Machine learning in computational chemistry Foundations and applications

Jörg Meyer, Theoretical Chemistry <u>j.meyer@chem.leidenuniv.nl</u>

Winter School on Theoretical Chemistry and Spectroscopy Han-sur-Lesse, December 10 - 14

Discover the world at Leiden University

Neural Networks in Chemistry

J. Behler, J. Phys.: Condens. Matter. 26, 183001 (2014).

Contents

1) Neural Networks (NNs): Structure & "Learning" (<1h) *Hands-on:* Training a simple NN (45 min)

 2) NNs for potential energy surfaces: Coordinate representation (~1h)
 Hands-on: (Re-)Fitting a potential energy surface for O₂@Pd(100) (~2h)

3) Applications in gas-surface dynamics (<1h)

IHPCSS 2018

International High Performance Computing Summer School http://www.ihpcss.org

MNIST realtime demo

http://scs.ryerson.ca/~aharley/vis/conv/flat.html

Fun with neural networks (1)

https://github.com/NVIDIA/FastPhotoStyle

Fun with neural networks (2)

https://deepdreamgenerator.com/feed

Inspired by biology

	0	1	0	0	0	0	1	0	0	1	0	0	0
	1	0	1	0	0	0	1	1	0	1	0	1	0
	0	1	0	1	0	0	0	1	1	1	1	0	1
	0	0	1	0	0	0	0	0	1	1	0	0	0
	0	0	0	0	0	1	0	0	0	0	0	1	0
	0	0	1	1	0	0	0	0	0	1	0	0	0
M =	1	1	0	0	0	0	0	0	0	1	0	0	0
	0	1	1	0	0	0	0	0	0	1	1	1	1
	0	0	0	0	1	0	0	0	0	0	0	1	0
	1	1	1	0	0	0	1	1	0	0	0	1	0
	0	0	1	0	0	0	0	1	0	0	0	0	1
	0	1	1	0	1	0	0	1	1	1	0	0	0
	0	0	1	0	0	0	0	1	0	0	1	0	0

High-dimensional non-linear functions

NN architecture

Activation function(s)

- Neurons apply activation functions at these summed inputs.
- Activation functions are typically non-linear.
- The sigmoid function is very commonly used activation function,

$$S(t)=rac{1}{1+e^{-t}}$$

but also hyperbolic tangents.

Activation function(s)

J. Behler, J. Phys.: Condens. Matter. 26, 183001 (2014).

Forward propagation (1)

H1 Weights = (1.0, -2.0, 2.0)H2 Weights = (2.0, 1.0, -4.0)H3 Weights = (1.0, -1.0, 0.0)

O1 Weights = (-3.0, 1.0, -3.0) O2 Weights = (0.0, 1.0, 2.0)

Forward propagation (2)

H1 Weights = (1.0, -2.0, 2.0) H2 Weights = (2.0, 1.0, -4.0) H3 Weights = (1.0, -1.0, 0.0)

O1 Weights = (-3.0, 1.0, -3.0) O2 Weights = (0.0, 1.0, 2.0)

H1 = Sigmoid(0.5 * 1.0 + 0.9 * -2.0 + -0.3 * 2.0) = Sigmoid(-1.9) = .13 H2 = Sigmoid(0.5 * 2.0 + 0.9 * 1.0 + -0.3 * -4.0) = Sigmoid(3.1) = .96 H3 = Sigmoid(0.5 * 1.0 + 0.9 * -1.0 + -0.3 * 0.0) = Sigmoid(-0.4) = .40

Forward propagation (3)

H1 Weights = (1.0, -2.0, 2.0) H2 Weights = (2.0, 1.0, -4.0) H3 Weights = (1.0, -1.0, 0.0)

O1 Weights = (-3.0, 1.0, -3.0) O2 Weights = (0.0, 1.0, 2.0)

O1 = Sigmoid(.13 * -3.0 + .96 * 1.0 + .40 * -3.0) = Sigmoid(-.63) = .35 O2 = Sigmoid(.13 * 0.0 + .96 * 1.0 + .40 * 2.0) = Sigmoid(1.76) = .85

Using matrices

H1 Weights = (1.0, -2.0, 2.0) H2 Weights = (2.0, 1.0, -4.0) H3 Weights = (1.0, -1.0, 0.0)

This can be done very efficiently on GPUs nowadays...

Biases

 It is also very useful to be able to offset our inputs by some constant. You can think of this as centering the activation function, or translating the solution.

We will call this constant the bias, and it there will often be one value per layer.

 Our math for the previously calculated layer now looks like this with *b=0.1*:

Training

- So how do we find these magic weights?
 We want to minimize the error on our training data.
 Given labeled inputs, select weights that generate the smallest average error on the outputs.
- We know that the output is a function of the weights:

 $E(w_1, w_2, w_3, ...)$

So to figure out which way, and how much, to push any particular weight, say w₃, we want to calculate

Backpropagation

- If we use the chain rule repeatedly across layers we can work our way backwards from the output error through the weights, adjusting them as we go.
 Note that this is where the requirement that activation functions must have nicely behaved derivatives comes from.
- This technique makes the weight inter-dependencies much more tractable. An elegant perspective on this can be found from Chris Olah at <u>http://colah.github.io/posts/2015-08-Backprop</u>
- With basic calculus you can readily work through the details. You can find an excellent explanation from the renowned "3Blue1Brown" at <u>https://www.youtube.com/watch?v=llg3gGewQ5U</u>

Solvers (1)

- Backpropagation leaves us with potentially many millions of non-linear equations for real-world networks to solve.
- Fortunately, this isn't a new problem created by deep learning, so we have options from the world of numerical methods.

 The standard has been gradient descent. Methods, often similar, have arisen that perform better for machine learning applications. In google's TensorFlow package they can be easily changed due to its modular structure.

Solvers (2)

- Most interesting recent methods incorporate momentum to help get over a local minimum. Momentum and step size are the two hyperparameters we will encounter later.
- Nevertheless, we don't expect to ever find the actual global minimum.
- We could/should find the error for all the training data before updating the weights (an *epoch*). However it is usually much more efficient to use a stochastic approach, sampling a random subset of the data, updating the weights, and then repeating with another *mini-batch*.

Training in progress

https://www.youtube.com/watch?v=llg3gGewQ5U

Implementations

Package	Applications	Language	Strengths
TensorFlow	Neural Nets	Python, C++	Very popular.
Caffe	Neural Nets	Python, C++	Many research projects and publications. 2.0 more TF-like.
Spark MLLIB	Classification, Regression, Clustering, etc.	Python, Scala, Java, R	Very scalable. Widely used in serious applications.
Scikit-Learn	Classification, Regression, Clustering	Python	
cuDNN	Neural Nets	C++, GPU-based	Used in many other frameworks: TF, Caffe, etc.
Theano	Neural Nets	Python	Lower level numerical routines. NumPy-esque.
Torch	Neural Nets	Lua (PyTorch=Python)	Dynamic graphs (variable length input/output) good for RNN.
Keras	Neural Nets	Python (on top of TF, Theano)	Higher level approach.
Digits	Neural Nets	"Caffe", GPU-based	Used with other frameworks (only Caffe at moment).

chemistry specific (for PES construction): e.g. AMP <u>https://bitbucket.org/andrewpeterson/amp</u>