 3
FSmala)l_Undate statistics
: 12

1|

AX
/ / ¥ Repeat procedure from from step L.

Replace the old path by the
new one, update statistics
and restart procedure from I.

\ using this new path.
A
0 L

L.




L

Simulating the |2

VII. If accepted ...

ensemble

Reject trial move. Keep the old path. Count it again \ ] s
and restart procedure using the same path. 7

Ao = A4

L. Pick randomly a timeslice of the
old path [Like the red dot in b)].

II. Add small Gaussian distributed
random changes dp’s to the momenta | —»
of all particles. [Like in ¢) or d)

12

IIIL. Continue with a probability > /
min{1, exp[KIN® /KIN™)} [as in d)] \
Otherwise Reject [as in c)].

IV. Take a random number a from o)l |
an uniform distribution [0 : 1]. Define
the maximum allowed pathlength
L™* = int[L®) /a]. Continue

| V. Integrate the Newtonian equations| b

of motion backward in time until - 3N

& reaching ) [sce g)], Ay [see e)] or —P | i 3
until the pathlength exceeds L™ [£)]| ( vy

Continue in case g). Otherwise reject

- 2 e
m — i . VI. Integrate the equations of motion i . =
forward in time until reaching Ay
€= [h) and j)), A1 k)], or when the
whole path exceeds L™ [i)]

cject in case i) or when the

s 1o crossing with A; [case h)].

4 Otherwise, accept the new path I
Replace the old path by by the new
one [Say k)|lgUpdate Stafistics.

¥ Repgd procedure from from step L.

Replace the old path by the
new one, update statistics
and restart procedure from I.
using this new path.



Reject trial move. Keep the old path. Count it again

Ao = A4

3 T

I. Pick randomly a timeslice of the
old path [Like the red dot in b)].

II. Add small Gaussian distributed

random changes dp’s to the momenta | —

of all particles. [Like in c) or d)]

) 2

III. Continue with a probability

min{1, exp[KIN® /KIN™)} [as in d)] —

Otherwise Reject [as in ¢)].

f) ¥

[ IV. Take a random number o from
an uniform distribution [0 : 1]. Define
the maximum allowed pathlength
L™ = int[L() /a]. Continue.

' ;

V. Integrate the Newtonian equations)
of motion backward in time until

< reaching ) [sce g)], Ais1 [see e)] or
until the pathlength exceeds L™ [£)]|

Continue in case g). Otherwise reject

A pms g

10 crossing with A;

7

VII. If accepted ...

[ T . VI. Integrate the equations of motion
| forward in time until reaching \y
€= [h) and j)), A1 k)], or when the

S/ whole path exceeds L™ [i)]

572 Y [VIL Reject in case i) or when the
X path has no crossing with A; [case h)].

b 3
1| 4= Otherwise, accept the new path.

), Replace the old path by by the new
% one [Say k)|lgUpdate Stafistics.

¥ Repgd procedure from from step L.

The fraction of accepted
/\1 paths that crosses A3

besides Ao equals P4 (A3| A2




Detailed balance continued .....
e _IBE(XO)

/

Xi : phase point (ri,vi) of trajectory at MD step i. (time slice)

pMD(xO — xl)pMD(xl - X5).. .pMD(xL_l — X7)

L —
P ('xp ath) —

pMD(x — x') : probability that MD integrator generators x’ after x.
If the dynamics obeys microscopic reversibility (true for MD, Langevin, Brownian dynamics, ...):
p()pMP(x = x) = p()pMP(x’ - ¥) with ¥ =(r,— V) and p(x) = p®

This implies that we can write the path probability also as:
L MD e P MD MD

4
e _ﬁ E (Xz)
4

— pMD(fl — x_())PMD(x_z — X1) PMD(xz — X3).. -PMD(XL_1 — X7)

Etc



Generation probability: (1) selection of shooting point, (2) modification of velocities, (3) going
backward and forward in time from modified shooting point

gen(x ath(o) path(n)) = sel(x | path(o))P 5vP MD-—steps

Sel(x | X path(o)) = E

Ps, = P_s,  (symmetric velocity change probability )

PMD—steps — pMD()Tn — X ln)p = xs—2n)° . °pMD(x§L — x?+1)pMD(xn — x;:_z)- .
p _ p(x ath(n))
MD-—steps P (Xgl)
Metropolis-Hastings:
P ( ath(n)) en( ath(n) ath(o)) ,O(Xn)LO
L” .. g p . s
acc(x ath(o) path(n)) min|[ 1, | = min[1, ]

