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Classical molecular dynamics

Molecular dynamics (MD) simulation x‘ v
Sampling the distribution and the dynamics of many-particle

systems ‘.‘
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Classical molecular dynamics

Molecular dynamics (MD) simulation L v
Sampling the distribution and the dynamics of many-particle

oystams & :;h 3

Classical MD means:
1. Newtonian dynamics of the nuclei
2. Interaction potentials are sums of empirical (pair) potentials (forcefield)
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Classical molecular dynamics

Molecular dynamics (MD) simulation
Sampling the distribution and the dynamics of many-particle
systems

Ab initio MD, First principles MD, DFT-MD, Born-
Oppenheimer MD, Car-Parrinello MD
- Interaction potential from electronic structure calculation
- guantum mechanical description of the electronic structure
(DFT)
- Born-Oppenheimer approximation (electronic ground-state)
* Nuclear dynamics is still Newtonian!
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Nuclear quantum effects

Molecular dynamics (MD) simulation L v

Sampling the distribution and the dynamics of many-particle

oystams . :;- 3

Classical (forcefield) MD and ab initial (DFT) MD both
neglect nuclear quantum effects.

» zero point energy motion (ZPE)

* quantum tunneling

The problem is worse for AIMD as in the case of
empirical forcefields fitted to experimental quantities,
NQEs are implicitly included.



Nuclear quantum effects

Newtonian dynamics is inaccurate for:

* light particles

* very low temperatures

- large spacing of energy levels, hw > kgT

Nuclear quantum effects affect, even at room temperature, e.g.:
 heat capacity of materials
- isotope effects (KIE) on reaction rates, especially involving proton or hydrogen transfer

heat capacity of isotopically pure water pH of isofopically pure water :

8.5 -

‘classical' water

O 'classical’ water

SH,0 °H,0 H,0

figure thanks to Michele Ceriotti (EPFL)



Path integral molecular dynamics

the general idea

- solving the Schrddinger equation for the whole system is too impractical
 there quantum statistics of particles can be represented by the classical
dynamics of a “ring polymer”
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classical particles

quantum path-integrals as ring polymers

p is the number of beads




Ring polymer dynamics

the general idea

- solving the Schrddinger equation for the whole system is too impractical
 there quantum statistics of particles can be represented by the classical
dynamics of a “ring polymer”

* Ring polymers represent imaginary
time path integrals

« Capture tunneling and ZPE effects on
equilibrium properties

« Can be extended to capture quantum
dynamics

« Can be extended to include quantum
exchange (indistinguishable particles)

path-integrals as ring polymers



Why nuclear guantum dynamics?

Feynman path integral formulation

Centroid molecular dynamics

Ring polymer molecular dynamics

Time correlation functions (Quantum dynamics)
Ceriotti approach (coloured noise)

Some applications



Quantum mechanical time evolution (Schrodinger picture)

Time dependent Schréodinger equation Wave function (or state vector)

O . evolves in time; operators
1h— \Ij(t) — H\Ij(t) connected to observables are static
ot
solve the first-order differential equation
—iﬁlt/h - NB classilcal
\If(t) —e \IJ(O) r(t) = e“'x(0)  propagation by

Liouville operator

define the quantum propagator, a unitary operator

[}'(t) — e_iﬁt/h Ut (t)ﬁ(t) =T it will not change the
5 magnitude of the state
|\Ij(t)’ =1 vector, only its direction

For example:

U(0) = Z | Ey)(Ek[¥(0))  with the eigenvalues Ex f[\EIJ = Ei|Ey)
k

then the time evolution of the amplitudes is W(¢) = Z e_iﬁt/h]Ew (Ek| WP (0))

k
NB calculation of the eigenvalues and eigenvectors is difficult and only
possible for very small systems (as we all know very well)



Quantum mechanical time evolution (Heisenberg picture)

In Heisenberg picture, the observable
operator evolves in time (state vector

is static) : commutator:
i | A,H|=AH —HA
—17 A A
— = |4, H]
dit h
NB: very similar to classical
. . . evolution of a phase-space
Heisenberg equation of motion function. usingpthe Poizson
bracket dA A
— =1{A H
dt { ? }
Solution:  A(t) = e/PA(0)e /P = UT(£) A(0)U(¢)
Expectation value: <121(t)> = <\If\fl(t)\\lf>
A . P dA r .
NB if A commutes with the Hamiltonian [ then = 0, A is a constant of motion.



