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Regression hypothesis 
The physics of macroscopic relaxation of a system back to 
equilibrium is governed by the same physics as the 
relaxation of spontaneous fluctuations about equilibrium 



Linear response to a perturbation

Consider classical* Hamiltonian dynamics from a point in phase space:

�
p(t), q(t)

�
= Tt

�
p(0), q(0)

�

time evolution operator
(Liouvillian)

generalized momenta and positions at time = 0 

• (p,q) is short for (pN,qN)
• N ~ 1023

P (p, q) =
1

Q
e��H(p,q) Q =

Z
dp dq e��H(p,q)

In equilibrium, microstates have the canonical distribution:

• dpdq is an infinitisemal 
volume element in 
phase-space

* for a quantum mechanical treatment of linear response theory see for example the 
book by Chaikin and Lubensky, “Principles of Condensed Matter Physics”.



Linear response to a perturbation

What happens when we take the system out of equilibrium?

Let’s switch of a (small) perturbation field (at t=0), and 
consider the relaxation to the new equilibrium.

futurepast t=0

f

A

H’ = H + fA H

t < 0      H’ = H + ΔH
t > 0      H     (ΔH = 0)

ΔH = –f A 
f  is an external field
A(p,q) is a macroscopic observable

conjugate thermodynamic variables, 
e.g. pressure and volume; f = @F/@A

Initial state:

After field is switched off:

hAi = 1

Q0

Z
dp dq e��H0(p,q)A(p, q)

hA(t)i = 1

Q0

Z
dp dq e��H0(p,q)A(Tt(p, q))

time operator Tt instead of Tt’

The perturbation should be 
small enough that the 
response is linear to the field.



Linear response to a perturbation

After field is switched off:

hA(t)i = 1

Q0

Z
dp dq e��H0(p,q)A(Tt(p, q))

hA(t)i ⇡
R
dp dq e��H(p,q)(1� ��H)A(Tt(p, q))R

dp dq e��H(p,q)(1� ��H)

expanding and keeping only terms of linear order gives:

Taylor expansion:
e

x = 1 + x+ ...

hA(t)i ⇡
R
dp dq e��H(p,q) A(Tt(p, q))R

dp dq e��H(p,q)
+�f

R
dp dq e��H(p,q) A(p, q)A(Tt(p, q))R

dp dq e��H(p,q)

��f

R
dp dq e��H(p,q) A(p, q)R

dp dq e��H(p,q)

R
dp dq e��H(p,q) A(Tt(p, q))R

dp dq e��H(p,q)

Thus, to linear order:
�A(t) = A(t)� hAi

h. . . i0

•    

•              ensemble average 
of the unperturbed system

1

1� x

= 1 + x+ x

2 + ...

�A(t) = �fh�A(0)�A(t)i0

hA(t)i � hA(t)i0 = �f
�
hA(0)A(t)i0 � hAi20

�



Fluctuation-Dissipation theorem 

This results is one manifestation of the Fluctuation-Dissipation theorem.
  

Macroscopic evolution from
out-of-equilibrium

Microscopic fluctuations
 in equilibrium

Linear response of the system to the force (perturbation)

�A(t) = �fh�A(0)�A(t)i0



Time correlation calculation: the direct method

D =
1

3

Z 1

0
d⌧hv(0)v(⌧)i

Most straightforward manner to compute a time-correlation function

time

initial equilibrium canonical simulation to obtain t=0 configurations

τ = 1 Δt

τ = 0

τ = 2 Δt

τ = 3 Δt

τ = 4 Δt

independent simulations to correlate later time with initial time frame

tim
e

tim
e

tim
e



Single trajectory approach

Most used manner to compute a time-correlation function

D =
1

3

Z 1

0
d⌧hv(0)v(⌧)i

• take t=0 frames at regular (uncorrelated) intervals:

time

t0 t0 t0

time

t0 t0 t0

τ = 1 Δt

time

t0 t0 t0

τ = 2 Δt

• compute A(0)A(τ) with respect to all t=0 frames • efficient use of a single 
trajectory

• many more samples of 
short time intervals than 
for long time intervals (1 
sample of total trajectory 
length)

• smart coarse-grain 
algorithms can avoid 
excess calculation and 
storage of short time 
interval data.

etc…



Fast Fourier transform method

Fastest manner to compute a time-correlation function

D =
1

3

Z 1

0
d⌧hv(0)v(⌧)iDirect methods scale approximately as the square of 

the number of sample points (frames).