P a0 PeenXatho) = Xpath(n)) p(xQ)L"



) o PL?
L S
¥ X = min|[1,
acc( ath(o) path(n)) [ p(xSO)L”]

We will equally well obey detailed balance if

[n o PO) L’

aCC(x bath(o) X path(n)) = min|[1, (0 )] X min[1, E]
e —pE,;,,(v") L°
= min|1, X min[1,—
/[ e—ﬂEkin(Vo)] [ L”]
Take a random number a € [0: 1] and accept Take a random number o’ € [0 : 1] and accept
if o < e PlEu(V")=E(v)] if a’'<L°/L"
L"< Lo’

Take the random number beforehand and define max. allowed path length: 7,™2 = int[1.°/a']



MD run to determine
effective escape flux
through interface 1

A2
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Path sampling
In the
A-interface ensemble

#p0o2

I; (kz‘xl)_ Hpoo+#po2
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Path sampling
In the
A2-interface ensemble

\ Y

A2 A3




Path sampling
In the
A2-interface ensemble

A B
#po3
Hpoo+#po3

IZ (A3l
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Path sampling
In the
A3-interface ensemble




Path sampling
In the
A3-interface ensemble

#po4
Hpoo+#poa

B\ (Aylh3)=



Path sampling
In the
M-interface ensemble




Path sampling
In the
M-interface ensemble




Path sampling
In the
M-interface ensemble

oA '
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A B
P, (AylAs) ~1




Construction of the overall crossing

probability
e ettt ettt
107 X 4952
% 10
S
o
.
£
8 16"
@)
10

.... times the flux through interface 1 yields the rate !



Construction of the overall crossing
probability

0
1 L —
-12
10~ X 4952
Y
% 10 . .
yv]
0O
8 L ' L
A 17 1.74
o
E f
2 40" - |
S A If plateau region is reached it
means that all paths reach B
1
O~0—0-0-0-0-0-0
|
10 ................... P
1.24 1.34 1.44 1.54 1.64 1.74

.... times the flux through interface 1 yields the rate !



TIS compared to TPS

TIS uses flexible path lengths.

Only shooting moves and possibly time-reversal moves.
The shifting moves are redundant.

Faster convergence (no cancellation between positive and
negative terms).

Complete new algorithm based on the intertace crossing
condition instead US approach applied on the endpoint of
the path.

Always faster than the original TPS rate calculation
algorithm.



The problem of multiple reaction channels
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The problem of multiple reaction channels
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The problem of multiple reaction channels

For example: the path ensemble gets easily stuck.
T r 20
)‘n — /\ Br = 10
/\3 - . . 4 ©
/\2 - ' . z = ' —H -10
)\1 s ' (\ ‘ 1 -20
)‘() — )‘A » | ' \= —TH -30
AN =)




The problem of multiple reaction channels

Even after many MC path moves, I will probably
never sample the right path via shooting moves.

: : ; 20
)‘-n. — )\B I - 10
/\3 - . , 4 ©
/\2 B ' f _ ' 10
)\1 - , . .'-m | . 14 -20
/\(') — /\A » : - A\= T =30
NS 1 -40
10 5 0 : T



This would require to generate an intermediate

connecting path (red) with very high energy.

T

T

The problem of multiple reaction channels

20

10
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-20

-30

-40



The problem of multiple reaction channels

Alternatively, 1t would help 1t we could access the
parallel channel via a shooting within state A. This 1s
however not part of ensemble.

T 20

)‘-n. — /\B I 4 10
/\3 - . | i

/\2 5 ' | -10

AL | (\ ('\ ; T 2

/\(') — /\A » | ' N A\= 1 -30
I‘-‘:’

- . | ' ‘ < -40




The problem of multiple reaction channels

On the other hand, the paths 1n the

ensemble are

higher 1n energy and can easily move across ditferent

T

20

= 10

1 0

-10

11 =20

channels!

)‘n — /\B I
A3 b
Ay |
A1t

/\() — /\A |

-1 -30

4 -40




The problem of multiple reaction channels

On the other hand, the paths 1n the

ensemble are

higher 1n energy and can easily move across ditferent
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The problem of multiple reaction channels

On the other hand, the paths 1n the

ensemble are

higher 1n energy and can easily move across ditferent

channels!

