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Classical molecular dynamics
Molecular dynamics (MD) simulation

Sampling the distribution and the dynamics of many-particle 
systems
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Classical molecular dynamics

Classical MD means:

1. Newtonian dynamics of the nuclei

2. Interaction potentials are sums of empirical (pair) potentials (forcefield)

Molecular dynamics (MD) simulation

Sampling the distribution and the dynamics of many-particle 
systems
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Classical molecular dynamics

Ab initio MD, First principles MD, DFT-MD, Born-
Oppenheimer MD, Car-Parrinello MD

• Interaction potential from electronic structure calculation

• quantum mechanical description of the electronic structure 

(DFT)

• Born-Oppenheimer approximation (electronic ground-state)

• Nuclear dynamics is still Newtonian!


Molecular dynamics (MD) simulation

Sampling the distribution and the dynamics of many-particle 
systems
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Nuclear quantum effects
Molecular dynamics (MD) simulation

Sampling the distribution and the dynamics of many-particle 
systems


Classical (forcefield) MD and ab initial (DFT) MD both 
neglect nuclear quantum effects.

• zero point energy motion (ZPE)

• quantum tunneling


The problem is worse for AIMD as in the case of 
empirical forcefields fitted to experimental quantities, 
NQEs are implicitly included.



Nuclear quantum effects

figure thanks to Michele Ceriotti (EPFL)

Newtonian dynamics is inaccurate for:

• light particles

• very low temperatures

• large spacing of energy levels,  
~! > kBT

Nuclear quantum effects affect, even at room temperature, e.g.:

• heat capacity of materials

• isotope effects (KIE) on reaction rates, especially involving proton or hydrogen transfer



Path integral molecular dynamics
the general idea

• solving the Schrödinger equation for the whole system is too impractical

• there quantum statistics of particles can be represented by the classical 

dynamics of a “ring polymer”

Ψ(x1, x2)

classical particles

quantum path-integrals as ring polymers

Hcl,P (x, p) =
PX

k=1


p

2
k

2m
+

m

2�2
P~2

PX

k=1

(xk � xk+1)
2 +

PX

k=1

U(xk)

�

p is the number of beads



Ring polymer dynamics
the general idea

• solving the Schrödinger equation for the whole system is too impractical

• there quantum statistics of particles can be represented by the classical 

dynamics of a “ring polymer”

path-integrals as ring polymers

• Ring polymers represent imaginary 
time path integrals


• Capture tunneling and ZPE effects on 
equilibrium properties


• Can be extended to capture quantum 
dynamics


• Can be extended to include quantum 
exchange (indistinguishable particles)



• Why nuclear quantum dynamics? 


• Feynman path integral formulation


• Centroid molecular dynamics


• Ring polymer molecular dynamics


• Time correlation functions (quantum dynamics)


• Ceriotti approach (coloured noise)


• Some applications



Quantum mechanical time evolution (Schrödinger picture)
Time dependent Schrödinger equation

i~ @

@t
 (t) = Ĥ (t)

 (t) = e�iĤt/~ (0)

solve the first-order differential equation

x(t) = e

iLt
x(0)

NB classical 
propagation by 
Liouville operator

Û(t) = e�iĤt/~
define the quantum propagator, a unitary operator

Û †(t)Û(t) = Î it will not change the 
magnitude of the state 
vector, only its direction| (t)|2 = 1

For example:

 (0) =
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 (t) =
X

k

e�iĤt/~|EkihEk| (0)i

Ĥ|Eki = Ek|Ekiwith the eigenvalues Ek

then the time evolution of the amplitudes is

NB calculation of the eigenvalues and eigenvectors is difficult and only 
possible for very small systems (as we all know very well)

Wave function (or state vector) 
evolves in time; operators 
connected to observables are static



Quantum mechanical time evolution (Heisenberg picture)

dÂ

dt
=

�i

~ [Â, Ĥ]

[Â, Ĥ] = ÂĤ � ĤÂ

dA

dt
= {Â, Ĥ}

commutator:

NB: very similar to classical 
evolution of a phase-space 
function, using the Poisson 
bracket

In Heisenberg picture, the observable 
operator evolves in time (state vector 
is static) :

Heisenberg equation of motion

Solution: Â(t) = eiĤt/~Â(0)e�iĤt/~ = Û†(t)Â(0)Û(t)

hÂ(t)i = h |Â(t)| iExpectation value:

NB if      commutes with the Hamiltonian      then             ,        is a constant of motion.      Â Ĥ
dÂ

dt
= 0 Â



Quantum mechanical time evolution (Feynman path integrals)
The double slit experiment

classical particles

quantum mechanical

particles

two target 

distributions

interference

pattern



Quantum mechanical time evolution (Feynman path integrals)

Feynman’s idea
two possible paths

in an experiment with

many slits in many 
screens

The double slit experiment

• Each path has an amplitude Ai(y)