Quantum mechanical time evolution (Feynman path integrals)

The double slit experiment

classical particles

-----
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Quantum mechanical time evolution (Feynman path integrals)

The double slit experiment

o 3 ,‘\ ,'\
. L ‘\‘ L IL A I R N two possible paths
Feynman'sidea  __.--" N : in an experiment with
;'_ i Kl e - many slits in many
...... LY ! LI screens
\‘I ', “ "l \“": I y
| |
>
X
- Each path has an amplitude Ai(y)
Ai is the amplitude that the
, _ electron, following path i, has
- Total amplitude at y: A(y) = Ai(y) + Az(y) + As(y) + ... on the detector at position y.
* The probability at y: P(y) = |A(Y)[]? = |A1(y) + Az(y) + As(y) + ...|°
- For 2 paths: P(y) = |A(Y)|2 = |A1(y) + Ax(y)|2

» complex amplitudes: Ai(y) = [A1| exp[i®1(y)] and Ax(y)=|Az| exp[iD2(y)]

» Therefore: P(y) = |A1(y)|* + [Aa(y)* + 2 |A1(y)] |A2(y)| cos[®1(y)-D2(y)] third term is the
interference between

the two paths



Quantum mechanical time evolution (Feynman path integrals)

The double slit experiment
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. L LA AR Y wo possible paths
Feynman’sidea ~  __.-- N ) in an experiment with
;.'_ ’=" b - many slits in many
il 4 | |
~~~~~ o ' s 4 screens
\I :"\ " \‘ " I y
|- _ 'l \" e
>
X

All possible paths have to be included to obtain the correct probability.
The number of interference terms grows to infinite.

P(y) — Z Apath(y)

paths

Imagine the number of screens and slits to increase until infinite.
However, the space between the slits goes to zero; the grating disappears.

Feynman’s idea: in empty space an (undetected) electron takes all possible paths!



REVIEWS OF
MODERN PHYSICS
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Space-Time Approach to Non-Relativistic
Quantum Mechanics

R. P. FEYNMAN

Cornell University, Ithaca, New York

Non-relativistic quantum mechanics is formulated here in a diferent way. It is, however,
ma thematically equivalent to the familiar formulation, In quastum mechanics the probabilicy
of an evenl which can happen in several different ways is the absolute sguece of a sum of
complex contributions, one from each alternative way, The probability chat a garticle will be
found to have a path x(¢) lyving somewhere within a region of space time i the sguane of a sum
of contributions, one from each path in the region, The contribution from a single path is
postulated to be an exponential whose (imaginary) phase is the classical action (in units of &)
for the path in question. The total conrmbution from all pachs reaching x, ¢ lvom tke past is the
wave function ¢(x, ¢). This is shown to zatisfy Schreadinger's equation. The relation to matrix
and operator algebra is discussed. Applications are indicated, in pardcular w eliminate the
coordinates of the ficld cecillalors from the equations of quantum eecrradynamics,

L. IRTRODUCTION

IT is a curious historical fact that modern
quantum mechanics began with two quite
different mathematical formulations: the differ-
ential equation of Schroedinger, and the matrix
algebra of Heisenberg. The two, apparently dis-
similar approaches, were proved to be mathe-
" matically equivalent. These two points of view
were destined to complement one another and
to be ultimately synthesized in Dirac's trans-
formation theorv.

This paper will describe what is essentially a
third formulation of non-relativistic quantum
