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Regression hypothesis

The physics of macroscopic relaxation of a system back to
equilibrium is governed by the same physics as the
relaxation of spontaneous fluctuations about equilibrium



Linear response to a perturbation

Consider classical* Hamiltonian dynamics from a point in phase space:

generalized momenta and positions at time =0

e
(p(t), Q(t)) — Ttg(o)v Q(O))

time evolution operator
(Liouvillian)

In equilibrium, microstates have the canonical distribution:

1
Plp.q) = ée—B”H(p,q) 0= / dp dg e—BHP0

* for a quantum mechanical treatment of linear response theory see for example the
book by Chaikin and Lubensky, “Principles of Condensed Matter Physics”.

* (p,q) is short for (pN,qN)
« N~1023

* dpdq is an infinitisemal

volume element in
phase-space



Linear response to a perturbation

The perturbation should be
small enough that the
response is linear to the field.

What happens when we take the system out of equilibrium?

Let’s switch of a (small) perturbation field (at t=0), and

consider the relaxation to the new equilibrium. conjugate thermodynamic variables,

e.g. pressure and volume; f = 0F/0A
t<0 H=H+AH AH=—fA <

t>0 H (AH=0) f is an external field
A(p,q) is a macroscopic observable

Initial state: A .
1 B A
(A) = Q’ /dp dq e BH' (p, q)A(p, q) \\_/_,\>
f
H=H+fA H
After field is switched off: , >
1 B (pa) past =0 future
(A(t)) = 0 dpdge A(Ti(p, q))
o

time operator T:instead of T’



Linear response to a perturbation

After field is switched off:

1 _
A®) = o [ dpdge ™ D ATp,) -
aylor expansion:
e =14+x+...
(A(1)) ~ [ dpdqe "D (1 — BAH) A(Ti(p, q))
[ dpdge=B1®a)(1 — BAH)
expanding and keeping only terms of linear order gives: i AR
J dpdg e PO A(T,(p, ) J dp dq e TP D A(p, q) A(Ty(p, 0))
(A(1)) = BH(p,q) B f o
[ dpdqe=PHpq [ dp dq e=PH(p:9)

[dpdqe=P"®D A(p,q) [ dpdqe PHPD A(Ty(p,q))
fdpdqe BH(p,q) fdpdqe BH(p,q)

(A - PARERTL B f ((A(0)A(t))o — (A)F)
AA(t) = Bf(0A(0)A(t))o

—Bf

0A(t) = A(t) — (4)

. < .. >0 ensemble average
of the unperturbed system



-luctuation-Dissipation theorem

Linear response of the system to the force (perturbation)
AA(t) = Bf{6A(0)0A(¢))o

This results is one manifestation of the Fluctuation-Dissipation theorem.

Macroscopic evolution from Microscopic fluctuations
out-of-equilibrium in equilibrium




Time correlation calculation: the direct method

Most straightforward manner to compute a time-correlation function

initial equilibrium canonical simulation to obtain t=0 configurations

time

independent simulations to correlate later time with initial time frame



Single trajectory approach

Most used manner to compute a time-correlation function

- take t=0 frames at regular (uncorrelated) intervals:

?—O—Q—O—T—O—O—O—T—O—V time

to to to

- compute A(0)A(T) with respect to all t=0 frames

T=1At D—o—o—Do—o—o—D—» time

T T

to to to

etc... to to to

- efficient use of a single

trajectory

* many more samples of

short time intervals than

for long time intervals (1

sample of total trajectory
length)

* smart coarse-grain

algorithms can avoid
excess calculation and
storage of short time
interval data.



-ast Fourier transform method

Fastest manner to compute a time-correlation function

Direct methods scale approximately as the square of D = L / N dr(v(0)v(T))
the number of sample points (frames). 3 Jo
1 7'/2
Cap(T) = lim —/ dt a(xs)b(xyr) shift time origin
T—>00 T _7_/2

Write a and b in their Fourier transforms:

