Static, 2D, and time-resolved
vibrational spectroscopy in bulk
and at interfaces

Ellen Backus
University of Vienna and Max Planck Institute for Polymer Research Mainz




Part |

Interface specific vibrational
spectroscopy




Introduction

Surfaces important for:
 Catalysis
 Electrochemistry

* Biochemistry




Introduction

« How does the surface look like?
 What Is the interaction of adsorbates with surface?
« How strongly are molecules bound?

* What is the reaction mechanism?

Required: molecular specific information at an interface

Solution: sum frequency generation spectroscopy
(as will be shown In this lecture)




Introduction

Required: molecular specific information at an interface

Two ingredients:

1. Molecular specificity
2. Surface sensitivity




Approach

The wiggling and jiggling of molecules is very specific

Water Lipids Proteins

}fﬁ

A chemical bond is just like a spring: the oscillation frequency
IS given by the strength of the chemical bond and the masses
of the atoms involved.




Vibrational frequencies

Basic Functional Groups
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Sensitivity to environment

Water displays strong variation in H-bond strengths, which
affect O—H stretch vibration

2.6 3.0 3.4
O—O distance (A)

O—H stretch vibration i1s a marker of local water environment




Approach

The vibration can be ‘switched on’ CH;

with infrared (IR) light <
Infrared light

/\/\/\F , o
»
»

Compare IR light without and with sample




Vibrational infrared spectroscopy

o~

Pot. Energy

IR

Or (\/; ~3300 cm?
>

O-H Distance

>

Selection rule

 With background, IR detection
* Not sensitive
* Not surface specific

dipole moment of molecule
should change during vibration

10



Electronegativity

http://sciencenotes.org/wp-content/uploads/2014/05/PeriodicTableElectronegativity.png
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Vibrational infrared spectroscopy

o~

Pot. Energy

IR

Or K\/; ~3300 cm?
>

O-H Distance

>

 With background, IR detection

* Not sensitive
* Not surface specific

Selection rule

dipole moment of molecule
should change during vibration

Which molecules are infrared
active?

C=0 N=N
Ho  H
c=C
H " H
0=C=0
Rl\ 4 R3
=C
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IR spectrum air

Stretch vibration

water

Bending vibration
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IRRAS water-lipid monolayer

Upon compression, relative peak intensities
changes, revealing a structural or environmental
change in the vicinity of the lipid polar head group.

R. Mendelsohn et al. / Biochimica et Biophysica Acta 1798 (2010) 788—800
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Scattering experiment

Raman und Krishnan

Scattered
Sunlight , Liquid
(White) Violet O
Rayleigh Raman
The Negative Absorption of Radiation. \;-olel Sraead o
iter Light Light
Violet Green
Green
Filter
Green
Observer

Fia, 1.

Nature 122 (1928) 12
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Raman energy-level diagram
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energy states
vibrational
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absorption scattering Raman Raman

scattering scattering
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Vibrational Raman spectroscopy

Selection rule

)
2 VIS
> polarizability (tendency of charge
20 distribution to be distorted by
3] L
c external electromagnetic field) of
- ! 7 molecule should change during
° vibration
~3300 cm!
N\ :
Which molecules are Raman
> .
. active?
O-H Distance N=N
C=0

 With background, VIS detection
* Not sensitive C=C

« Not surface specific H “H
« Suited for microscopy R R
l\C C/ 3 O=C=0
R,” R,
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Compare IR and Raman

irradiation
B 9O

1600: C=C stretch benzene
1640: C=C stretch
1750: C=0 stretch
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Vibrational spectroscopy

* Identification of functional groups on a molecule:
label-free molecular info

* Shape and frequency of spectral response reflects local
molecular environment

* Absorbance follows Beer’s Law:
Abs=extinction coefficient*concentration*pathlength

—> can do quantitative analysis

e But..... need advanced methods to investigate
surfaces/interfaces
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Polarization P: -
non-equilibrium P((D) =< Z(Q’)E(a)) with Z:Zm
charge distribution v

created by E
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Nonlinear optics

Result: rectified oscillation 1 i N [\
Typical for environment .

with broken symmetry:
Surface / interface

Mischa Bonn S




First second harmonic experiment

1961, 694 nm light on quartz plate
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FIG. 1. A direct reproduction of the first plate in which there was an indication of second harmonic. The
wavelength scale is in units of 100 A. The arrow at 3472 A indicates the small but dense image produced by the
second harmonic. The image of the primary beam at 6943 A is very large due to halation.

Phys. Rev. Lett. 1961, 7, 118-119
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Theory: nonlinear optics

The electric field of a light wave propagating through a medium exerts a force on
the electrons of the molecules. Low intensity light, then

u=HE
v polarisability of molecular electrons

static permanent dipole

The sum of the molecular electric dipoles gives rise to a bulk polarisation:

P= goz(l)E (considering only the induced polarisation)

Z(l) is average of «

By increasing field strength, non-linearity terms become important:

,u=,u0+aE+@2 A

first order hyperpolarisability
second order hyperpolarisability
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Theory: nonlinear optics

P(t)oc ;{E(’[)
« 2B+ 2VEQF + V() ..
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Theory: nonlinear optics

P(t)oc ;{E(’[)
« 2B+ 2VEQF + V() ..