• Total amplitude at y: A(y) = A1(y) + A2(y) + A3(y) + …


• The probability at y: P(y) = |A(y)|2 = |A1(y) + A2(y) + A3(y) + …|2


• For 2 paths: P(y) = |A(y)|2 = |A1(y) + A2(y)|2


• complex amplitudes: A1(y) = |A1| exp[iΦ1(y)] and A2(y)=|A2| exp[iΦ2(y)]


• Therefore: P(y) = |A1(y)|2 + |A2(y)|2 + 2 |A1(y)| |A2(y)| cos[Φ1(y)-Φ2(y)]

Ai is the amplitude that the 
electron, following path i, has 
on the detector at position y.

y

x

third term is the 
interference between 
the two paths



Quantum mechanical time evolution (Feynman path integrals)

Feynman’s idea
two possible paths

in an experiment with

many slits in many 
screens

The double slit experiment

y

x

P (y) =

�����
X

paths

Apath(y)

�����

2

All possible paths have to be included to obtain the correct probability.

The number of interference terms grows to infinite.

Imagine the number of screens and slits to increase until infinite.

However, the space between the slits goes to zero; the grating disappears.


Feynman’s idea: in empty space an (undetected) electron takes all possible paths!



Richard Phillips Feynman
May 11, 1918 – February 15, 1988 
(aged 69)
Nobel Prize in Physics (1965)



Path integrals

Ĥ =
p̂

2m
+ V (x̂) ⌘ K̂ + V̂

Consider a single particle with Hamiltonian:

What is the amplitude at position x’ after time t?

A = hx0|e�iĤt/~|xi ⌘ U(x, x0
, t) U: time evolution operator


or quantum propagator 

particle is at x at t=0

Project into coordinate basis:

 (x0
, t) = hx0| (t)i =

Z
dx hx0|e�iĤt/~|xi (x, 0)

needs coordinate-space 
matrix elements of the 
propagator

NB: the propagator is connected to the density matrix



Path integrals in imaginary time
NB: the propagator is connected to the density matrix:

⇢̂(�) = e��Ĥ density matrix in the canonical 
ensemble (N,V,T) -> (1,L,T)

Û(t) = e�iĤt/~

and time operator

consider the time operator at the imaginary time 

� =
1

kBT
inverse temperature:

t = �i�~

Û(�i�~) = e��Ĥ it gives the density matrix

also consider density operator at the imaginary inverse temperature � = it/~

⇢̂(it/~) = e�iĤt/~ it gives the time operator

Let’s define a complex time parameter:

✓ = t+ i�~
Transformations are just rotations in the complex plane:

�i�~

t

Im ✓

Re ✓

Wick rotations

(Giancarlo Wick)

- working in damped exponential is easier than complex exponential… 



Trotter expansion

⇢(x, x0
,�) ⌘ hx0|e��Ĥ |xi = hx0|e��K̂��V̂ |xi

The coordinate-space matrix elements:

have the problem that the K and V components do not commute. [K̂, V̂ ] 6= 0

NB Note analogy with 
classical Liouville 
operator expansion…

Use instead a Trotter expansion:

e��(K̂+V̂ ) = lim
P!1


e��V̂ /2P e��K̂/P e��V̂ /2P

�P

Applying P sets of operators to bring the particle from x to x’:

is equivalent to splitting the path into P segments and summing them up:

(moving through P 
gratings with holes)
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Trotter expansion

Consider the element: hxk+1|e��V̂ /2P
e

��K̂/P
e

��V̂ /2P |xki

Since V=V(x) a function of positions only, |x> are eigenfunctions of potential operator:

= e
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Finding the eigenvalues for the kinetic is less trivial.
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Trotter expansion

hxk+1|e��K̂/P |xki =
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combining with potential part and multiplying all P terms in:
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• quantum kinetic energy is represented by harmonic coupling 
between nearest neighbours


• the integrant is the amplitude or weight of each discrete path

spring force constant
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Trotter expansion

⇢(x, x0
,�) = lim
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Now the path integral in real time yields: � = it/~
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Canonical partition function

Q(L, T ) = Tr[exp(�� ˆH)] trace of density matrix

Q(L, T ) =

Z L

0
dx hx|e��Ĥ |xi =

Z L

0
dx ⇢(x, x,�)

use path integral expression for ρ and set x1 = xP+1 = x
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xP+1=x1

circular paths

potential at

position xk

at              (              ) the spring constant becomes infinite and the cyclic path 
collapses onto a single (classical) point.

T ! 1� ! 0

paths are confined to

the domain [0,L]

Q(L, T ) = lim
P!1
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D(L)
dx2 . . . dxP

This expression can be manipulated to resemble the partition function of a

cyclic polymer chain moving in a classical potential V(x)/P.