T

T

20

= 10

1 0

-10

11 =20

-1 -30

4 -40




RETIS: a new TIS algorithm based on Path
Swapping (Replica Exchange)

We replace the MD simulation by another “internal” path ensemble

[0]

Then flux 1s calculated by: [0°]

GO Ao A1
Path 1n the are not stopped when crossing /.|, but continued until

hitting

Now, we can use techniques known from replica-exchange/parallel-
tempering and swap trajectories from one ensemble to the other

TvE, PRL 98, 268301 (2007)



Parallel Path Swapping

Ay A

ls wap

I

A

As

TvE, PRL 98, 268301 (2007)



[llustration of improved convergency of the
crossing probability by the RETIS algorithm for a
model (PBD) of DNA denaturation

z | 07— |\ 0] —
%1'10 ? standard Ly i path 17
o 2" — \ . 2" —
O, 142 TIS swapping|
5110} 37— 1 \ 3] —
s 4 | 4"
?1.10°| \ . | . ﬂ
O 5\ | [5]
(@) Al \ \
701'104-‘ " 1 . _.
IS (6] — 67—
5
1.10 1 1 1 1 . 1 1 -
0.0 0.2 0.4 ) 06 0.8 1.0 0.2 0.4 5 0.6 0.8 1.0

TvE, PRL 98, 268301 (2007)



Results for p; and L;

Pi
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0.5 1
12000
0.4 - .
10000
03 - B 1 8000
| - .
6000
02 - .
4000
0.1 :
2000
0
-1 0 1 2 3 4 5 6 7

mmmm Standard TIS

s TIS with swapping

T T T T T T T
. | —
— = B I I |
0 1 2 3 4 5 6 7



Results for &;, M, and T(Eg—]

6e+06

5e+06 |-

4e+06
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B l I
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-1 0 1 2
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wmmw TIS with swapping
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T()T
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o
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total running average
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O
o
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o

Total running average and block
averaging results
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path swapping —

relative error
o
o
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07| path ensemble results
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Replica Exchange TIS: s
Ay M \Interface positions
on the energy
T. S. Van Erp, Phys. Rev. Lett. 2007 \\\ landscape
Shooting move [, +]

Cabriolu, Refsnes, Bolhuis, van Erp
J. Chem. Phys. 2017

SN

Time reversal move

MC moves: [i*] stmovel' - [i*]
RN SO
e No MD part Swapping move [ 0-] <[ 0*]

e Instead [0-] path ensemble
e Paths are always continued
till A or B are reached

* Swap-Moves L,\\\ Crn



Replica Exchange TIS

Faster decorrelation than TIS and provides cheap (free) path swaps between path
ensembles.

But more difficult to implement than TIS... but now we have finally open software
packages that have done it for you! PyRETIS, OPS (open path sampling)

Unlike TIS, it 1s not embarrassingly parallel (PyRETIS uses MD engines that can
run parallel, path ensembles are updated sequentially).

Significantly more efficient than TIS especially in complex systems and when
multiple reaction tubes/channels exist. It was 20 times faster than TIS for a study
on DNA denaturation using the mesoscopic Peyrard-Bishop-Dauxois model.
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PyRETIS 1,00 About Installing Gettingstarted Inputfile  Site ~

Welcome to PyRETIS!

@& PYRETIS

PyRETIS is a Python library for rare event molecular simulations with emphasis on methods based on
transition interface sampling and replica exchange transition interface sampling.

PyRETIS: A well-done, medium-sized python library for rare events,
J. Comp. Chem., 38, 2439-2451, (2017), Anders Lervik, Enrico Riccardi, and Titus S. van Erp

Lorentz

Current Workshop | Overview Back | Home | Search | Contact

Center for Scientific Workshops in All Disciplines

Transition Path Sampling Simulations via PyRETIS: Theory and
Application of Rare Events Methods to Compute Transition and

Reaction Rates
from 11 Mar 2019 through 15 Mar 2019
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Can we do better than shooting? Yes we can!
E. Riccardi, O. Dahlen, and T. S. Van Erp, J. Phys. Chem. Lett. 2017

Ao A AL At Ana An

a)
k">1 SublPath: .
Cﬁﬁ)p' Shogtu(\g;t Stone-Skipping
e Poin
D3 _INND4
R path
b Au Al /\.:.uur A_) A.\'-lA.\'
) .i\lq/“‘ path
/)~ 5. Shooting Web-Throwing
</>;;‘:,:'.:“"'. e Point
Qill
A 5 ~‘3
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Acceptance rule based on Super-detailed balance

(n) (n) (©)via v
Pacc = min 1, P(p )Pgen (p — P via X)}

P(p(°)) Pyen (p(©) — p(™Mvia x)

and some other tricks ...... (for the details see Riccardi, Dahlen, van Erp, JPCL 2017)
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Titus S. van Erp

Acceptance rule based on Super-detailed balance

P(p™) Pgen (p™ — p©)via )

Pacc = Im] 17 :
T P0@) Pren (0@ — p™via x)

and some other tricks ...... (for the details see Riccardi, Dahlen, van Erp, JPCL 2017)

O
o
o

Rate (1/ns)
o
&

O
-
=

b)

0O 20 40 60 80 100 120 140 160 180 200

number of force evaluations (10°)

Rate of DNA denaturation using the mesoscopic Peyrard-Bishop-Dauxois model.