Second Harmonic Generation Optical Rectification

pO)(t)ec 5

Sum Frequency Generation Difference Frequency Generation

/.

Topic of this lecture
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Theory: nonlinear optics

P@ o« yPEE,
02
,u=,uo+aE+,BE2+7E3+... OsFG
Zgz,zﬁ)y oC Nzﬁ:ﬂaﬂy ™4
afy

v has molecular information and is thus the interesting observable to
obtain in an experiment

Eqrs (a)SFG ) o« P(Z)(wSFG )

lsrc (a)SFG ) = ‘ Eqeo (a)SFG )‘2

leo (a)SFG ) x ‘Z(z)(a)xz | (a)l)l ((02)

v® obtained by measuring the intensity of the SFG signal
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Prove of SFG forbidden in

Perform a ‘gedanken’ experiment:
P@ o« ,@EE

Apply inversion symmetry operation

P =_p@ E=_E, ,& =, for centrosymmetric medium

inverted

_P@ o Z(Z)(_ E)(— E)= )((Z)EE

:>;((2)=O

At surface symmetry is broken
— SFG allowed at surface, but forbidden in bulk
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Theory: nonlinear optics

Two requirements to obtain SFG signal from bulk materials:

1. phase matching condition
signal from every slab has to interfere positively

E1 SFG
Ez

2. material should have a nonzero second-order susceptibility
which is not the case for a centrosymmetric medium

At surface symmetry is broken
— SFG allowed at surface, but forbidden in bulk
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Theory: nonlinear optics

At surface symmetry is broken for a thin region (~one molecular diameter
in thickness) and therefore SFG signal can be generated in reflection and

transmission geometry.
VIS

Ysrc_~"SFG

E1 SFG

Phase matching: conservation of
momentum parallel to surface

NgpcWspg SiNOgpg = Njpwip SN Op+ Ny Wy s SIN Oy g

How to obtain molecular information?
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Sum frequency generation

* Infrared spectroscopy molecular specific

* Second-order nonlinear process, like SFG,
surface specific

—> vibrational sum-frequency generation
spectroscopy gives molecular information of an
interface

or: resonant with molecular vibration
wys. IN general nonresonant

sk 1N Visible region = “easy” to detect

Y S
Wy
OskG
V
Or |
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Theory: nonlinear optics

S
P o« y@EE,
thzﬂ)y x Nzﬁaﬂy
affy
1 MyA
\'

'Baﬂy -

21 (0, — oy —iT)

M — Z (9] S><S‘ﬂﬂ‘v> B (9 ‘ﬂﬁ‘ $)(844,|V) | Raman transition
“ h(a)SF — . ) h(%ls + a)sg) moment

S Sg

AV = <V‘ ,uy‘ g> Infrared transition moment

A.G. Lambert et al.
Appl. Spectr. Rev. 40 (2005) 103
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Theory summary

P(Z)(wSFG ) oC Z(Z)(a))E(a)VIS )E(a)'R )
Esro (a)SFG ) x P(Z)(wSFG )

lsrG (a)SFG ) = ‘ESFG (a)SFG )‘2

leo (wSFG ) x ‘Z(Z)(a))(z | (wws )I (a)IR )

Molecular characteristics are present in 2
N: number of molecules

X=Xt Xr M: polarizability (Raman)
N M An A: dipole moment (infrared)
Ar = Z —— o: frequency
n O —@, +11, I': linewidth

For SFG a vibration has to be both IR and Raman active!
Large signal if ox=w,, i.. on resonance
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Sum-frequency generation

IR
A

(o]0}
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(DIR ~3300 Cm_l

>
O-H Distance

Pot. Energy
e
—

4 ~ | Oskg
@

O-H Distance

>

With background, IR detection
Not sensitive

Not surface specific

* lll-suited for microscopy

» Background-free, visible detection

* Sensitivity: 103 ML

« Surface specific, because lgeg ~ ¢
for inversion symmetry: x(2=0

but surface specific

Obtain molecular surface picture: Spatially unresolved,
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Water-air SFG spectrum
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lllustration: surface specificity

infrared SFG

free OD

/

| ! | ! | ! | !
2200 2400 2600 2800

IR absorbance (a.u.)

IR frequency (cm )

IR light detector
AN /
DZWolayers
Pt
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lllustration: surface specificity

iInfrared SFG
3 >
8 ) free OD
o) >
z
-g free OD S
2 / =
: 0
] ] ] ] ] ] ] ] (/) | \ | \ | \ |
2200 2400 2600 2800 2200 2400 2600 2800
IR frequency (cm'l) IR frequencg (cm'l)
_ IR light etector
IR light detector : :
VIS light SFG light
N ) ght /" g
D,0:0 monolayers D,O : 20 monolayers
Pt Pt

SFG: surface specific
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SFG forbidden by centrosymmetry

SFG intensity (a.u.)

