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The radial distribution function

The radial distribution function (RDF), aka the pair-
correlation function, measures the (excess) probability 
to find a particle j at a distance, r, from a reference 
particle i, relative to the average density of particles j.

gas liquid solid liquid crystal

The structure of materials is governed interaction between the 
particles (atoms, molecules,…) and the external conditions (T, p,…).

average density:
⇢j =

nj

V



The radial distribution function
The probability to find a certain configuration of particle 
positions is given bij Boltzmann’s distribution: ⇢ =

N

V

P (r1, r2, . . . , rN ) =
1

Z
e��V (r1,r2,...,rN )

� = 1/kBT

The probability to find particles 1 and 2 at a certain position:

P (r1, r2) =
1

Z

Z
· · ·

Z
e��V (r1,r2,...,rN )dr3 . . . drN

The probability that any of the particles is at those positions 
is given by the 2-particle density:

⇢(r1, r2) =
N !

(N � 2)!
P (r1, r2)

Define the correlation function g(r1,r2) 

Z =

Z
· · ·

Z
e��V (r1,r2,...,rN )dr1 . . . drN

g(r1, r2) =
⇢(r1, r2)

⇢2
=

V 2N !

N2(N � 2)!

1

Z

Z
· · ·

Z
e��V (r1,r2,...,rN )dr3 . . . drN

is equal to one if there is no correlation (= no interaction)

N (N – 1)



The radial distribution function

The radial distribution function (RDF), g(r), considers the 
correlation of particles “2” at a distance r from particles “1” distance r = |r2 - r1|

4⇡r2⇢g(r)dr

central particle “1”

particles “2” between
r and r+dr from “1”

The number of particles at a distance between r and r+dr 
from any central particle:

g(r)

r
0
1• at very small distances: g(0) = 0

• at very large distances: g(∞) = 1

The RDF can be obtained from:
• MD or MC simulation
• neutron or X-ray diffraction (structure factor)
• microscopy (for colloids and other large particles)



The radial distribution function

gas liquid solid

g(r)

r

g(r)

r

g(r)

r

Integration provides information 
on the coordination number  

nc = ⇢

Z R

0
4⇡r2g(r)dr



The radial distribution function

liquid water ice

From website of Dr R K Thomas FRS and Prof J Penfold: http://rkt.chem.ox.ac.uk/lectures/liqsolns/liquids.html  

http://rkt.chem.ox.ac.uk/lectures/liqsolns/liquids.html


The radial distribution function

Liquid water, DFT-MD simulation

BLYP+D3/TZV2P PBE+D3/TZV2P 

From Ambuj Tiwari (UvA)



The radial distribution function

Fig. 3. MD simulations of the investigated solution. (A) 
Snapshot of the classical MD simulation. (B) Radial distribution 
functions (RDFs) 
of different H-bond donor and acceptor atoms in the solution 
around water atoms, obtained from the classical (solid lines) and 
DFT (dashed lines) MD simulations. In the top panel, radial 
distributions of the water O and H atoms are compared to these 
functions in bulk water (dotted lines). (C and D) Three-dimensional 
structural density plots of the first coordination shell of a water 

molecule, in neat water (C) and in N2H5TFA solution (D), showing 
the distribution of different H-bond donor and acceptor atoms. 
Color code for isosurfaces: red, water O atom; gray, water H 
atom; orange, TFA O atom; blue, hydrazinium H atom; green, 
hydrazinium N atom. (E to G) Three-dimensional structural density 
plots of the H-bond acceptor atoms (water O, TFA O, and 
hydrazinium N) in the first and second coordination shells of a 
water molecule (in the center) in neat water at 1 bar (E), in neat 
water at 6 kbar (F), and in N2H5TFA solution at 1 bar (G). 


three-dimension correlation function in pure water
water in hydrazinium 
trifluoroacetate solution 

Science 359, 1127–1131 (2018) 



Thermodynamic properties

The RDF can be used to compute various thermodynamic 
properties, such as:

• potential energy
• pressure
• compressibility

U = Ukin + U intra +
1

2
N⇢

Z 1

0
dr 4⇡r2g(r)u(r)

total energy:

potential energy 
of a particleUkin =

3

2
NkBT

avoid double 
counting

translation energy



Pressure

The pressure in the canonical ensemble is computed for a 
system with pairwise interactions from the virial equation:

P = ⇢kBT +
1

3V

⌧X

i<j

f(rij) · rij
�

using instead the radial distribution function:

P = ⇢kBT � 2

3
⇡⇢2

Z 1

0
dr

du(r)

dr
r3g(r)dr

forceavoid double 
counting



Isothermal compressibility

The isothermal compressibility is: T = � 1

V

✓
@V

@P

◆

T,N

hNi⇢kBTT =
⌦
(N � hNi)2

↵
= hN2i � hNi2

which is linked to the fluctuations in the number of particles in an open system

integration of the RDF over all particle 1 and 2 positions gives something similar:Z

V
d3r1

Z

V
d3r2⇢

2g(r12) =
⌦
N(N � 1)

↵
= hN2i � hNi

add <N> and subtract <N>2:

hNi⇢kBTT = ⇢

Z

V
d3r1⇢

Z

V
d3r2g(r12) + hNi � ⇢

Z

V
d3r1⇢

Z

V
d3r2

hNi⇢kBTT = ⇢

Z

V
d3r1⇢

Z

V
d3r2

�
g(r12)� 1

�
+ hNi

T = (kBT )
�1

Z

R3

d3r
�
g(r)� 1

�
+ (⇢kBT )

�1compressibility:



Dynamical properties

Thus far: spatial correlations between particles.

A material or liquid in equilibrium has also an underlying dynamics of the particles.
Particle positions and velocities continuously change. Most quantities fluctuate in time.

<Ct>

time

self-diffusion of 
a molecule in a 
liquid 

<r2>

time

anisotropy decay 
due to rotation of 
dipoles



Time correlation functions

The dynamics of microscopic processes can be 
captured by time-correlation functions 

hA(0)B(t)i = lim
T!1

1

T

Z T

0
d⌧A(⌧)B(⌧ + t)

hA(0)A(t)i = lim
T!1

1

T

Z T

0
d⌧A(⌧)A(⌧ + t) time auto-correlation function

(correlate with itself)

At very short time intervals, the correlation is maximal
• <A(0)A(0)> = <A2>	

At very long times, the correlation has decayed to zero
• <A(0)A(∞)> = <A><A>	
• <A(0)B(∞)> = <A><B>

Often, the correlation function is normalized by dividing it by <A(0)A(0)>



Time correlation functions

In equilibrium, any time can be taken as the t=0 moment,
so, <A(t)A(t + Δt)> is independent of t. Therefore:

d

dt
hA(t)A(t+�t)i = hȦ(t)A(t+�t)i+ hA(t)Ȧ(t+�t)i = 0

product rule

time derivative

and
hȦ(t)A(t+�t)i = �hA(t)Ȧ(t+�t)i

d

dt
hA(0)A(t)i

����
t=0

= 0

We can also derive:

every correlation function 
starts with a horizontal slope

d2

dt2
hA(t)A(t+�t)i = �hȦ(t)Ȧ(t+�t)i

d2

dt2
hA(0)A(t)i

����
t=0

= �hȦ2(t)i < 0 every correlation function 
starts with a negative curvature

hA(t)A(t+�t)i = hA(t+�t)A(t)i

but note that A(t) and A(t+Δt) 
are permutable: 



Example: self-diffusion

Diffusive dynamics is characterised by a mean 
square displacement that is proportional to time.

<r2>

time

⌦�
x(t)� x(0)

�2↵
= 2Dt

in one dimension, for large enough t:

@P (r, t)

@t
= Dr2P (r, t)

Fick’s law:

diffusion coefficient
(units of m2/s)

(Einstein equation)

hx2(t)i =
Z

t

0
dt

0
Z

t

0
dt

00hv
x

(t0)v
x

(t00)i = 2

Z
t

0
dt

0
Z

t

0

0
dt

00hv
x

(t0)v
x

(t00)i

t’

t’’

D =
1

2

dhx2(t)i
dt

=

Z
t

0
dt

0hv
x

(0)v
x

(t00 � t

0)i
• take the derivative to t
• shift the time origin by t’
• τ = t’’ – t’
• take limit to infinite time

Green-Kubo relation (relates a transport 
property, here D, to a time correlation function)

<v
(0

)v
(τ

)>

time

mean square 
displacement

velocity auto-
correlation

D =
1

3

Z 1

0
d⌧hv(0)v(⌧)i

in 3D:



