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Neural Networks in Chemistry
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J. Behler, J. Phys.: Condens. Matter. 26, 183001 (2014).
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1) Neural Networks (NNs):  
Structure & “Learning” (<1h)  
 

Hands-on: Training a simple NN (45 min)  

2) NNs for potential energy surfaces:  
Coordinate representation (~1h) 
 

Hands-on: (Re-)Fitting a potential energy 
surface for O2@Pd(100) (~2h) 

3) Applications in gas-surface dynamics (<1h)
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International High Performance Computing Summer School  
http://www.ihpcss.org

Apply!

http://www.ihpcss.org


MNIST realtime demo

http://scs.ryerson.ca/~aharley/vis/conv/flat.html
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http://scs.ryerson.ca/~aharley/vis/conv/flat.html


Fun with neural networks (1)

https://github.com/NVIDIA/FastPhotoStyle

!6

https://github.com/NVIDIA/FastPhotoStyle


Fun with neural networks (2)

https://deepdreamgenerator.com/feed
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https://deepdreamgenerator.com/feed


Inspired by biology

Modeled After The Brain

Modeled After The BrainModeled After The Brain
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High-dimensional non-linear functions
As a Highly Dimensional Non-linear Classifier

Perceptron

No Hidden Layer
Linear

Network

Hidden Layers
Nonlinear

Courtesy: Chris Olah
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NN architecture
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Activation function(s)
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• Neurons apply activation functions at these 
summed inputs.  
  

• Activation functions are typically non-linear. 
  

• The sigmoid function  
is very commonly used 
activation function,  
 
 
 
 
but also hyperbolic 
tangents.

Activation Function
• Neurons apply activation functions at these summed inputs.

• Activation functions are typically non-linear.

• The sigmoid function produces a value between 0 and 1, so it is intuitive when a 
probability is desired, and was almost standard for many years.

• The Rectified Linear activation function is zero when the input is negative and is 
equal to the input when the input is positive.

• Rectified Linear activation functions have become more popular because they are 
faster to compute than the sigmoid or hyperbolic tangent.

• We will use these later.

Activation Function
• Neurons apply activation functions at these summed inputs.

• Activation functions are typically non-linear.

• The sigmoid function produces a value between 0 and 1, so it is intuitive when a 
probability is desired, and was almost standard for many years.

• The Rectified Linear activation function is zero when the input is negative and is 
equal to the input when the input is positive.

• Rectified Linear activation functions have become more popular because they are 
faster to compute than the sigmoid or hyperbolic tangent.

• We will use these later.

!11



Activation function(s)

!12

J. Behler, J. Phys.: Condens. Matter. 26, 183001 (2014).



Forward propagation (1)

Inference
Using a NN

0.5

0.9

-0.3

H1

H2

H3

O1

O2

H1 Weights = (1.0, -2.0, 2.0)
H2 Weights = (2.0, 1.0, -4.0)
H3 Weights = (1.0, -1.0, 0.0)

O1 Weights = (-3.0, 1.0, -3.0)
O2 Weights = (0.0, 1.0, 2.0)

H1 Weights = (1.0, -2.0, 2.0)  
H2 Weights = (2.0, 1.0, -4.0)  
H3 Weights = (1.0, -1.0, 0.0)  

O1 Weights = (-3.0, 1.0, -3.0)  
O2 Weights = (0.0, 1.0, 2.0)
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Forward propagation (2)

Inference

0.5

0.9

-0.3

.13

.96

.40

O1

O2

H1 Weights = (1.0, -2.0, 2.0)
H2 Weights = (2.0, 1.0, -4.0)
H3 Weights = (1.0, -1.0, 0.0)

O1 Weights = (-3.0, 1.0, -3.0)
O2 Weights = (0.0, 1.0, 2.0)

H1 = Sigmoid(0.5 * 1.0 + 0.9 * -2.0 + -0.3 * 2.0) = Sigmoid(-1.9) = .13
H2 = Sigmoid(0.5 * 2.0 + 0.9 * 1.0 + -0.3 * -4.0) = Sigmoid(3.1) = .96
H3 = Sigmoid(0.5 * 1.0 + 0.9 * -1.0 + -0.3 * 0.0) = Sigmoid(-0.4) = .40