Path Integral Molecular Dynamics

exp
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⇥ exp


� �

PX

k=1

✓
p

2
k

2m

0 +
1

2

m!

2
P

(x

k+1 � x

k

)

2
+

1

P

�
V (x

k

)

�◆�
�����
xP+1=x1

Recast the prefactor as a set of Gaussian 
integrals of momenta conjugate to xk 

with nearest-neighbour chain frequency !P =
p
P/(�~)

m0 = mP/(2⇡~)2and mass

Q(L, T ) =

Z
dp1 . . . dpP

Z

D(L)
dx1 . . . dxP

Q(L, T ) =

✓
mP

2⇡�~2

◆P/2 Z

D(L)
dx1 . . . dxP

actually prefactor does 
not affect the distribution, 
freedom to choose m’

“classical isomorphism”

Wolynes and Chandler (1981)

This classical partition function can be sampled by classical MD!

(No quantum dynamics properties (yet)…)

David Chandler Peter Wolynes



Path Integral Molecular Dynamics

H
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Equations of motion:



Aneesur Rahman
24 August 1927 –
6 June 1987

Michele Parrinello



Path Integral Molecular Dynamics

• Frequencies of the harmonic normal modes are very high; requires small time step

• Wide range of (continuous) time scales; RESPA multi-time step does not work

Issues with PIMD

Staging transformation (Tuckerman et al. (1993))
• Choose the masses such that only a single harmonic mode remains

• now use RESPA


Ergodicity (Tuckerman et al. (1993))
• massive Nose-Hoover chain thermostat coupled to beads



Centroid Molecular Dynamics Cao & Voth (1993)

Based on the centroid density ideas from Feynman & Kleinert (1986))

ẋc =
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m

physical mass for centroid

Evolution of a single centroid particle:
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cyclic paths with centroid position xc

Euclidian time action

in PIMD the centroid force is simply obtained from:
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note, this still requires a full PI calculation at each centroid configuration.



Centroid Molecular Dynamics Cao & Voth (1993)
Adiabatic approximation:

• based on imaginary time PIMD in the normal mode representation

• scale fictitious kinetic masses to accurate the node dynamics  


mk 6=c << mc m0
k = �2m�k 0 < �2 < 1

adiabaticity parameter

• only non-centroid beads are thermostatted

KAB(t) ⇡
1

Q(�)

Z
dxc dpc a(xc(0))b(xc(t)) exp
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✓
p

2
c

2m

+ U0(xc)

◆�

• assume that Kubo-transformed quantum time correlation function can be 
approximated by:

CMD is exact in the classic limit and for a purely harmonic potential



Ring Polymer Molecular Dynamics Craig & Manolopoulos (2004)
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to obtain (approximate) real-time dynamics.

- correct in the classical limit and for the harmonic oscillator

• physical mass is chosen for each bead

• full chain is used to approximate the Kubo-transformed time correlation function

• no massive thermostatting of the beads
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temperature rescaled from T to PT



Intermezzo: Least action principe

possible trajectories of 
a ball tossed in the air

A (t=t1)

B (t=t2)

Classical Newtonian dynamics:

H(x, p) = K(p) + V (x)

H(x, p) =
p

2

2m
+mgxz

ẋ =
@H(x, p)

@p

ṗ = �@H(x, p)

@x

equations of motion

Hamiltonian picture

Sir William Rowan Hamilton 

(1805–1865)



Intermezzo: Least action principe

possible trajectories of 
a ball tossed in the air

A (t=t1)

B (t=t2)

Classical Newtonian dynamics:

Euler-Lagrange equation

Lagrangian picture

L(x, p) = K(p)� V (x)

L(x, p) = p

2

2m
�mgxz

@L
@x

� d

dt

@L
@ẋ

+
CX

i=1

�i
@fi

@x

= 0

S[L(t)] =
Z t2

t1

Ldt
Action constraints

The path of least action is taken.

Joseph-Louis Lagrange

(1736 – 1813)



Intermezzo: quantum mechanical action principe

possible trajectories of 
an electron tossed in 
the air

A (t=t1)

B (t=t2)

quantum dynamics

Richard Feynman 

(1918–1988)

S[x(⌧)] =

Z �~

0
H(x(⌧))d⌧

Action

Q(T, V ) =

Z

V

dx

Z
x2

x1

Dx(⌧)e�S[x(⌧)]

Partition function

Electron takes all possible paths, 
but the paths are expontially 
weighted by action.

integral over paths



Time correlation functions, classical

Onsager’s regression hypothesis: the macroscopic response of the system to 
some out-of-equilibrium perturbation follows the same laws as the regression 
of microscopic fluctuations around the average.

D =

Z 1

0
d⌧hv

x

(⌧)v
x

(0)i

Various transport properties can be calculated from knowledge of time correlation 
functions, which can be obtained from the system in equilibrium.

