Static, 2D, and time-resolved vibrational spectroscopy in bulk and at interfaces

Ellen Backus University of Vienna and Max Planck Institute for Polymer Research Mainz

Part I Interface specific vibrational spectroscopy

Introduction

Surfaces important for:

- Catalysis
- Electrochemistry
- Biochemistry

. . .

Introduction

- How does the surface look like?
- What is the interaction of adsorbates with surface?
- How strongly are molecules bound?
- What is the reaction mechanism?

Required: molecular specific information at an interface

Solution: sum frequency generation spectroscopy (as will be shown in this lecture)

Introduction

Required: molecular specific information at an interface

Two ingredients:

- 1. Molecular specificity
- 2. Surface sensitivity

Approach

The wiggling and jiggling of molecules is very specific

A chemical bond is just like a spring: the oscillation frequency is given by the strength of the chemical bond and the masses of the atoms involved.

Vibrational frequencies

Sensitivity to environment

Water displays strong variation in H-bond strengths, which affect O—H stretch vibration

O—H stretch vibration is a marker of local water environment

Vibrational infrared spectroscopy

Selection rule

dipole moment of molecule should change during vibration

Electronegativity

Lanthanide Series	Lanthanam 1.10	Centum Centum 1.12	⁵⁰ Pr Prasso dymium 1.18	Neodymium 1.14	Promethium 1.18	Sm Sm 1.17	Eu Europhun 1.2	Gadelinian 1.2	es Tb Tethton 1.22	es Dysprositum 1.28	67 Ho Holmian 1.24	Er Ertium 1.24	Tm Thatun 1.25	Yiletham 1.1	Distance Luterium 1.27
Actinide Series	Actinium 1.1	90 Th Thotum 1.3	Protectinium 1.5	92 Urantum 1.38	Neptunium 1.38	Putonium 1.28	Americlams	Cm Ourtam 1.3	97 Bk Berkeltum 1.3	98 Cf Cattornium 1.3	99 Es Linsteintum 1.3	Farmharn 1.3	101 Mendelestum 1.3	102 Nobelium 1.3	105 Lr Lawrenctums no date

http://sciencenotes.org/wp-content/uploads/2014/05/PeriodicTableElectronegativity.png

Vibrational infrared spectroscopy

Selection rule

C=O

dipole moment of molecule should change during vibration

Which molecules are infrared active?

N=N

O=C=O

IR spectrum air

Rotational transitions on top of the vibrations

IRRAS water-lipid monolayer

Upon compression, relative peak intensities changes, revealing a structural or environmental change in the vicinity of the lipid polar head group.

R. Mendelsohn et al. / Biochimica et Biophysica Acta 1798 (2010) 788-800

Phosphate vibrations 1258 cm⁻¹: unhydrated 1238 cm⁻¹: monohydrated 1225 cm⁻¹: dihydrated

Scattering experiment

Nature 122 (1928) 12

Raman energy-level diagram

Vibrational Raman spectroscopy

Selection rule

polarizability (tendency of charge distribution to be distorted by external electromagnetic field) of molecule should change during vibration

Which molecules are Raman active?

Compare IR and Raman

1600: C=C stretch benzene 1640: C=C stretch 1750: C=O stretch

trans

Vibrational spectroscopy

- Identification of functional groups on a molecule: label-free molecular info
- Shape and frequency of spectral response reflects local molecular environment
- Absorbance follows Beer's Law:

Abs=extinction coefficient*concentration*pathlength ⇒ can do quantitative analysis

• But..... need advanced methods to investigate surfaces/interfaces

Linear optics

Polarization P: $P(\omega) = \in_0 \chi(\omega) E(\omega) \quad \text{with } \chi = \chi^{(1)}$ non-equilibrium charge distribution V created by E V oc x² F oc -x solution: ×

Nonlinear optics

First second harmonic experiment

1961, 694 nm light on quartz plate

FIG. 1. A direct reproduction of the first plate in which there was an indication of second harmonic. The wavelength scale is in units of 100 A. The arrow at 3472 A indicates the small but dense image produced by the second harmonic. The image of the primary beam at 6943 A is very large due to halation.