Application: anisotropy decay

On the slowdown mechanism of water 
dynamics around small amphiphiles

Wagner	H.	Brandeburgo	
Evert	Jan	Meijer	
Sietse	T.	van	der	Post

Tetramethyl ureaUrea

Two amphiphilic molecules in water



Application: anisotropy decay
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Fit function:

DFT-MD (AIMD)
• CP2K 
• DFT BLYP-D3/TZ2VP
• 4 TMU/40 H2O
• t ~ 20 + 50ps (NVT)

forcefield MD (CMD)
• LAMMPS
• SPC-E / rigid TMU / 

KBFF urea
• N ~ 500 molecules
• t ~ 200 ps (NPT+NVT)

Experiment
• fs-IR

dipole auto-
correlation: Cl(t) =

⌧
Pl

�
µ(0)µ(⌧)

��
P1(x) = x

P2(x) =
1

2
(3x2 � 1)

first and second order Legendre polynomials:



Application: anisotropy decay

“bulk” water

“hydrophilic” water

“hydrophobic” water

TMU solutes

TMU

Water	partitioning



Application: anisotropy decay
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Application: anisotropy decay



Application: anisotropy decay

Model
• Jump model by Laage and 

Hynes, J. Phys. Chem. B 
112,14230–14242 (2008)

• Hydrogen bond life times
• Associative / dissociative H-

bond breaking
• Close to hydrophobic surface: 

dissociative mechanism 
becomes important (excluded 
volume effect)

• After dissociative breaking, 
bond often restores, resetting 
the timer (new life time)

H-bond life times
and breaking mechanism



PEG and POM
The solvation mystery unraveled from the solvent dynamics

·polyethylene	glycol,	[-CH2-CH2-O-]n		

·polyoxymethylene,	[-CH2-O-]n	
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PEG in H O:
infinitely
soluble

POM:
completely
insoluble

POM with
PEG's partial 
charges
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Rare events

• no direct access to free energy
• reaction rate measurement

In real life (experiment)

k = k0 e-ΔG/kT



Rare event simulation

Macroscopic phenomenological theory 

Chemical reaction: A B

dcA(t)
dt

= �kA�BcA(t) + kB�AcA(t)

dcB(t)
dt

= +kA�BcA(t)� kB�AcA(t)

d[cA(t) + cB(t)]
dt

= 0 dcA(t)
dt

=
dcB(t)

dt
= 0

�
cA

⇥
�
cB

⇥ =
kB�A

kA�B

Total number of molecules: Equilibrium:



Rare event simulation

Macroscopic phenomenological theory 

Make a small perturbation:

cA(t) =
�
cA

⇥
+ �cA(t) cB(t) =

�
cB

⇥
+ �cA(t)

�cA(t) = �cA(0) exp[�(kA�B + kB�A)t]
= �cA(0) exp[�t/� ]

� =
�
kA⇥B + kB⇥A

⇥�1

= k�1
A⇥B

�
1 +

⇤
cA

⌅
/
⇤
cB

⌅⇥�1 =
⇤
cB

⌅

kA⇥B

d�cA(t)
dt

= �kA�B�cA(t)� kB�A�cA(t)



Rare event simulation

Microscopic linear response theory

!F

q

BA

q*

�(q � q�) =

�
0 if q � q� < 0 (Reactant A)
1 if q � q� > 0 (Product B)

H = H0 � �gA(q � q�)

gA(q � q�) = 1� �(q � q�) = �(q� � q)

�cA =
�
cA

⇥
�
�

�
cA

⇥
0

�cA =
�
gA

⇥
�
�

�
gA

⇥
0

Perturbation
add bias to increase concentration cA

    probability to be in state A
�
gA

⇥



Linear response theory: static

H = H0 � �B
�
�A

⇥
=

�
A

⇥
�

�
A

⇥
0

�
A

⇥
=

⇤
d�A exp[��(H0 � ⇥B)]⇤
d� exp[��(H0 � ⇥B)]

�
A

⇥
0

=
⇤

d�A exp[��(H0)]⇤
d� exp[��(H0)]

⇧
⇤⇥A

⇤⇥

⌃
=

⌥
d��AB exp[��(H0 � ⇥B)]

⌥
d� exp[��(H0 � ⇥B)]

� ⌥
d� exp[��(H0 � ⇥B)]