Self-diffusion coefficient is related to the velocity auto-correlation:

Green-Kubo equation

hx2(t)i = 2Dt

Einstein relation:

mean square displacement

(in 1 dimension)

 =
V

k
B

T 2

Z 1

0
hJ
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(0)J
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(t)idt

J =
1
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X
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eivi +
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(fij · (vi + vj))xij

�

Thermal conductivity coefficient is related to the heat-flux auto-correlation:



Time correlation functions, classical

velocity auto-correlation function

Liquid chloroform

C(!) = lim
⌧!1

Z ⌧

�⌧
cvv(t)e

�i!tdt

The Fourier transform of the VACF can be related to the (IR) vibrational spectrum

to obtain compatible amplitudes, 
use the dipole-dipole auto-
correlation function

IR vibrational spectrum

1

0
τ

cvv(t) =
1

N

NX

i=1

3X

↵=1

hv↵i (0)v↵i (⌧)i



Time correlation functions, classical

trajectory time
t=0

τ=1 τ=1 τ=1

t=0 t=0

t=0

τ=2

t=0 t=0

τ=2 τ=2

t=0

τ=3

t=0 t=0

τ=3 τ=3

hA(0)B(⌧)i
hA(0)B(0)i

1

0
τ

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11

For implementations see e.g. book “Understanding molecular simulation”, D. Frenkel and B. Smit



Time correlation functions, quantum mechanical

hAi =
RR

drNdpNA(rN ,pN
) exp[��H(rN ,pN

)]RR
drNdpN

exp[��H(rN ,pN
)]

Classical phase space integral

Classical correlation function

c

cl
AB(t) = Q

�1

Z
dp0

Z
dr0 e

��H(x0,p0)A(x0, p0)B(xt, pt)

omitting the “N” particles

This is (also) the classical limit of more one quantum mechanical correlation functions.

Which quantum mechanical correlation function is best approximated by the classical one?

c0AB(t) = Q�1Tr


e��ĤÂeiĤt/~B̂e�iĤt/~

�Standard QM analog:

But:

• it is a complex valued function of time

• it does not share the detailed balance symmetry

C0
AB(!) =

1

2⇡

Z 1

�1
e�!tc0AB(t)

spectral representation:

C0
AB(�!) = e��~!C0

AB(!)

Ccl
AB(�!) = Ccl

AB(!)



Time correlation functions, the Kubo transform

c0AB(t) = Q�1Tr


e��ĤÂeiĤt/~B̂e�iĤt/~

�Standard QM analog:

Class of QM correlation functions that have the same classical limit:

c�AB(t) = Q�1Tr


e�(���)ĤÂe�ĤeiĤt/~B̂e�iĤt/~

�
0  �  �

If                , then the QM function shares the same properties as the 
classical function (real valued, even, detailed balance)
� = �/2

Kubo transform correlation function:

ckuboAB (t) =
1

�

Z �

0

d�c�AB(t)

• Kubo transform can easily be transformed into other QM correlation functions

• Is sampled by PIMD, CMD, RPMD quantum dynamics simulations
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An accurate and simple quantum model for 
liquid water 

F. Paesani, W. Zhang, D.A. Case, T. E. 
Cheatham III, G.A. Voth 
• simple point charge/flexible SPC/Fw 

model 
• normal-mode path-integral MD
• centroid molecular dynamics 

Conclusions:
“quantum water” is:
• less structured liquid 
• reduced amount of hydrogen bonding 
• better matching experiment

quantum
experimentclassical



• Dynamics, time correlation functions (Ian Craig, David 
Manolopoulos, et al.)


• Ring contraction / reduction of number of beads (Michele 
Ceriotti et at, T.Markland, D.E.Manolopoulos et al.)

• coloured noise Langevin thermosetting of PIMD

• website: http://gle4md.org/


• Combination with non-adiabatic electron transfer and 
excited states (Thomas Miller et al)


• i-Pi website:  http://ipi-code.org/about/features/


• …

Current developments

http://ipi-code.org/about/features/


• Why nuclear quantum dynamics? 

• Zero-point energy and quantum tunnelling are non-negligible for various room-temperature properties 

(e.g. heat capacity) and processes (e.g. chemical reaction rates)


• Feynman path integral formulation


• Schrödinger/Heisenberg/Feynman pictures of quantum mechanics

• double split experiment revisited


• action principle in quantum mechanics


• imaginary time <—> inverse temperature

• isomorphism between quantum distribution and classical ring-polymer


• Practical implementations


• Centroid molecular dynamics

• Ring polymer molecular dynamics


• Time correlation functions Application


• classical, Onsagers regression hypothesis, computing transport properties from equilibrium 
fluctuations


• quantum mechanical, which correlation is it?, Kubo transform


• Current/Future developments

Summary / take home messages
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