
Discover the world at Leiden University

Machine learning in computational chemistry
Foundations and applications

Jörg Meyer, Theoretical Chemistry
j.meyer@chem.leidenuniv.nl

Winter School on
Theoretical Chemistry and Spectroscopy

Han-sur-Lesse, December 10 - 14

w 01
1

bias

input
layer

hidden layer output
layer

w 11
2

w 21
2

w 31
2

w 11
1

y1
2=V fsa

NN

f a
2 °∑

Q1=y1
0

Q2=y2
0

y2
1

f a
1 °∑

y1
1

f a
1 °∑

w 03
1 w 03

2

w 23
1

w 21
1

y3
1

f a
1 °∑

w 13
1

Jörg Meyer  
PhD Dissertation

FU Berlin 2012

!1

mailto:j.meyer@chem.leidenuniv.nl

Neural Networks in Chemistry

!2

J. Behler, J. Phys.: Condens. Matter. 26, 183001 (2014).

Discover the world at Leiden University

Contents

!3

1) Neural Networks (NNs):  
Structure & “Learning” (<1h)  
 

Hands-on: Training a simple NN (45 min)  

2) NNs for potential energy surfaces:  
Coordinate representation (~1h) 
 

Hands-on: (Re-)Fitting a potential energy
surface for O2@Pd(100) (~2h) 

3) Applications in gas-surface dynamics (<1h)

IHPCSS 2018

!4

International High Performance Computing Summer School  
http://www.ihpcss.org

Apply!

http://www.ihpcss.org

MNIST realtime demo

http://scs.ryerson.ca/~aharley/vis/conv/flat.html

!5

http://scs.ryerson.ca/~aharley/vis/conv/flat.html

Fun with neural networks (1)

https://github.com/NVIDIA/FastPhotoStyle

!6

https://github.com/NVIDIA/FastPhotoStyle

Fun with neural networks (2)

https://deepdreamgenerator.com/feed

!7

https://deepdreamgenerator.com/feed

Inspired by biology

Modeled After The Brain

Modeled After The BrainModeled After The Brain

!8

High-dimensional non-linear functions
As a Highly Dimensional Non-linear Classifier

Perceptron

No Hidden Layer
Linear

Network

Hidden Layers
Nonlinear

Courtesy: Chris Olah

!9

NN architecture

w 01
1

bias

input
layer

hidden layer output
layer

w 11
2

w 21
2

w 31
2

w 11
1

y1
2=V fsa

NN

f a
2 °∑

Q1=y1
0

Q2=y2
0

y2
1

f a
1 °∑

y1
1

f a
1 °∑

w 03
1 w 03

2

w 23
1

w 21
1

y3
1

f a
1 °∑

w 13
1

neuron

weight

Jörg Meyer , PhD Dissertation, FU Berlin 2012

!10

Activation function(s)

!11

• Neurons apply activation functions at these
summed inputs.  

• Activation functions are typically non-linear. 

• The sigmoid function  
is very commonly used 
activation function,  
 
 
 
 
but also hyperbolic 
tangents.

Activation Function
• Neurons apply activation functions at these summed inputs.

• Activation functions are typically non-linear.

• The sigmoid function produces a value between 0 and 1, so it is intuitive when a
probability is desired, and was almost standard for many years.

• The Rectified Linear activation function is zero when the input is negative and is
equal to the input when the input is positive.

• Rectified Linear activation functions have become more popular because they are
faster to compute than the sigmoid or hyperbolic tangent.

• We will use these later.

Activation Function
• Neurons apply activation functions at these summed inputs.

• Activation functions are typically non-linear.

• The sigmoid function produces a value between 0 and 1, so it is intuitive when a
probability is desired, and was almost standard for many years.

• The Rectified Linear activation function is zero when the input is negative and is
equal to the input when the input is positive.

• Rectified Linear activation functions have become more popular because they are
faster to compute than the sigmoid or hyperbolic tangent.

• We will use these later.