Phys. Rev. Lett. 1961, 7, 118-119

The electric field of a light wave propagating through a medium exerts a force on the electrons of the molecules. Low intensity light, then

The sum of the molecular electric dipoles gives rise to a bulk polarisation:

$$P = \varepsilon_0 \chi^{(1)} E$$
 (considering only the induced polarisation)
 $\chi^{(1)}$ is average of α

By increasing field strength, non-linearity terms become important:

$$\mu = \mu_0 + \alpha E + \beta E^2 + \gamma E^3 + \dots$$

first order hyperpolarisability second order hyperpolarisability

 $P(t) \propto \chi E(t)$ $\propto \chi^{(1)}E(t) + \chi^{(2)}E(t)^2 + \chi^{(3)}E(t)^3 + \dots$

 $P(t) \propto \chi E(t)$ $\propto \chi^{(1)}E(t) + \chi^{(2)}E(t)^2 + \chi^{(3)}E(t)^3 + \dots$

Second Harmonic Generation Optical Rectification

$$P^{(2)}(t) \propto \chi^{(2)} \begin{pmatrix} E_1^2(\cos(2\omega_1 t) + \cos((\omega_1 - \omega_1)t)) + \\ E_2^2(\cos(2\omega_2 t) + \cos((\omega_2 - \omega_2)t)) + \\ 2E_1E_2(\cos((\omega_1 + \omega_2)t) + \cos((\omega_1 - \omega_2)t)) \end{pmatrix}$$
Sum Frequency Generation Difference Frequency Generation
Topic of this lecture

$$P^{(2)} \propto \chi^{(2)} E_1 E_2$$
$$\mu = \mu_0 + \alpha E + \beta E^2 + \gamma E^3 + \dots$$
$$\chi^{(2)}_{\alpha\beta\gamma} \propto N \sum_{\alpha\beta\gamma} \beta_{\alpha\beta\gamma}$$

 $\chi^{(2)}$ has molecular information and is thus the interesting observable to obtain in an experiment

$$E_{\rm SFG}(\omega_{\rm SFG}) \propto P^{(2)}(\omega_{\rm SFG})$$
$$I_{\rm SFG}(\omega_{\rm SFG}) = \left| E_{\rm SFG}(\omega_{\rm SFG}) \right|^2$$
$$I_{\rm SFG}(\omega_{\rm SFG}) \propto \left| \chi^{(2)}(\omega) \right|^2 I(\omega_1) I(\omega_2)$$

 $\chi^{(2)}$ obtained by measuring the intensity of the SFG signal

Prove of SFG forbidden in centrosymmetric media

Perform a 'gedanken' experiment:

$$P^{(2)} \propto \chi^{(2)} E E$$

Apply inversion symmetry operation

$$P^{(2)} = -P^{(2)}, E = -E, \chi^{(2)} = \chi^{(2)}_{\text{inverted}}$$
$$-P^{(2)} \propto \chi^{(2)} (-E) (-E) = \chi^{(2)} EE$$

for centrosymmetric medium

$$\Rightarrow \chi^{(2)} = 0$$

At surface symmetry is broken \Rightarrow SFG allowed at surface, but forbidden in bulk

Two requirements to obtain SFG signal from bulk materials:

1. phase matching condition

signal from every slab has to interfere positively

2. material should have a nonzero second-order susceptibility which is not the case for a centrosymmetric medium

At surface symmetry is broken \Rightarrow SFG allowed at surface, but forbidden in bulk

At surface symmetry is broken for a thin region (~one molecular diameter in thickness) and therefore SFG signal can be generated in reflection and transmission geometry.

Phase matching: conservation of momentum parallel to surface

 $n_{SFG}\omega_{SFG}\sin\theta_{SFG} = n_{IR}\omega_{IR}\sin\theta_{IR} + n_{VIS}\omega_{VIS}\sin\theta_{VIS}$

How to obtain molecular information?

Sum frequency generation

- Infrared spectroscopy molecular specific
- Second-order nonlinear process, like SFG, surface specific
- ⇒ vibrational sum-frequency generation spectroscopy gives molecular information of an interface

 ω_{IR} : resonant with molecular vibration ω_{VIS} : in general nonresonant

 ω_{SFG} : in visible region \Rightarrow "easy" to detect

A.G. Lambert et al. Appl. Spectr. Rev. 40 (2005) 103

Theory summary

$$P^{(2)}(\omega_{\rm SFG}) \propto \chi^{(2)}(\omega) E(\omega_{\rm VIS}) E(\omega_{\rm IR})$$
$$E_{\rm SFG}(\omega_{\rm SFG}) \propto P^{(2)}(\omega_{\rm SFG})$$
$$I_{\rm SFG}(\omega_{\rm SFG}) = \left| E_{\rm SFG}(\omega_{\rm SFG}) \right|^2$$

$$I_{\rm SFG}(\omega_{
m SFG}) \propto \left|\chi^{(2)}(\omega)\right|^2 I(\omega_{
m VIS}) I(\omega_{
m IR})$$