Horizontal line is result based on partition function integration (nearly exact result).

Stone skipping was found 12 times faster



TIS related methods

e Partial Path TIS

e Milestoning
* Forward Flux Sampling

* TS-PPTIS

Key papers:
PPTIS: Rate constants for diffusive processes by partial path sampling, J. Chem. Phys. 120,
4055 (2004); Moroni, Bolhuis, van Erp, https://do1.org/10.1063/1.1644537

Milestoning: Computing time scales from reaction coordinates by milestoning J. Chem. Phys.
120, 10880 (2004) Faradjian, Elber, https://doi.org/10.1063/1.1738640

FFS: Sampling Rare Switching Events in Biochemical Networks, Phys. Rev. Lett. 94, 018104
(2005), Allen, Warren, ten Wolde, https://doi.org/10.1103/PhysRevLett.94.018104

TS-PPTIS: Efficient Numerical Reconstruction of Protein Folding Kinetics with Partial Path
Sampling and Pathlike Variables, Phys. Rev. Lett. 110, 108106 (2013)
https://doi.org/10.1103/PhysRevLett.110.108106



Diffusive barriers: Partial Path TIS

N\ ~
.;‘"Q’ __ B TIS and TPS paths can be very long for diffusive

A barriers
S Ve
e assume complete memory
loss after some time
* 1f hopping probabilities
~ known overall rate constant
o\ k,z can be found
A B

 Hopping probabilities can be
calculated by partial path TIS
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The conditional crossing probability
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The conditional crossing probability
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Partial Path TIS

D. Moroni, P. G. Bolhuis, and T. S. van Erp, JCP 120, 4055 (2004)

AFUN

Memory-loss assumption: ~ P(il’y,,) ~ P(.[/2)
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Partial Path TIS
\__"
k17 <

P(CI7) 2ok

[/

k j i |

pziEP(;t}z 1) pz _P(z+lz+1)’

=__ pyi—1 +1
Pi =P(:+1 i—1) 5 Pz P(’ z+l) Short-distance hopping
. probabilities
which fulfill the tollowing relations:

pi+p;=p+pi=1.

+ 11 - 01i—1 L _dist . -
Pi =P(6|0), Pz’ =P(z|: ). p:::lgab:lsit?:sce oPPing
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Partial Path TIS
p1—=P(7+11 1)’ pz _P(z+11+1)’

_P(H—lz 1)’ sz

+1
(7 1+l)

which fulfill the following relations:

p;+p;=p; tpi=1.
+_ pyill
P; =P(6‘0)

+ o+
pt_ Pi—1P;-

! Pf—1+Pf—1P;—1’
p— pj:—lf_)j_—l

! Pio1tpPi—1 P |

Pr=PQl)

P =P =1

Pa(AB|Aa) = Pa(An|Xo) = PiF

if we choose: \{ = A\g + ¢



Partial Path sampling

»

Ao <‘l<r
A h

M 2 A3 4

4 #po2 T

P = Hpoo+#po2 P1 = Hp22+
— Ay —— , -l- — : +
py =1—=p; pi=1-p



Partial Path sampling

>

- |

A2 A3 N4 A5

] H#p13
Do = #Hpu+#pss Do = #pas+

I

ps =1—p5 ph =1—p]



Partial Path sampling

=

F—

A A A2 A3 N4 A5 B
N H#p24 _
P3 =  #poot+itpos p—g_ —  H#pas+

+ 1—
_ 3

p3s =1 —p3 p3; =1—p3



Partial Path sampling

M A2 A3 v

N H#p3s
Pa — #pas+itpss P4 — #pss+

pp =1—p;

=
|
|
}—L
|
=
=



Partial Path sampling

A1 A2 A3 N4

1 Hpae o

ps — Hpaat+Hpas ‘p{{ —  Hpeet

= _ 1 + pE =1 —pF
Prs — 1 — Py Pr = Ps



Partial Path sampling

<

>
\<§j/\J X

A2 A3 N4 A5

p] Pi—

J pT | +pi P R ~ pE +p=P.
Pj—1TPj—1451 Ij—l Py

While TIS and RETIS are exact, PPTIS gives an approximation to the rate. Pathways are
much shorter. PPTIS is particularly good for diffusive barrier crossings for which full
paths are very long and the memory loss assumption 1s a very good approximation.