theory. This formulation was sugpested by some
of Dirac's"® remarks concerning the relation of

'P. A, M. Dirac, The Principles of ruanfum dechanics
(The Clarendaon f‘re.ss. Oxford, 1933), scoond edition,
Section 33; also, Phvsik. Zeits. Sowjetunioa 3, 64 (1933).

tP. A. M. Dirac, Rev, Mad. Phya. 17, 195 (1945).

classical action® to quantum mechanics. A proba-
bility amplitude is associated with an entire
motion ol a particle as a function of time, rather
than simply with a position of the particle at a
particular Lime,

The formulation is mathematically equivalent
to the more usual formulations. There are,
therefore, no fundamentally new results, How-
ever, Lhere is a pleasure in recognizing old things
from a new point of view. Alsn, there are proh-
lems for which the new point of view offers a
distinct advantage, For example, if two systems
A amd B interact, the coordinates of one of the
zvstems, say B, may be climinated from the
equations describing the motion of 4. The inter-

* Throughout this guper the teom “acticn” will be used
for the vime inweyral of the Lagrangian along a path.
When this parh is the one actually 1aken by a particle,
moving classically, the Integral should wore peogedly be
called Hamilton’s ficst prinaple funcBoo.

367

Richard Phillips Feynman

May 11, 1918 — February 15, 1988
(aged 69)

Nobel Prize in Physics (1965)




Path integrals

Consider a single particle with Hamiltonian:

A

A= yva)=Kk+V

2m

What is the amplitude at position x’ after time t?
A= (2'|e Mgy = Uz, 2, t)
Project into coordinate basis:

U(x',t) = (2'|T(t)) = /daz (2 |e " HE P\ )G (2, 0)

NB: the propagator is connected to the density matrix

particle is at x at t=0

U: time evolution operator
or quantum propagator

needs coordinate-space
matrix elements of the
propagator



Path integrals in imaginary time

NB: the propagator is connected to the density matrix:

A

A _ ,—BH density matrix in the canonical
P (5 ) — € ensemble (N,V,T) -> (1,L,T)
and time operator 1
N A inverse temperature: 8 = ——
U(t) = e HU/R kT
consider the time operator at the imaginary time ¢t = —i0h
U(—zﬂh) — ¢ PH it gives the density matrix

also consider density operator at the imaginary inverse temperature 3 = it/h

ny _sHt/B o .
p(it/h) = e " / it gives the time operator . Wick rotations
4 (Giancarlo Wick)
Let’s define a complex time parameter:
2
>
6 =t +iBh / Re?
—i8h

Transformations are just rotations in the complex plane:
- working in damped exponential is easier than complex exponential...



Trotter expansion

The coordinate-space matrix elements:

p(a,2’, B) = (a'|e” M |z) = (2'|e PK=PV|z)
have the problem that the K and V components do not commute. (K, V] #0

NB Note analogy with
classical Liouville
operator expansion...

Use instead a Trotter expansion:

P
6—B(K—I—V): lim |:6—5V/2P6—BK/P6—BV/2P}
P— 00

Applying P sets of operators to bring the particle from x to x’:

P
,O(ZU,CU/,ﬁ) — lim <ZC/‘ |:€—5V/2P6—5K/P6—5V/2P:| ‘CB>

P— o0

IS equivalent to splitting the path into P segments and summing them up:

P 5 1o AP 5 1o (moving through P
p(r,x’,5) = lim (xpp1]|e PV/2Pe=BE/Po=BV/2P 0\ gratings with holes)



Trotter expansion
Consider the element: <xk+1\e_BV/QPe_BK/Pe_BV/ZP\xk>

Since V=V(x) a function of positions only, |x> are eigenfunctions of potential operator:

= PV (@r1)/2P BE/P) Ve~ BV (zk)/2P

Tri1le”

Finding the eigenvalues for the kinetic is less trivial.