Molecular characteristics are present in $\chi^{(2)}$

$$\chi = \chi_{NR} + \chi_{R}$$
$$\chi_{R} = \sum_{n} \frac{N_{n} M_{n} A_{n}}{\omega_{IR} - \omega_{n} + i\Gamma_{n}}$$

N: number of molecules
M: polarizability (Raman)
A: dipole moment (infrared)
ω: frequency
Γ: linewidth

For SFG a vibration has to be both IR and Raman active! Large signal if $\omega_{IR} = \omega_n$, i.e. on resonance

Sum-frequency generation

Water-air SFG spectrum

Illustration: surface specificity

SFG

Illustration: surface specificity

SFG forbidden by centrosymmetry

SFG forbidden by centrosymmetry

SFG: what can we learn?

SFG 'selection rules':

- Forbidden in centrosymmetric media
- Surface specific
- Vibrational mode has to be Raman and IR active

Layout femtosecond SFG setup

ps-vs fs-SFG setup

picosecond-SFG setup

<u>Pro</u>

• High frequency resolution

Contra

• Scan the IR frequency

femtosecond-SFG setup

<u>Pro</u>

- All frequencies in once
- High time resolution for pumpprobe experiments

<u>Contra</u>

• Additional optics needed to generate narrowband visible

Pulseshaper and etalon

Pulseshaper

Phase shift between two succeeding reflections:

$$\delta = \left(\frac{2\pi}{\lambda}\right) 2nl\cos\theta$$

Etalon

SFG setup

SFG setup

Summary I

- SFG sensitive to surfaces
- Molecular information can be obtained: i.e. ordering of tails, angle, structure (e.g. α -helix or β -sheet)
- Femtosecond laser used to have broad bandwidth to have spectrum all in once

Part II 2D-IR spectroscopy

Two coupled vibrational oscillators

Figure 1.5 (a) Level scheme of two coupled oscillators before coupling (local modes) and after coupling (eigenstates). The dipole-allowed transitions are depicted. The solid arrows represent the pump process, the dotted arrows the probe process. (b) Resulting 2D IR spectrum. Solid contour lines represent negative response (bleach and stimulated emission), dotted contour lines positive response (excited state absorption). The labels (1)–(8) relate each peak in the 2D IR spectrum to the corresponding transition in the level scheme.

P. Hamm and M. Zanni, Concepts and methods of 2D infrared spectroscopy, Cambridge

Transient 2D-IR of peptide

Photolysis of the S-S bond with laser results in partly unfolding of peptide

Transient 2D-IR of peptide

TC: transient cross peak between 1640 and 1700 cm⁻¹ peak increasing in time due to partially unfolding of peptide

Nature 444 (2006) 469

Line broadening

Inhomogeneously broadened transition

At early times

At later times

Line broadening

Fig. 2. Top: experimental 2D-IR spectra of ${}^{13}C^{15}N^-$ dissolved in D₂O for population times T = 200 fs, 600 fs, 1 ps, 3 ps and 10 ps, respectively. The negative peak is due to bleach/stimulated emission of the 0–1 transition, the positive peak due to 1–2 excited state absorption. Bottom: global fit of the experimental data, using Eq. (1) as model for the frequency fluctuation correlation function, and revealing the parameters in Table 1 as result. Contour levels are linearly spaced and symmetric around zero. In the top-left panel, the definition of the tilt angle plotted in Fig. 3 is indicated.

Chemical exchange

Figure 1.8 2D IR spectrum of a system undergoing chemical exchange with (a) no pump–probe delay and (b) a delay that is roughly that of the exchange.

P. Hamm and M. Zanni, Concepts and methods of 2D infrared spectroscopy, Cambridge

Chemical exchange

Fig. 2. FT-IR absorption spectra of the OD stretch of phenol-OD (hydroxyl H replaced with D) in CCl_4 (free phenol, dotted curve), phenol in benzene (benzene-phenol complex, dashed curve), and phenol in the mixed benzene- CCl_4 solvent (2:5 molar ratio), which displays absorptions of both free and complexed phenol (solid curve).

Science 309 (2005) 1338