CH, low T: ordered layer

2800 3000 3200 3400 3600
-1
IR frequency (cm ")
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SFG forbidden by centrosymmetry

CH, low T: ordered layer

SFG intensity (a.u.)

2800 3000 3200 3400 3600
-1
IR frequency (cm ")

— SFG forbidden in centro-
symmetric media and therefore
sensitive to order In the tails
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SFG: what can we learn?

SFG ‘selection rules’:
 Forbidden in centrosymmetric media
« Surface specific

* Vibrational mode has to be Raman and IR active
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Layout femtosecond SFG setup

Amplified laser system

IR generator (OPA and DFG)

sample

Visible ‘narrower’

T~
/

Spectrometer and
CCD camera
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ps- vs fs-SFG setup

picosecond-SFG setup femtosecond-SFG setup
Pro Pro
* High frequency resolution « All frequencies in once

* High time resolution for pump-
probe experiments

Contra Contra
» Scan the IR frequency  Additional optics needed to
generate narrowband visible
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Pulseshaper and etalon

Pulseshaper

slit .
mirror Etalon

Phase shift between two succeeding reflections: \ 3.

\
S = (ijzm cosé R?E\T

R
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SFG setup

EM-CCD

Spectro-
graph

L=Lens

P= Polarisor

F= Filter

WP= Wave Plate
Et= Etalon

BS= Beam Splitter

Sample Box
(Side view)

Slide from Sudipta Das

Regen. amplifier
Ti:Sapphire

Pump

N |

3

Seed

Delay stage

L
-

=" BS

OPA + DFG
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SFG setug




 SFG sensitive to surfaces

« Molecular information can be obtained: i.e. ordering of
tails, angle, structure (e.g. a-helix or -sheet)

 Femtosecond laser used to have broad bandwidth to have
spectrum all in once
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Part |
2D-IR spectroscopy
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Two coupled vibrational oscillators

Local mode

00)

Figure 1.5 (a) Level scheme of two coupled oscillators before coupling (local
modes) and after coupling (eigenstates). The dipole-allowed transitions are
depicted. The solid arrows represent the pump process, the dotted arrows the
probe process. (b) Resulting 2D IR spectrum. Solid contour lines represent neg-
ative response (bleach and stimulated emission), dotted contour lines positive
response (excited state absorption). The labels (1)—(8) relate each peak in the 2D

states
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IR spectrum to the corresponding transition in the level scheme.

P. Hamm and M. Zanni, Concepts and methods of 2D infrared spectroscopy, Cambridge
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Transient 2D-IR of peptide

Q Photolysis of the S-S bond with laser
MN/k\(O 0O results in partly unfolding of peptide
" H
N

O
N

O
—

Absorbance

O
o

Nature 444 (2006) 469 o (cm™)
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Transient 2D-IR of peptide

g -1
b <
1,700
T 1,675
5
£ 1,650
1,625
¢ ()]
E:E 10}
88 5f
§x of
g -5h
2 -0k , , : , , , , , , , , ,
1,650 1,700 1,650 1,700 1,650 1,700
wp, (cm™) wp (em™) W, (em™)
TC: transient cross peak between 1640 and 1700 cm peak
Nature 444 (2006) 469 increasing in time due to partially unfolding of peptide
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Line broadening

(’)pump

)
o

mprobe

d t>0

mP“mP

P. Hamm and M. Zanni, Concepts and methods of 2D infrared specFroscopy Cambridge

Inhomogeneously
broadened transition

At early times

At later times
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Line broadening
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Fig. 2. Top: experimental 2D-IR spectra of “C'°N™ dissolved in D-O for population times 7' =200 fs, 600 fs, 1 ps, 3 ps and 10 ps, respectively. The
negative peak is due to bleach/stimulated emission of the 01 transition, the positive peak due to 1-2 excited state absorption. Bottom: global fit of the
experimental data, using Eq. (1) as model for the frequency fluctuation correlation function, and revealing the parameters in Table | as result. Contour
levels are linearly spaced and symmetric around zero. In the top-left panel, the definition of the tilt angle plotted in Fig. 3 is indicated.

Chem. Phys. 341 (2007) 5
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Chemical exchange

a
t=0 i
(=%
g
A k 8
(V)
(Dprobe
b
>0
o
8:‘-
@
®

probe

Figure 1.8 2D IR spectrum of a system undergoing chemical exchange with
(a) no pump-probe delay and (b) a delay that is roughly that of the exchange.

P. Hamm and M. Zanni, Concepts and methods of 2D infrared spectroscopy, Cambridge
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Chemical exchange

Science 309 (2005) 1338
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Fig. 2. FT-IR absorption spectra of the OD stretch
of phenol-OD (hydroxyl H replaced with D) in
CCl, (free phenol, dotted curve), phenol in ben-
zene (benzene-phenol complex, dashed curve),
and phenol in the mixed benzene-CCl, solvent
(2:5 molar ratio), which displays absorptions of
both free and complexed phenol (solid curve).
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