Project onto momentum operator using identity: | = /dp]p) (p|

<5’3k+1’6_5K/P’xk> — /dp<$k+1’€_5K/P’p> <p’$k>

(Thrrle™ 7K |zy) = /dp (Tt |[p) (play e PP /2

A 1 |
<£Uk+1‘€_BK/P‘:Uk> p— 27.‘.—h dp 6_6p2/2mpezp(mk—|—1—$k)/h

Integral over Gaussian

1/2
Ak mP mP
(wrs1le PRI |z, = (zmz) o {‘ g (Tt = 7)’



Trotter expansion

1/2
_aF mP mP
(onsale 0P n) = () exp | = g one - |

combining with potential part and multiplying all P terms in:

P
plz,z',t) = lim (2’| {eﬁv/QpeﬁK/Peﬁv/Qp} )

P— o0
gives: integration over all possible paths
between x and X’ in imaginary
(z,2',8) = lim mp _\"" / dzs ... dx " time —ih
P\, y P oo 2m6h2 2 ... P
P wp_|_1:$,
1 mP 5  Bh
X exp [ﬁ ]; (%(mk—l—l —xp)” + 5P (V(@hs1) + V($k))>]
= 1=

spring force constant

- quantum Kinetic energy is represented by harmonic coupling
between nearest neighbours
- the integrant is the amplitude or weight of each discrete path



Trotter expansion

P— o

p(z,z',3) = lim (
P

1

XeXp[—ﬁ
k=

Now the path integral in real time yields:

P/2
mP
2772'7571) /dZUQ...dZCP

U(x,z',t) = lim <

P— o0

. P

<o |13 (

k=1

P/2
mP
2mﬁﬁ2> /dCUQ...dCUp

mP Bh

1 <%(xk+1 —x5)° + ﬁ(V(ﬂ?kH) + V(fk))ﬂ

ﬁeg(xk+1——g%)2__EES(V($k+1)+-VKJ%))>]

A

note change in sign

8 = it/h

/
Tp41=2%

1=

/
Lp4+1—X

1=



Canonical partition function

Q(La T) = It [eXP(_ﬁﬁ)] trace of density matrix

L ) L
Q(L,T) — / d (aleH |z) = / dz p(x, 2, B)

paths are confined to
the domain [O,L]

P P/2 potential at
Q(L, T)= lim ( m 2> / dxs...dxp position X«
D(L) / circular paths

X exp [— % (%(I‘Hl — ) + %(V(mk)))]

use path integral expression for p and set x1 = Xp+1 = X

at 3 — 0 (T — oo) the spring constant becomes infinite and the cyclic path
collapses onto a single (classical) point.

This expression can be manipulated to resemble the partition function of a
cyclic polymer chain moving in a classical potential V(x)/P.



Path Integral Molecular Dynamics

“classical isomorphism”
Wolynes and Chandler (1981)

David Chandler Peter Wolynes

Recast the prefactor as a set of Gaussian
integrals of momenta conjugate to X«

P \/? 1 <~ /mP h
Q(L,T) = (Q:TnﬁhQ) /D(L) dxy...drpexp [— 7 Z (%(xlﬁ—l — xk;)Z + %(V(wk)))]

finite P (no limit)

Tp4+1=21

Q(L,T):/dpl...dpp/ dxy...drp
(L)
1

X exp [ BZ ( p(Tri1 — k) + ;(V(xk)))]

rp41=21

with nearest-neighbour chain frequency wp = vV .P/(S8h)

actually prefactor does

and mass m’ = mP/(27h)? not affect the distribution,
freedom to choose m’

This classical partition function can be sampled by classical MD!
(No quantum dynamics properties (yet)...)



Path Integral Molecular Dynamics

P replica’s of the system

Q(L,T):/dpl...dpp/D(L)dxl...da:p exp[—BH (z*, p")]

P
1
Hei(z,p) Z { —mwz%(wkﬂ — )% + FU(@«)
k=1 Tp+1=I1
Equations of motion:
Tk = — Pk = —Mmwp (2T — Ty1 — Th—1)

m P Oz



Study of an ~ center in molten KCI®
M. Parrinello

Instituto di Fisica Teorica, ISAS and GNSM del CNR, Strada Costiera 11, Trieste, Italy

A. Rahman

Michele Parrinello

Materials Science and Technology Division, Argonne National Laboratory, Argonne, 1llinois 50439
{Received 20 September 1983; accepted 13 October 1983)

Itis shown that a discretized version of Feynman'’s path integral provides a convenient tool for the
numerical imvestigation of the properties of an electron solvated in molten KCl. The binding
energy, the magnetic susceptibility, and the pair correlation functions are calculated. The local
