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Part I

Interface specific vibrational 
spectroscopy
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Introduction

Surfaces important for: 

• Catalysis 

• Electrochemistry 

• Biochemistry

• …
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Required: molecular specific information at an interface

Solution: sum frequency generation spectroscopy 

(as will be shown in this lecture)

Introduction

• How does the surface look like? 

• What is the interaction of adsorbates with surface? 

• How strongly are molecules bound? 

• What is the reaction mechanism? 
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Required: molecular specific information at an interface

Introduction

Two ingredients: 

1. Molecular specificity 

2. Surface sensitivity
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Water                Lipids                   Proteins

The wiggling and jiggling of molecules is very specific 

A chemical bond is just like a spring: the oscillation frequency 

is given by the strength of the chemical bond and the masses 

of the atoms involved.

Approach
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Water displays strong variation in H-bond strengths, which

affect O—H stretch vibration

O—H stretch vibration is a marker of local water environment 

Sensitivity to environment
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Infrared light

The vibration can be ‘switched on’ 

with infrared (IR) light

sample

Compare IR light without and with sample

Approach

CH2

CH3
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IR
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• With background, IR detection

• Not sensitive

• Not surface specific

Selection rule

dipole moment of molecule 

should change during vibration

Vibrational infrared spectroscopy
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http://sciencenotes.org/wp-content/uploads/2014/05/PeriodicTableElectronegativity.png

Electronegativity
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IR
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Vibrational infrared spectroscopy
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R. Mendelsohn et al. / Biochimica et Biophysica Acta 1798 (2010) 788–800

Upon compression, relative peak intensities

changes, revealing a structural or environmental

change in the vicinity of the lipid polar head group.

IRRAS water-lipid monolayer

Phosphate vibrations

1258 cm-1: unhydrated

1238 cm-1: monohydrated

1225 cm-1: dihydrated

Surface 

pressure
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Scattering experiment 

Nature 122 (1928) 12

Raman und Krishnan
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• With background, VIS detection

• Not sensitive

• Not surface specific

• Suited for microscopy
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VIS
Selection rule

polarizability (tendency of charge 

distribution to be distorted by 

external electromagnetic field) of 

molecule should change during 

vibration
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Which molecules are Raman 

active?
N=N

Vibrational Raman spectroscopy
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Compare IR and Raman
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• Identification of functional groups on a molecule:
label-free molecular info

• Shape and frequency of spectral response reflects local 
molecular environment

• Absorbance follows Beer’s Law: 

Abs=extinction coefficient*concentration*pathlength 

 can do quantitative analysis

• But….. need advanced methods to investigate 
surfaces/interfaces

Vibrational spectroscopy
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with c=c(1)

Linear optics

Polarization P: 

non-equilibrium 

charge distribution 

created by E 

Mischa Bonn
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Nonlinear optics

Typical for environment

with broken symmetry:

Surface / interface

Mischa Bonn
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Phys. Rev. Lett. 1961, 7, 118-119

First second harmonic experiment

1961, 694 nm light on quartz plate
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Theory: nonlinear optics

Emm += 0

...32

0 ++++= EEE mm

The electric field of a light wave propagating through a medium exerts a force on 

the electrons of the molecules. Low intensity light, then

static permanent dipole

polarisability of molecular electrons

By increasing field strength, non-linearity terms become important:

first order hyperpolarisability
second order hyperpolarisability

The sum of the molecular electric dipoles gives rise to a bulk polarisation: 

( )EP 1

0c=

( )1c is average of 

(considering only the induced polarisation)



24

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ...

33221 +++



tEtEtE

tEtP

ccc

c

Theory: nonlinear optics
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Theory: nonlinear optics

Optical Rectification

Difference Frequency GenerationSum Frequency Generation

Second Harmonic Generation

Topic of this lecture
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Theory: nonlinear optics

...32
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c(2) has molecular information and is thus the interesting observable to 

obtain in an experiment
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c(2) obtained by measuring the intensity of the SFG signal

1
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SFG
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Apply inversion symmetry operation

for centrosymmetric medium

At surface symmetry is broken 

 SFG allowed at surface, but forbidden in bulk

Perform a ‘gedanken’ experiment:  

Prove of SFG forbidden in 
centrosymmetric media
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Theory: nonlinear optics

Two requirements to obtain SFG signal from bulk materials:

1. phase matching condition

signal from every slab has to interfere positively

2. material should have a nonzero second-order susceptibility

which is not the case for a centrosymmetric medium

E1

E2

ESFG

At surface symmetry is broken 

 SFG allowed at surface, but forbidden in bulk
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Theory: nonlinear optics

E1

E2

ESFG

ESFG

At surface symmetry is broken for a thin region (~one molecular diameter 

in thickness) and therefore SFG signal can be generated in reflection and 

transmission geometry.