Differences between PPTIS and Milestoning

PTIS MILESTONING g

A1 A2 A3

» Trajectories from shooting/time-rev. -« Trajectories released from eq. distribution

- Spatial memory: - Time-memory
— 4
+ I + — / / /
Pr#EP PIED P1o3(0) = J P15 (& — )dt
0
Is iImportant if there are barriers Important if there is no clear separation of

orthogonal to the RC, inertia effects. time-scales (i.e. when the rate is ill-defined)



Forward Flux Sampling (FFS):

- Based on the same rate equations as TIS:

n—1
ks =fo | | PaChigi 12)
=0

- But instead of Metropolis-Hastings MC it uses
splitting 1o generate paths




MD run to determine
effective escape flux
through interface 1

A2

A3

FFS




Store the effective first
crossings (full phase
points) with A1

A

A

Randomly pick a point and
release an MD trajectory
from it until it hits Ao or A2

A2

A3

FFS




FFS

Store the effective first
crossings (full phase
points) with A1

A3

A

Randomly pick a point and
release an MD trajectory
from it until it hits Ao or A2




Store the effective first
crossings (full phase
points) with A1

A

Repeat many times

A3

FFS




Store the effective first
crossings (full phase
points) with A1

Repeat many times

A3

FFS

B
Hp12

R(kzp\l)_

Hp10+#P12



Save the end points of the
paths crossing Az

A2

A3

FFS




FFS

Save the end points of the
paths crossing Az

A2 A3

A

A

Randomly pick one of B
those points and release

an MD trajectory from it
until it hits Ao or Az




FFS

Save the end points of the
paths crossing Az

A2 A3

A

A

Randomly pick one of B
those points and release

an MD trajectory from it
until it hits Ao or Az




FFS

B

Repeat many times #p23

B% (7\'3‘}\'2)_ Hp20+#P23



FFS

Continue by sampling
the Asensemble

A3




Continue by sampling
the Asensemble
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A2

A3

FFS




Continue by sampling
the Asensemble
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FFS



Continue by sampling
the Asensemble

FFS




FFS

Continue by sampling
the Asensemble




Continue by sampling
the Asensemble
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Continue by sampling
the Asensemble
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Continue by sampling FFS
the Asensemble




Continue by sampling FFS
the Asensemble
(—

N4

A _

IZ (Aglh3)=

B
Hp34
Hp30+#P34




Continue by sampling
the AMd ensemble
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Continue by sampling
the AMd ensemble
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Continue by sampling
the AMd ensemble
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Continue by sampling
the AMd ensemble
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Continue by sampling
the AMd ensemble

A2

A3

FFS




Continue by sampling
the AMd ensemble

A2

A3

B
P (hhs) ~1

FFS



2ros and cons of Forward Flux Sampling:

Many trajectories relative to the number of MD steps
But many of these trajectories are correlated

Can be used for non-equilibrium dynamics for which the phase-
space density iIs unknown

Can’t be use with deterministic dynamics

Exact like TIS/RETIS

Efficiency of FFS is even more than the Reactive Flux method
affected by a bad choice of RC (e.g. hysteresis) and
configuration space might not be sufficient for defining a

functioning RC

Results might look very well converged even if they are not!
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Failure of FFS on a 1D example!

04

04 L

0.6

08 |-

U(r) =r* —r?

Langevin Dynamics
kB —m=1
~v=10.3,1T =0.7

8 interfaces

Ao = —0.9 X =—0.8 X\ = —0.7, A3 = —0.6,
A= —05, 5 = 0.4, g = —0.3, Ay = 1.0
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reactive flux method \/271_% fooj;f:f;ﬂ)\) K k=K X \/Zflrm X fo:c_lfio,;p(,\)
EPF algorithm 0.106 2.63-107° 0.874 + 4% 2421077+ 4 %
path sampling fa Pa(AnlAo) k= fa X Pa(An|Ao)
TIS 0.263+1%  1.52-107°% + 20% 4.02-1077 £ 20%
PPTIS 0.263+1%  1.04-107°%+19% 2.73-1077 + 19%
RETIS 0.265 +1%* 1.05-107° £ 25%* 2.79- 1077 4+ 25%*