- 1 > — 1wt 1 - > e—iwt 7
a(w) = E/—oo dte ""a(xy) b(w) = \/%/_OO dt b(xy)

then o0 o'e
~ 7% 1 —IWT
a(w)b™(w) = —\/%/ dre / dt a(x)b(Tssr) /oo R

— OO

— 0

multiply both sides by e@Tand integrate over T . In practice, with finite

time and discrete time,

S 0O
/ dt a(mt)b(tHT) — / dw e_sz&(l‘t)b* (th—H‘) Ele;T:tTI;?l;rrleerutSrggtcsforms

— 0 — 00 - FFTsscaleas NIn N



Applications

- Anisotropy decay in agueous solutions
- thermal conductivity in nano fluids

* reaction rate theory



ABENGOA

Innovative technology solutions for sustainability

Molten salts:

« Heat storage and transport medium

» Allow electric energy generation in the
absence of sunlight (with heat stored
during daylight)

« Carbonates (M,CO,), Chlorides (MCI,
MCl,); Nitrates (MNO5), and mixtures

« Melting: ~200°C
» Operation: ~500°C
« High heat capacity
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Heat Transfer Fluids

Room temperature applications - Cooling and thermal management
Graphene nanofluids — very large effect on thermal properties

Large literature on Graphene nanofluids
Experimental work at ICN2 (preparation and thermal properties)

DMF: Dimethylformamide ' P
Organic solvent for Graphite Nanoflakes '/ E -
currently used by P. Gomez (ICN2) G «

Very stable dispersions - low concentration of NFs: 0 - 0.05 wt %

NFs: 100 — 400 nm diameter; 1-10 layers



Cp Enhancement (%)

Experimental Results

Thermal properties: Specific Heat and Thermal Conductivity
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Experiments: R. Rodriguez, E. Chavez, P. Gomez, C. Sotomayor — ICN2
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Electrical Resistance of spheres in medium
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Experiments see the same enhancement at ~200 smaller concentration!



Heat conduction

» Conduction, convection, radiation
 Electronic, photonic, phononic
* Not a good theory developed for liquids

a) Non-equilibrium simulation

hot cold

b) Equilibrium simulation
» Green-Kubo equation

conductivity from auto-correlation of the heat flux, J
1 T

= VEaT Tli)n;o o (J(t)J(0)dt

Y



6 ps movie

(out of a 1 ns simulation)



N-N pair-correlation function
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Layering of DMF on graphene flak
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Thermal conductivity (TC) by
Green Kubo equation

Thermal conductivity calculated from Green-Kubo equation from a long
classical MD simulation

vV e
. it = / - J(t)) dt
k=g [ O Lt = o [T (3(0) - @)
) AA
|
J = % Zeivi—zsivi
= i Zev +Z )X |
vV B v $5 ]
1 =
= V Z(?vl+ Z(fu (Vz +vj))xz_)
/T
convective vibrational/phononic

contribution contribution



TC for DMF with 20 ns of NVT simulations
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After 10 ps, the x,y,z components
start to deviate, which is a measure
for the statistical error.

The convection part reached a
plateau between 10-100 ps, of 0.04
+ 0.01 W/mK.

The plateau in the total TC is less
clear; 0.20 £ 0.02 W/mK.

The exp. number is 0.18 W/mK.



thermal conductivity [W/m/K]
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TC for periodic flake in gas phase

- two periodic flake sizes: 10x24=240 C atoms and 15x36=540 C atoms
two independent simulations per system to check convergence
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- Mode coupling theory predicts that the thermal conductivity does not converge in 2D

systems (flexural modes are neglected!)
- We see convergence in ca. 500 ps towards the experimental number (2500 - 3000 W/m/K)

- Large error bars due to statistical noise. We need many (10-100) more runs... (see also
Donadio et al.)
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TC for periodic flake in DMF

- Hypothesis: interaction of flake flexural modes with DMF
solvent enhances phonon scattering and thus thermal
conductivity
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- Similar slow convergence in DMF as in the gas phase
« We need many (10-100) more runs... Work in progress.



Summary

- Onsager’s regression hypothesis: microscopic
fluctuations at equilibrium follow same laws as
macroscopic relaxation to equilibrium.

* Linear response theory gives us the relation between a
perturbation source and the response of the system using
a time correlation function.

- Green-Kubo relations allow for calculation of transport
properties by integration over a time (auto-) correlation
function.

- Thermal conductivity can be computed from an
equilibrium simulation using a Green-Kubo equation.