CAB(⌧) = lim
⌧!1

1

⌧

Z ⌧/2

�⌧/2
dt a(xt)b(xt+⌧ ) shift time origin

ã(!) =
1p
2⇡

Z 1

�1
dt e

�i!t
a(xt) b̃(!) =

1p
2⇡

Z 1

�1
dt e

�i!t
b(xt)

Write a and b in their Fourier transforms:

ã(!)b̃⇤(!) =
1p
2⇡

Z 1

�1
d⌧e

�i!⌧

Z 1

�1
dt a(xt)b(xt+⌧ )

then

multiply both sides by eiωτ and integrate over τ 
Z 1

�1
dt a(xt)b(tt+⌧ ) =

Z 1

�1
d! e

�i!⌧
ã(xt)b̃

⇤(xt+⌧ )

• In practice, with finite 
time and discrete time, 
fast Fourier transforms 
(FFTs) are used.

• FFTs scale as N ln N

Z 1

�1
d! ei!⌧e�i!t = 2⇡�(t� ⌧)



Applications

• Anisotropy decay in aqueous solutions
• thermal conductivity in nano fluids
• reaction rate theory



Molten salts: 
• Heat storage and transport medium 
• Allow electric energy generation in the 

absence of sunlight (with heat stored 
during daylight) 

• Carbonates (M2CO3), Chlorides (MCl, 
MCl2); Nitrates (MNO3), and mixtures  

• Melting: ~200ºC 
• Operation: ~500ºC 
• High heat capacity



Heat Transfer Fluids 

• Room temperature applications - Cooling and thermal management 
• Graphene nanofluids – very large effect on thermal properties 
• Large literature on Graphene nanofluids 
• Experimental work at ICN2  (preparation and thermal properties)

DMF: Dimethylformamide 

Organic solvent for Graphite Nanoflakes 
currently used by P. Gómez (ICN2)  

Very stable dispersions - low concentration of NFs: 0 - 0.05 wt % 

NFs: 100 – 400 nm diameter;   1-10 layers  



Experimental Results

Thermal	properties:				Specific	Heat	and	Thermal	Conductivity

Experiments:	R.	Rodriguez,	E.	Chavez,	P.	Gomez,	C.	Sotomayor	–	ICN2

Experimental Results



Electrical Resistance of spheres in medium

Thermal conductivity of spheres in medium

James Clerk Maxwell 
1831-1879

Experiments see the same enhancement at ~200 smaller concentration!



• Conduction, convection, radiation 
• Electronic, photonic, phononic 
• Not a good theory developed for liquids 

a) Non-equilibrium simulation 

b) Equilibrium simulation 
• Green-Kubo equation

hot cold

conductivity from auto-correlation of the heat flux, J

 =
1

3V kBT 2
lim
⌧!1

Z ⌧

0
hJ(t)J(0)dt

Heat conduction



6 ps movie  
(out of a 1 ns simulation) 



Layering of DMF on graphene flake



Thermal	conductivity	calculated	from	Green-Kubo	equation	from	a	long	
classical	MD	simulation

heat	flu
x

convective		
contribution

vibrational/phononic		
contribution

Thermal conductivity (TC) by  
Green Kubo equation



• After 10 ps, the x,y,z components 
start to deviate, which is a measure 
for the statistical error. 

• The convection part reached a 
plateau between 10-100 ps, of 0.04 
± 0.01 W/mK. 

• The plateau in the total TC is less 
clear;  0.20 ± 0.02 W/mK. 

• The exp. number is 0.18 W/mK.

TC for DMF with 20 ns of NVT simulations

linear	scale

log	scale

convective	part

Total	conductivity

convective	part

Total	conductivity



Total	

convective	

TC especially the convective part 
shows an increase with system 
size (say up to x=20 ps)

convective	part

log	scale

linear	scale

Total	conductivity

TC for NF/DMF at  3.9% in wt



• Mode coupling theory predicts that the thermal conductivity does not converge in 2D 
systems (flexural modes are neglected!)

• We see convergence in ca. 500 ps towards the experimental number (2500 - 3000 W/m/K)
• Large error bars due to statistical noise. We need many (10-100) more runs… (see also 

Donadio et al.)

difference between 1st and 2nd run 
already after 5 ps (statistical noise)

TC for periodic flake in gas phase
• two periodic flake sizes: 10x24=240 C atoms and 15x36=540 C atoms
• two independent simulations per system to check convergence



TC for periodic flake in DMF

• Similar slow convergence in DMF as in the gas phase
• We need many (10-100) more runs… Work in progress.

• Hypothesis: interaction of flake flexural modes with DMF 
solvent enhances phonon scattering and thus thermal 
conductivity



Summary

• Onsager’s regression hypothesis: microscopic 
fluctuations at equilibrium follow same laws as 
macroscopic relaxation to equilibrium.

• Linear response theory gives us the relation between a 
perturbation source and the response of the system using 
a time correlation function.

• Green-Kubo relations allow for calculation of transport 
properties by integration over a time (auto-) correlation 
function.

• Thermal conductivity can be computed from an 
equilibrium simulation using a Green-Kubo equation.