0.263 + 1%
0.259 + 2%

4.69-107% + 6%*
8.45-107° £ 9%*

FFS (long MD run)
FFS (short MD run)

1.23-1078 + 6%*
2.18-1079 £ 9%*

TIS RETIS FFS
i [0 o [0+] — 01t A [ Y
o1 141 (RS R AN AN [14]
- [2+] —7 [2+] —1 1e-03L \ [2+] - ]
1e-03| [3+] 1 {. [B3+] | _ " [3+]
: [44] 1 W [44] | 1e-05} {gﬂ
: [5+]_ 5+] _ \ _
1605 6+4] T N 6+]—1 1e07| \ [6+] —]
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FFS have asymmetric velocity profile on the symmetric barrier!
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Transition State PPTIS

Juraszek,Saladino, van Erp,Gervasio, Phys. Rev. Lett., 110, 108106, (2013).

Free-energy [kT]

s(R)

Applied to the Trp-cage miniprotein folding

PPTIS can be used in combination with free energy calculations in order to
calculate small transmission coefficients on a diffusive barrier



AL "4": ?1 \\""}f‘:\\w\ y N S ‘ ki -
@ NTNU Pay B\ (\(\ A» Y Titus S. van Erp
>, ol \ \ 3 N ! 4

Norwegian University of
Science and Technology ~_

Application:
Ab Initio autoionization of water

Analysis:
Method to analyse reaction mechanism:
The predictive Power Method
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REPORTS

Autoionization in Liquid Water

Phillip L. Geissler,” Christoph Dellago,’* David Chandler,’* n‘ AAAS
Jiirg Hutter,’t Michele Parrinello® ‘

2001

Destabilization of ions is due rare electric field fluctuations which arises primarily from
long-range electrostatic interactions. Local properties such as ion coordination number
and the presence of specific hydrogen bonds, fail to account for the bond-destabilizing
fluctuation in our simulations.

On the recombination of hydronium
and hydroxide ions in water

Ali Hassanali’, Meher K. Prakash, Hagai Eshet, and Michele Parrinello

DPDNAS B

The neutralization event involves a collective compression of the water-wire bridging the
ions, which occurs in approximately 0.5 ps, triggering a concerted triple jump of the
protons. This process leaves the neutralized hydroxide in a hypercoordinated state, with
the implications that enhanced collective compressions of several water molecules
around similarly hypercoordinated states are likely to serve as nucleation events for
the autoionization of liquid water.
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On the recombination of hydronium
and hydroxide ions in water

Ali Hassanali’, Meher K. Prakash, Hagai Eshet, and Michele Parrinello

PNAS

The neutralization event involves a collective compression of the water-wire
ions, which occurs in approximately 0.5 ps, triggering a concerted triple jum

oridging the
n of the

protons. This process leaves the neutralized hydroxide in a hypercoordinated

state, with

the implications that enhanced collective compressions of several water molecules

around similarly hypercoordinated states are likely to serve as nucleati
the autoionization of liquid water.
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Analyzing complex reaction mechanisms using path sampling

Titus S. van Erp, Mahmoud Mogadam, Enrico Riccardi, and Anders Lervik
J. Chem. Theory Comput. 12, 5398-5410, (2016)

AA

/

>~
A

\ANEAA

Ar

/

X2 ;)
AR\ N\ U A

‘\

8




"% \\\\\\x ¢ Q \ i
> “of, N (($& N - w
@ ‘\" I "\‘ l | ~ 4 e ‘\\\i\l\ A Titus S. van Erp
SI§

Nl rvmrrerm e cvs TToniermmiber Af Analysis of paths: Predictive power method
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Consider the set of trajectories starting at Aa, crossing Ac at least once, and ending at
either Aa or Ag.

tq: the fraction of trajectories passing through bin q in the A surface.
ry: the fraction of trajectories passing through bin q and cross A,.

uq: the fraction of trajectories passing through bin q but do not reach A,.
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Consider the set of trajectories starting at Aa, crossing Ac at least once, and ending at
either Aa or Ag.

t: the fraction of trajectories passing through bin q in the A surface.
ry: the fraction of trajectories passing through bin q and cross A,.

uq: the fraction of trajectories passing through bin q but do not reach A,.