!11

Activation function(s)

!12

J. Behler, J. Phys.: Condens. Matter. 26, 183001 (2014).

Forward propagation (1)

Inference
Using a NN

0.5

0.9

-0.3

H1

H2

H3

O1

O2

H1 Weights = (1.0, -2.0, 2.0)
H2 Weights = (2.0, 1.0, -4.0)
H3 Weights = (1.0, -1.0, 0.0)

O1 Weights = (-3.0, 1.0, -3.0)
O2 Weights = (0.0, 1.0, 2.0)

H1 Weights = (1.0, -2.0, 2.0)
H2 Weights = (2.0, 1.0, -4.0)
H3 Weights = (1.0, -1.0, 0.0)

O1 Weights = (-3.0, 1.0, -3.0)
O2 Weights = (0.0, 1.0, 2.0)

!13

Forward propagation (2)

Inference

0.5

0.9

-0.3

.13

.96

.40

O1

O2

H1 Weights = (1.0, -2.0, 2.0)
H2 Weights = (2.0, 1.0, -4.0)
H3 Weights = (1.0, -1.0, 0.0)

O1 Weights = (-3.0, 1.0, -3.0)
O2 Weights = (0.0, 1.0, 2.0)

H1 = Sigmoid(0.5 * 1.0 + 0.9 * -2.0 + -0.3 * 2.0) = Sigmoid(-1.9) = .13
H2 = Sigmoid(0.5 * 2.0 + 0.9 * 1.0 + -0.3 * -4.0) = Sigmoid(3.1) = .96
H3 = Sigmoid(0.5 * 1.0 + 0.9 * -1.0 + -0.3 * 0.0) = Sigmoid(-0.4) = .40

H1 = Sigmoid(0.5 * 1.0 + 0.9 * -2.0 + -0.3 * 2.0) = Sigmoid(-1.9) = .13
H2 = Sigmoid(0.5 * 2.0 + 0.9 * 1.0 + -0.3 * -4.0) = Sigmoid(3.1) = .96
H3 = Sigmoid(0.5 * 1.0 + 0.9 * -1.0 + -0.3 * 0.0) = Sigmoid(-0.4) = .40

H1 Weights = (1.0, -2.0, 2.0)
H2 Weights = (2.0, 1.0, -4.0)
H3 Weights = (1.0, -1.0, 0.0)

O1 Weights = (-3.0, 1.0, -3.0)
O2 Weights = (0.0, 1.0, 2.0)

!14

Forward propagation (3)

Inference

0.5

0.9

-0.3

.13

.96

.40

.35

.85

H1 Weights = (1.0, -2.0, 2.0)
H2 Weights = (2.0, 1.0, -4.0)
H3 Weights = (1.0, -1.0, 0.0)

O1 Weights = (-3.0, 1.0, -3.0)
O2 Weights = (0.0, 1.0, 2.0)

O1 = Sigmoid(.13 * -3.0 + .96 * 1.0 + .40 * -3.0) = Sigmoid(-.63) = .35
O1 = Sigmoid(.13 * 0.0 + .96 * 1.0 + .40 * 2.0) = Sigmoid(1.76) = .85

H1 Weights = (1.0, -2.0, 2.0)
H2 Weights = (2.0, 1.0, -4.0)
H3 Weights = (1.0, -1.0, 0.0)

O1 Weights = (-3.0, 1.0, -3.0)
O2 Weights = (0.0, 1.0, 2.0)

O1 = Sigmoid(.13 * -3.0 + .96 * 1.0 + .40 * -3.0) = Sigmoid(-.63) = .35

O2 = Sigmoid(.13 * 0.0 + .96 * 1.0 + .40 * 2.0) = Sigmoid(1.76) = .85

!15

Using matrices
As A Matrix Operation

H1 Weights = (1.0, -2.0, 2.0)
H2 Weights = (2.0, 1.0, -4.0)
H3 Weights = (1.0, -1.0, 0.0)

1.0 -2.0 2.0

2.0 1.0 -4.0

1.0 -1.0 0.0

0.5

0.9

-0.3

-1.9 3.1 -0.4) = Sig(*Sig() = .13 .96 0.4

Hidden Layer Weights Inputs

Hidden Layer Outputs

Now this looks like something that we can pump through a GPU.

H1 Weights = (1.0, -2.0, 2.0)
H2 Weights = (2.0, 1.0, -4.0)
H3 Weights = (1.0, -1.0, 0.0)

This can be done very efficiently on GPUs nowadays…

!16

Biases
• It is also very useful to be able to offset our

inputs by some constant. You can think of this as
centering the activation function, or translating
the solution.  
We will call this constant the bias, and it there
will often be one value per layer.