structure around the solute electron appears to be different from that of an F center in the solid.
The Feynman path of the electron dissolved in molten KCl is highly localized thus justifying the F
center model. The effect of varying the e -K* pseudopotential is also reported.

PACS numbers:

I. INTRODUCTION

Solutions of alkali metals in their liquid halides (M-
MX) display an intriguing variety of behavior as a function
of temperature and concentration.”? In the present investi-
gation we shall restrict our attention to extremely small con-
centration of metals. The most accepted picture in this dilute
limit is that the added metal atom dissociates into M * and
e~ . Based on a variety of different experiments a model has
been proposed which is known as the F center model.’ The

mhrinennal mintiian nmdnalevicna tha aendal ta thhnd tha a— nst'-n.:fnv

Il. THE ISOMORPHISM

Let us first consider the case of a single electron in an
external potential ¢ {r). The partition function for such a sys-
tem is

Z = Tre PH (1)
where H = — (#/2m|V? 4 ¢ (r) and B = 1/k, T is the in-
verse temperature, Equation (1) can be rewritten as

Z — ']‘r(e—ﬂﬁ/l’)l" (2)

Aneesur Rahman
24 August 1927 —
6 June 1987



Path Integral Molecular Dynamics

Issues with PIMD

 Frequencies of the harmonic normal modes are very high; requires small time step
- Wide range of (continuous) time scales; RESPA multi-time step does not work

Staging transformation (Tuckerman et al. (1993))

- Choose the masses such that only a single harmonic mode remains
* now use RESPA

Ergodicity (Tuckerman et al. (1993))
- massive Nose-Hoover chain thermostat coupled to beads



Centroid Molecular Dynamics Cao & Voth (1993)

Based on the centroid density ideas from Feynman & Kleinert (1986))

Evolution of a single centroid particle:

ie = po = 20l
m 0z,

= F,(x.) physical mass for centroid

cyclic paths with centroid position Xc
Euclidian time action

i 2\ 1/2 v
ot =5t | (T) f PO llr)] eSO
: rolz(r)] = — / dra(r)

Bh
in PIMD the centroid force is simply obtained from:

Fy(xz,) = < Z(%k <%§:lxkx>>

note, this still requires a full Pl calculation at each centroid configuration.

with centroid potential of mean force:

f



Centroid Molecular Dynamics Cao & Voth (1993)

Adiabatic approximation:
« based on imaginary time PIMD in the normal mode representation

- scale fictitious kinetic masses to accurate the node dynamics _ . .. .
adiabaticity parameter

Mpte << Me m, = v mg 0<~?<1

 only non-centroid beads are thermostatted

- assume that Kubo-transformed quantum time correlation function can be
approximated by:

1

Kan(t) = g [ dnedpealeo0)a)exp |~ 8( 22 + Ui )|

CMD is exact in the classic limit and for a purely harmonic potential



) | .
Ring Polymer Molecular Dynamics Craig & Manolopoulos (2004)

Start from the PIMD EOM:

P 2
He(z,p) = ) [2]?;/ + %mw%(xk—kl —xp)? + %U(l’k)]
k= Tp4+1=21
Tk = Pk Pk = —mW%(QZIfk — Lk41 — flfk—l) — L oU
m P (%:k

to obtain (approximate) real-time dynamics.
- correct in the classical limit and for the harmonic oscillator

P o P P
_ Pk m 2 . .
Hep(z,p) = ) [% + TN D (mh —zps1)® + ) U(xk)] Newtonial dynamics
k=1 k=1 k=1
. _ Pk : m oU
T = Pk = (2o) —Tpq1 — Tp—1) — 75—

m B 5123h2
 physical mass is chosen for each bead

- full chain is used to approximate the Kubo-transformed time correlation function

* N0 massive thermostatting of the beads
P

AP(t) = % Z CL(ZE‘k(t)) temperature rescaled from T to PT
k=1
1

(2mh)FQp