Relations:
tg = Uqg +7¢ thzl
q
qu :PA(AT|>\C) Zuq — 1—7DA(>\T|>\C)
q q

If r,/t; =1 or r, = 0 for each bin ¢ = optimal predictive ability
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g = Uqg +T¢ th:1

Y rg=Palr|A) S ug =1 Pa(r|Ae)
q

q

If r,/t; =1 or r, = 0 for each bin ¢ = optimal predictive ability

We define now an overall measure 7 of predictive power as a weighted av-
erage of r,/t, over ¢ where each bin is weighted with the fraction of reactive
trajectories passing through gq.

2 (Zi)q”'“v> ZZ 7«\)\ Z — = ‘)\ ) S rq(tqtq— Uq)

q

1 1 TqUg TqUg
p— — :1— p—
Pat A 2" 7>A<AT|AC>%: tq mwmz 3y

q

T
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T= (qu’f) :j Zq:t_g B \AC) 2 746](%15; .

q

1 1 T'qlUq 1 T'qlUq
= Tq — =1- =1-5
Pa( | Ae) zq: T PAA ) zq: g Pa( | Ae) Z tq

In continuous space, S is the overlap integral of the reactive and unreactive
distributions.

She (g 1 / P @V A BNy
A PA()\’I“|)\C) tAC(\IjN)

The highest possible predictive ability is obtained by the collective variables
that minimize the overlap

Ae A, 1 / presdr (PN gyAeAr (PV) N
540 = Bain mmm[ ( P (T V) v
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S)\c’)\r [\IJN] _ 1 / ’r‘>\c,>\r (\IJN)U)\C,)W(\IJN) d\IjN
A PA(AT“)\C) t)\c (\PN)

The highest possible predictive ability is obtained by the collective variables
that minimize the overlap

LA, 1 / TAC’AT(\I/N)UAC’AT(\I/N) N
¥ v
= w5 ‘

If the orthogonal collective variables have no correlation with reactivity:

preAr (TN = Py A) P (TY), WM (EY) = [1 = Pa(AA)] e (TY).
= SN = 1—Pa(AA), = T = Pa(v|Ae).

If the orthogonal CVs have maximum deterministic correlation:

predr (PN = A (UNV)  or e (UN) =0 for all values of ¥V
= SN =0 and TioM[EN] =1
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Auto-ionization of water: a RETIS/CP2K study
(PNAS, 115, E4569, (2018), Mogadam, Lervik, Riccardi, Venkatraman, Bjgrn K. Alsberg, and van Erp)

RETIS combined with DFT-based dynamics (CP2K, BLYP-functional)

32 water molecules

20 interfaces, last one unreachable: all trajectories start and end QW

|()n|

with pure water

O
\® g

|OH]

+- 20,000 trajectories in each path ensemble of which:

10,000 Replica Exchange, 5000 time-reversal, 5000 shootings A
Each ensemble had at least 1000 accepted shooting moves ©
. . ®° e_o
Reaction coordinate A 3 ) 8
if only H20 present: A=MAX{|O-H|} P
(the largest OH-bond in the system) ® B

if H30+, OH- present: A=MIN{|Oon—Hrzo+|}

(smallest distance between hydroxide-oxygen and one of the three
hydronium-hydrogens)
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Auto-ionization of water: a RETIS/CP2K study
(PNAS, 115, E4569, (2018), Mogadam, Lervik, Riccardi, Venkatraman, Bjgrn K. Alsberg, and van Erp)

Short trajectories with hydrogen wire of 3 and 4 waters:
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Auto-ionization of water: a RETIS/CP2K study
(PNAS, 115, E4569, (2018), Mogadam, Lervik, Riccardi, Venkatraman, Bjgrn K. Alsberg, and van Erp)

long trajectory with hydrogen swap
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1st and 2nd proton jump almost always go concerted. The 3rd proton jump
mainly follows up in a step-wise fashion
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Comparison with experimental data?

Untersuchungen iiber die Kinetik der Neutralisation. I

Von M. EIGEN und L. DE MAEYER
Aus dem Max-Planck-Institut fiir Physikalische Chemie, Gottingen

(Vorgetragen von M. Eigen anliBlich der 54. Hauptversammlung der Deutschen Bunsen-Gesellschaft
fiir physikalische Chemie ¢.V. in Goslar am 21. Mai 1955)

Mit Hilfe rechteckiger Hochspannungsimpulse werden Messungen der Zeitabhingigkeit des Dissoziations-
feldeffckts in sehr reinem Wasser (der spezifischen Leitfihigkeit 5,7 - 10-# 2-1 cm? bei 25° C) durchgefiihrt.
Aus der gefundenen Relaxation lassen sich die Geschwindigkeitskonstanten fiir die Gleichgewichtseinstellung:

H* + OH" —'HO

bestimmen.
Man erhilt fiir dic Geschwindigkeitskonstante der Neutralisationsreaktion:

kq = 1,3 (4 0,2) - 10" liter/mol sec bei 25° C
Fiir die Konstante der Dissoziationsreaktion ergibt sich der Wert:
kp = 2,6 - 10-8 sec 1.