• Our math for the previously calculated layer now
looks like this with b=0.1:

!17

Biases

1.0 -2.0 2.0

2.0 1.0 -4.0

1.0 -1.0 0.0

0.5

0.9

-0.3

-1.8 3.2 -0.3) = Sig(*Sig() = .14 .96 0.4

Hidden Layer Weights Inputs

Hidden Layer Outputs

It is also very useful to be able to offset our inputs by some constant. You can think of this as
centering the activation function, or translating the solution (next slide). We will call this
constant the bias, and it there will often be one value per layer.

Our math for the previously calculated layer now looks like this with b=0.1:

+
0.1

0.1

0.1

Training
• So how do we find these magic weights?  

We want to minimize the error on our training data.
Given labeled inputs, select weights that generate
the smallest average error on the outputs.  

• We know that the output is a function of the
weights: 
 

 E(w1,w2,w3,...)  
 

So to figure out which way, and how much, to
push any particular weight, say w3, we want to
calculate

!18

Backpropagation
• If we use the chain rule repeatedly across layers we can

work our way backwards from the output error through the
weights, adjusting them as we go.  
Note that this is where the requirement that activation
functions must have nicely behaved derivatives comes from.  
 

• This technique makes the weight inter-dependencies much
more tractable. An elegant perspective on this can be found
from Chris Olah at  
http://colah.github.io/posts/2015-08-Backprop 

• With basic calculus you can readily work through the details.
You can find an excellent explanation from the renowned
“3Blue1Brown” at  
https://www.youtube.com/watch?v=Ilg3gGewQ5U

!19

http://colah.github.io/posts/2015-08-Backprop
https://www.youtube.com/watch?v=Ilg3gGewQ5U

Solvers (1)
• Backpropagation leaves us

with potentially many millions
of non-linear equations for
real-world networks to solve. 

• Fortunately, this isn't a new
problem created by deep
learning, so we have options
from the world of numerical
methods.

!20

Solvers
However, even this efficient process leaves us with potentially many millions of simultaneous equations to solve (real
nets have a lot of weights). They are non-linear to boot. Fortunately, this isn't a new problem created by deep learning,
so we have options from the world of numerical methods.

The standard has been gradient descent. Methods, often
similar, have arisen that perform better for deep learning
applications. TensorFlow will allow us to use these
interchangeably - and we will.

Most interesting recent methods incorporate momentum to
help get over a local minimum. Momentum and step size are
the two hyperparameters we will encounter later.

Nevertheless, we don't expect to ever find the actual global
minimum.

We could/should find the error for all the training data before updating the weights (an epoch). However it is usually
much more efficient to use a stochastic approach, sampling a random subset of the data, updating the weights, and
then repeating with another mini-batch.

Wikipedia Commons

• The standard has been gradient descent. Methods, often similar,
have arisen that perform better for machine learning applications.
In google’s TensorFlow package they can be easily changed due
to its modular structure.

Solvers (2)

!21

• Most interesting recent methods incorporate
momentum to help get over a local minimum.
Momentum and step size are the two
hyperparameters we will encounter later.  

• Nevertheless, we don't expect to ever find the actual
global minimum. 

• We could/should find the error for all the training data
before updating the weights (an epoch). However it
is usually much more efficient to use a stochastic
approach, sampling a random subset of the data,
updating the weights, and then repeating with
another mini-batch.

Training in progress

https://www.youtube.com/watch?v=Ilg3gGewQ5U
!22

https://www.youtube.com/watch?v=Ilg3gGewQ5U

Implementations
Other Toolboxes

You have a plethora of alternatives available as well. You are now in a position to appreciate some comparisons.

Package Applications Language Strengths

TensorFlow Neural Nets Python, C++ Very popular.

Caffe Neural Nets Python, C++ Many research projects and
publications. 2.0 more TF-like.

Spark MLLIB Classification, Regression,
Clustering, etc.

Python, Scala, Java, R Very scalable. Widely used in
serious applications.

Scikit-Learn Classification, Regression,
Clustering

Python

cuDNN Neural Nets C++, GPU-based Used in many other frameworks:
TF, Caffe, etc.

Theano Neural Nets Python Lower level numerical routines.
NumPy-esque.

Torch Neural Nets Lua (PyTorch=Python) Dynamic graphs (variable length
input/output) good for RNN.

Keras Neural Nets Python (on top of TF, Theano) Higher level approach.

Digits Neural Nets “Caffe”, GPU-based Used with other frameworks
(only Caffe at moment).

chemistry specific (for PES construction):  
e.g. AMP https://bitbucket.org/andrewpeterson/amp

!23

https://bitbucket.org/andrewpeterson/amp