H1 = Sigmoid(0.5 * 1.0 + 0.9 * -2.0 + -0.3 * 2.0) = Sigmoid(-1.9) = .13  
H2 = Sigmoid(0.5 * 2.0 + 0.9 * 1.0 + -0.3 * -4.0) = Sigmoid(3.1) = .96  
H3 = Sigmoid(0.5 * 1.0 + 0.9 * -1.0 + -0.3 * 0.0) = Sigmoid(-0.4) = .40

H1 Weights = (1.0, -2.0, 2.0)  
H2 Weights = (2.0, 1.0, -4.0)  
H3 Weights = (1.0, -1.0, 0.0)  

O1 Weights = (-3.0, 1.0, -3.0)  
O2 Weights = (0.0, 1.0, 2.0)
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Forward propagation (3)

Inference

0.5

0.9

-0.3

.13

.96

.40

.35

.85

H1 Weights = (1.0, -2.0, 2.0)
H2 Weights = (2.0, 1.0, -4.0)
H3 Weights = (1.0, -1.0, 0.0)

O1 Weights = (-3.0, 1.0, -3.0)
O2 Weights = (0.0, 1.0, 2.0)

O1 = Sigmoid(.13 * -3.0 + .96 * 1.0 + .40 * -3.0) = Sigmoid(-.63) = .35
O1 = Sigmoid(.13 * 0.0 + .96 * 1.0 + .40 * 2.0) = Sigmoid(1.76) = .85

H1 Weights = (1.0, -2.0, 2.0)  
H2 Weights = (2.0, 1.0, -4.0)  
H3 Weights = (1.0, -1.0, 0.0)  

O1 Weights = (-3.0, 1.0, -3.0)  
O2 Weights = (0.0, 1.0, 2.0)

O1 = Sigmoid(.13 * -3.0 + .96 * 1.0 + .40 * -3.0) = Sigmoid(-.63) = .35 

O2 = Sigmoid(.13 * 0.0 + .96 * 1.0 + .40 * 2.0) = Sigmoid(1.76) = .85

!15



Using matrices
As A Matrix Operation

H1 Weights = (1.0, -2.0, 2.0)
H2 Weights = (2.0, 1.0, -4.0)
H3 Weights = (1.0, -1.0, 0.0)

1.0 -2.0 2.0

2.0 1.0 -4.0

1.0 -1.0 0.0

0.5

0.9

-0.3

-1.9 3.1 -0.4) = Sig(*Sig( ) = .13 .96 0.4

Hidden Layer Weights Inputs

Hidden Layer Outputs

Now this looks like something that we can pump through a GPU.

H1 Weights = (1.0, -2.0, 2.0)  
H2 Weights = (2.0, 1.0, -4.0)  
H3 Weights = (1.0, -1.0, 0.0) 

This can be done very efficiently on GPUs nowadays…
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Biases
• It is also very useful to be able to offset our 

inputs by some constant. You can think of this as 
centering the activation function, or translating 
the solution.  
We will call this constant the bias, and it there 
will often be one value per layer.  

• Our math for the previously calculated layer now 
looks like this with b=0.1: 
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Biases

1.0 -2.0 2.0

2.0 1.0 -4.0

1.0 -1.0 0.0

0.5

0.9

-0.3

-1.8 3.2 -0.3) = Sig(*Sig( ) = .14 .96 0.4

Hidden Layer Weights Inputs

Hidden Layer Outputs

It is also very useful to be able to offset our inputs by some constant. You can think of this as 
centering the activation function, or translating the solution (next slide). We will call this 
constant the bias, and it there will often be one value per layer.

Our math for the previously calculated layer now looks like this with b=0.1:

+
0.1

0.1

0.1



Training
• So how do we find these magic weights?  

We want to minimize the error on our training data. 
Given labeled inputs, select weights that generate 
the smallest average error on the outputs.  