Der Mechanismus der Neutralisationsreaktion, die nach den vorliegenden Ergebnissen eine der schnellsten
Losungsreaktionen ist, wird cingehend diskutiert.
Die beschriebene MeBanordnung ist allgemein fiir die Untersuchung zeitabhingiger Feldeffekte in fliissigen
und festen Systemen (Halbleiter) geeignet.

Alternative threshold-free definition
Proton swap condition

k=0.16 s !

Eigen & Maeyer:
k=2.6x10-5 s-1;

each water dissociates
once per 10 h
Eact=15.5-16.5 kcal/mol

Our our simulations:

Aux = 2.9 - 1012
Ps=4.0-10"1°
k = flux-Py

= 1.1-107%s
each water d|SSOC|ates
once per 1.5 minutes
(1 ps lifetime threshold)
Eat=17.8 kcal/mol
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Ta” =1 P o) / P (E) + o (€)1

“predictive power” J. Chem. Theory Comput. 12, 5398-5410, (2016)

If Ac << A, ‘reactivity’ is a rare event and r(€) is small -> Path reweighting (Rogal J, Lechner W, Juraszek J, Ensing B,
Bolhuis PG (2010). J Chem Phys 133:174109.)
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ws: H-bond wire(*)
Na: number of accepted H-bonds

q: measure of tetrahedral ordering around OM the oxygen with largest OH bond(**)
Jeos: alignment between 2 nearest H-bonds

(*) the hydrogen bond wire is the shortest wire containing the species O* and i — 1 other water

species at the first pomt in time when A is greater than a given threshold value, A=1.15 A
3 2
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’UJ4(A)

r and u are normalized in this figure! (Otherwise r looks like a zero flat-line)

Consider two cases

1) If 7.15<w4 <7.6 and at the same time na =3, the probability for a reactive event is 3.6:10-6
This is 58 larger than from a random point at Ac .

ii) If (ii) w4 < 7.3 and simultaneously na = 4, the chance increases to 0.15.

But 45% of reactive trajectories cross A¢ through region i) and only 0.6% through region ii)
The predictive power T weights the contributions of i) and ii) accordingly
= i) has 75 higher weight than ii)
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Can we use Machine Learning to provide best candidates for CV to
be tested in the predictive power method?

Every odd path ensemble used as calibration set.
Every even path ensemble were used for the test set.

As heavily skewed distributions are difficult to treat with ML, we further omitted the
reweighting of the datasets with the statistical weights of the corresponding path
ensembles.

Instead, we applied the ML techniques as a qualitative approach to find new parameters
that could be tested quantitatively within the predictive power method.

To avoid over-interpretation we restricted the complexity of the ML decision process and
imposed a maximum of four order parameters in the predictive power method.
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Can we use Machine Learning to provide best candidates for CV to
be tested in the predictive power method?

« Our ML model: single-tree—based decision models based on classification and regression
decision trees (CART)

« We considered 138 collective variables consisting of oxygen— oxygen distances;
oxygen—hydrogen distances for initially bound water molecules; all angles formed by O*
and 1ts four closest oxygen neighbors; and the Steinhardt order parameters of orders 3, 4,
and 6. In addition, the order parameters already considered were added.
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Using RETIS we can reach the minute/hour timescale using ab-initio MD in the case of
water dissociation

We designed a new approach to analyze the data of path sampling simulations which can
be used to test hypotheses on the reaction mechanism.

In water auto-ionization, the compressions of several water molecules around a
hypercoordinated state seems to be a necessary but not a sufficient condition for the
initiation of water splitting.

Other initiation triggers are the number of accepted hydrogen bonds, local distortion from
tetrahedral order, and possibly other local or non-local properties.

Machine Learning techniques can identify initiation triggers that are not easily found by
intuition or looking at movies. Though in this case it did not beat human intuition/effort.

Yet, the Machine Learning approach did find all important parameters very fast. Possible
improvements are now being studied (can we do without intuition/hyper-parameters?)

Can we use the knowledge of what triggers the reaction for designing catalytic strategies?