⇥2

�
⌥

d�A exp[��(H0 � ⇥B)]
⌥

d��B exp[��(H0 � ⇥B)]
� ⌥

d� exp[��(H0 � ⇥B)]
⇥2

= �
�⇤

AB
⌅
0
�

⇤
A

⌅
0

⇤
B

⌅
0

⇥



Very small perturbation: linear response theory

�cA =
�
gA

⇥
�
�

�
gA

⇥
0 H = H0 � �gA(q � q�)

How does the response (!c) depend on the perturbation (!")?

d�cA

d⇥
= �

⇤�
(gA)2

⇥
0
�

�
gA

⇥2

0

⌅

= �

⇤�
gA

⇥
0

⇤
1�

�
gA

⇥
0

⌅⌅

= �

⇤�
cA

⇥
0

⇤
1�

�
cA

⇥
0

⌅⌅
= �

�
cA

⇥
0

�
cB

⇥
0

gA(x)gA(x) = gA(x)

Outside the barrier

gA = 0 or 1

Switch of the perturbation: dynamic linear response

�cA(t) = �cA(0)
�gA(0)�gA(t)�

cA

⇥�
cB

⇥

= �cA(0) exp[�t/� ] holds for sufficiently long times



exp[�t/� ] =
�
�gA(0)�gA(t)

⇥
�
cA

⇥�
cB

⇥

�1
�

exp[�t/� ] =
�
gA(0)ġA(t)

⇥
�
cA

⇥�
cB

⇥ =
�
ġA(0)gA(t)

⇥
�
cA

⇥�
cB

⇥

kA�B(t) =
�
ġA(0)gA(t)

⇥
�
cA

⇥

ġA(q � q�) = q̇
�gA(q � q�)

�q
= �q̇

�gB(q � q�)
�q

ka⇥B(t) =

⇤
q̇(0)�gB(q(0)�q�)

�q gB(t)
⌅

�
cA

⇥

Derivative

For sufficiently short t

! has disappeared 
because of derivative



Stationary

d

dt

�
A(t)B(t + t�)

⇥
= 0

�
A(t)Ḃ(t + t�)

⇥
+

�
Ȧ(t)B(t + t�)

⇥
= 0

�
A(t)Ḃ(t + t�)

⇥
= �

�
Ȧ(t)B(t + t�)

⇥



Eyring’s transition state theory

Correlation between velocity of states that are at the top of the barrier at 
t=0 and in the product state B some time t later.

Let us consider the limit t     0+ :

lim
t⇥0+

= ⇥
�
q(t)� q�

⇥
= ⇥

�
q̇(t)

⇥

kTST
a⇥B(t) =

⇤
q̇(0)�(q(0)� q�)⇥(q̇)

⌅
⇤
⇥(q� � q)

⌅

ka⇤B(t) =

⇤
q̇(0)�gB(q(0)�q�)

�q gB(t)
⌅

�
cA

⇥

=
�
q̇(0)�(q(0)� q⇥)⇥(q(t)� q⇥)

⇥
�
⇥(q⇥ � q)

⇥



Bennett-Chandler approach
(or Reactive flux method)

ka⇥B(t) =
�
q̇(0)�(q(0)� q�)⇥(q(t)� q�)

⇥
�
⇥(q� � q)

⇥

ka⇥B(t) =
�
q̇(0)�(q(0)� q�)⇥(q(t)� q�)

⇥
�
�(q(0)� q�)

⇥ ⇥ �(q(0)� q�)
⇥(q� � q)

Conditional average:
given that we start on top of barrier 

q̇(0)�(q(t)� q�)
Probability to find q 
on barrier top

Computational scheme:
• Determine the probability with free energy calculation

• Compute conditional average from “shooting” trajectories from barrier top



Summary

• The structure of matter and fluids is governed by interactions 
between particles, which causes spatial correlations.

• The best know is the pair-correlation function, or radial 
distribution function, which can be obtained from MD or MC 
simulation, neutron or X-ray diffraction, or microscopy.

• Dynamics can be probed by time-correlation functions. 
• Green-Kubo relations connect macroscopic transport 

properties to microscopic time correlation functions.
• The orientational dynamics of water molecules in solutions 

can be captured by the decay of the dipole auto-correlation 
function.

• The Bennett-Chandler approach, or reactive flux method, 
allows for accurate estimation of reaction rates, by combining 
a free energy calculation (giving the transition state theory 
estimate of the rate) with a correction using the transmission 
coefficient. 