• We know that the output is a function of the 
weights: 
 

                            E(w1,w2,w3,...)  
 

So to figure out which way, and how much, to 
push any particular weight, say w3, we want to 
calculate 
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Backpropagation
• If we use the chain rule repeatedly across layers we can 

work our way backwards from the output error through the 
weights, adjusting them as we go.  
Note that this is where the requirement that activation 
functions must have nicely behaved derivatives comes from.  
 
  

• This technique makes the weight inter-dependencies much 
more tractable. An elegant perspective on this can be found 
from Chris Olah at  
http://colah.github.io/posts/2015-08-Backprop 

• With basic calculus you can readily work through the details. 
You can find an excellent explanation from the renowned 
“3Blue1Brown” at  
https://www.youtube.com/watch?v=Ilg3gGewQ5U
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http://colah.github.io/posts/2015-08-Backprop
https://www.youtube.com/watch?v=Ilg3gGewQ5U


Solvers (1)
• Backpropagation leaves us 

with potentially many millions 
of non-linear equations for 
real-world networks to solve. 
  

• Fortunately, this isn't a new 
problem created by deep 
learning, so we have options 
from the world of numerical 
methods.

!20

Solvers
However, even this efficient process leaves us with potentially many millions of simultaneous equations to solve (real 
nets have a lot of weights). They are non-linear to boot. Fortunately, this isn't a new problem created by deep learning, 
so we have options from the world of numerical methods.

The standard has been gradient descent. Methods, often 
similar, have arisen that perform better for deep learning 
applications. TensorFlow will allow us to use these 
interchangeably - and we will.

Most interesting recent methods incorporate momentum to 
help get over a local minimum. Momentum and step size are 
the two hyperparameters we will encounter later.

Nevertheless, we don't expect to ever find the actual global 
minimum.

We could/should find the error for all the training data before updating the weights (an epoch). However it is usually 
much more efficient to use a stochastic approach, sampling a random subset of the data, updating the weights, and 
then repeating with another mini-batch.

Wikipedia Commons

• The standard has been gradient descent. Methods, often similar, 
have arisen that perform better for machine learning applications. 
In google’s TensorFlow package they can be easily changed due 
to its modular structure.



Solvers (2)
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• Most interesting recent methods incorporate 
momentum to help get over a local minimum. 
Momentum and step size are the two 
hyperparameters we will encounter later.  
  

• Nevertheless, we don't expect to ever find the actual 
global minimum. 
  

• We could/should find the error for all the training data 
before updating the weights (an epoch). However it 
is usually much more efficient to use a stochastic 
approach, sampling a random subset of the data, 
updating the weights, and then repeating with 
another mini-batch.



Training in progress

https://www.youtube.com/watch?v=Ilg3gGewQ5U
!22

https://www.youtube.com/watch?v=Ilg3gGewQ5U


Implementations
Other Toolboxes

You have a plethora of alternatives available as well. You are now in a position to appreciate some comparisons.

Package Applications Language Strengths

TensorFlow Neural Nets Python, C++ Very popular.

Caffe Neural Nets Python, C++ Many research projects and 
publications. 2.0 more TF-like.

Spark MLLIB Classification, Regression, 
Clustering, etc.

Python, Scala, Java, R Very scalable. Widely used in 
serious applications.

Scikit-Learn Classification, Regression, 
Clustering

Python

cuDNN Neural Nets C++, GPU-based Used in many other frameworks: 
TF, Caffe, etc.

Theano Neural Nets Python Lower level numerical routines. 
NumPy-esque.

Torch Neural Nets Lua (PyTorch=Python) Dynamic graphs (variable length 
input/output) good for RNN.

Keras Neural Nets Python (on top of TF, Theano) Higher level approach.

Digits Neural Nets “Caffe”, GPU-based Used with other frameworks 
(only Caffe at moment).

chemistry specific (for PES construction):  
e.g. AMP https://bitbucket.org/andrewpeterson/amp
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https://bitbucket.org/andrewpeterson/amp