How to obtain molecular information? 

IR

VIS

SFG

Phase matching: conservation of 

momentum parallel to surface

SFG
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• Infrared spectroscopy molecular specific 

• Second-order nonlinear process, like SFG, 
surface specific 

 vibrational sum-frequency generation 
spectroscopy gives molecular information of an 
interface

Sum frequency generation 

g

v

s

IR

VIS

SFGIR: resonant with molecular vibration 

VIS: in general nonresonant 

SFG: in visible region  “easy” to detect
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Theory: nonlinear optics

g

v

s

A.G. Lambert et al. 

Appl. Spectr. Rev. 40 (2005) 103

Raman transition 

moment

Infrared transition moment
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Molecular characteristics are present in c(2)

N: number of molecules 

M: polarizability (Raman) 

A: dipole moment (infrared)

: frequency 

: linewidth

For SFG a vibration has to be both IR and Raman active!

Large signal if IR=n, i.e. on resonance

Theory summary
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IR
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Obtain molecular surface picture: Spatially unresolved, 

but surface specific
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SFG

• Background-free, visible detection

• Sensitivity: 10-3 ML 

• Surface specific, because ISFG ~ c(2)

for inversion symmetry: c(2)=0

• With background, IR detection

• Not sensitive

• Not surface specific

• Ill-suited for microscopy

Sum-frequency generation
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infrared SFG

Pt

D2O : 20 monolayers
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?
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infrared SFG
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SFG forbidden by centrosymmetry
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SFG forbidden by centrosymmetry
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 SFG forbidden in centro-

symmetric media and therefore 

sensitive to order in the tails
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SFG: what can we learn? 

SFG ‘selection rules’: 

• Forbidden in centrosymmetric media 

• Surface specific 

• Vibrational mode has to be Raman and IR active
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Layout femtosecond SFG setup

Amplified laser system

IR generator (OPA and DFG)

Visible ‘narrower’

sample

Spectrometer and 

CCD camera
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ps- vs fs-SFG setup

picosecond-SFG setup

Pro

• High frequency resolution 

Contra

• Scan the IR frequency

femtosecond-SFG setup

Pro

• All frequencies in once

• High time resolution for pump-

probe experiments

Contra

• Additional optics needed to 

generate narrowband visible
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Pulseshaper and etalon

Pulseshaper 
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slit
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Phase shift between two succeeding reflections:
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SFG setup

Slide from Sudipta Das
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SFG setup

IR

VIS
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Summary I

• SFG sensitive to surfaces 

• Molecular information can be obtained: i.e. ordering of 

tails, angle, structure (e.g. -helix or -sheet)

• Femtosecond laser used to have broad bandwidth to have 

spectrum all in once
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Part II

2D-IR spectroscopy
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Two coupled vibrational oscillators

P. Hamm and M. Zanni, Concepts and methods of 2D infrared spectroscopy, Cambridge
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Transient 2D-IR of peptide

Photolysis of the S-S bond with laser 

results in partly unfolding of peptide

Nature 444 (2006) 469
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Transient 2D-IR of peptide

Nature 444 (2006) 469

TC: transient cross peak between 1640 and 1700 cm-1 peak 

increasing in time due to partially unfolding of peptide  
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Line broadening

P. Hamm and M. Zanni, Concepts and methods of 2D infrared spectroscopy, Cambridge

Inhomogeneously 

broadened transition

At early times

At later times
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Line broadening

Chem. Phys. 341 (2007) 5
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Chemical exchange

P. Hamm and M. Zanni, Concepts and methods of 2D infrared spectroscopy, Cambridge
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Chemical exchange

Science 309 (2005) 1338