3£Ek

KAB(t) ~

(NV.T) /dpaz dFp Ap(0)Bp(t)e PrHte.r(@:p) Bp = (/P



Intermezzo: Least action principe

Classical Newtonian dynamics:

Hamiltonian picture

H(z,p) = KQ(p) + V(z)

H(x,p) = me - mgz.,
equations of motion
. OH(x,p) . OH(x,p)
Tr = = —
op ox

A possible trajectories of '
a ball tossed in the air



Intermezzo: Least action principe

Classical Newtonian dynamics
'," \‘ Lagrangian picture
':' “‘ £($7p) — K(p) o V(ZU)
. ' 2
. \ p
. 3 L(x,p) = Mgz,
0Q° : \ 2m
W ! |
\’ag 'l |‘
) \%\6\ ’
1307 '

1
1
| |
1
--------

1
1
1

\ Action

possible trajectories of .
a ball tossed in the air

Euler-Lagrange equation

d 0L

o5
o G ZA

- SIE) = /t " Lai

constraints

The path of least action is taken



Intermezzo: quantum mechanical action principe

quantum dynamics

¢¢¢¢¢

e Yo Action
, . BHh
’ ' Slx(T)] = H(x(7))dT

74 L} O

' Partition function

Q(T, V):/ dx/ Dz (7)e 5=l
Vv 1

integral over paths

-----
o” S~

Electron takes all possible paths,
but the paths are expontially
weighted by action.

possible trajectories of
an electron tossed Iin
the air B (t=t2)



Time correlation functions, classical

Onsager’s regression hypothesis: the macroscopic response of the system to
some out-of-equilibrium perturbation follows the same laws as the regression
of microscopic fluctuations around the average.

Various transport properties can be calculated from knowledge of time correlation
functions, which can be obtained from the system in equilibrium.

Self-diffusion coefficient is related to the velocity auto-correlation:

D = / d7 (v, (T)v:(0)) Green-Kubo equation
0

5 Einstein relation:
(x“(t)) = 2Dt mean square displacement
(in 1 dimension)

Thermal conductivity coefficient is related to the heat-flux auto-correlation:

o= [ 0T

1 1
1=y [Zem 5 > (Fi - (vi +v))xi;

1 1<J




Time correlation functions, classical

The Fourier transform of the VACF can be related to the (IR) vibrational spectrum

con(t) = 35 0 D (0 ()

Clw) =

lim

1=1 a=1

T

T—00

Liquid chloroform

—T

velocity auto-correlation function

Coo (t)e ™"t dt

| | I
0.8
0.6

0.4

0
-0.2

0.4

to obtain compatible amplitudes,

use the dipole-dipole auto-
correlation function

IR vibrational spectrum

160 r r v

e CCI3 asym-stretch
140 } y (b)

A ¢ .

120 &, Chloroform (OPLS AA/L) DoS
100 f CCI3
80 deform ~aq CCI3 sym-stretch
60 )

e C-H bend
40 .
20 Ar aq C-H stretch

O L ' Jt 4 [ ' 2 .:ﬂ
500 1000 1500 2000 2500 3000 3500

vem



Time correlation functions, classical

trajectory time
(A(0)B(T)) t=0 t=0 =0
(A(0)B(0)) 1 23 4 56 7 8 9 10 11
! L+ L4 L

/ =1 T=1 T=1
1 -0\\
t:O t:O t:0

\ 1 2 3 4 5 6 7 8 9 10 11

> =2 =2 =2

t:O t=0 t:O

1 2 3 4 &5 6 7 8 9 10 11

T:3 T=3 T:3

For implementations see e.g. book “Understanding molecular simulation”, D. Frenkel and B. Smit



Time correlation functions, quantum mechanical

Classical phase space integral

JJ drtdp™ A(x™, p") exp[—BH (r, p™)]

A T deNap expl-HGN . pV)]

Classical correlation function |
omitting the “N” particles

() = Q / dp, / drg =B @020 A (20, po) Bz, pr)

This is (also) the classical limit of more one quantum mechanical correlation functions.
Which quantum mechanical correlation function is best approximated by the classical one?

Standard QM analog:

C?AXB (t) _ Q_lTI‘ {6—5191467;[3[”7&36_7;[%/71} spectral representation:
1 @
Chnw) = 5= [ eip(t)
But. )
Clp(—w) = e "0 p(w)

- it is a complex valued function of time
* it does not share the detailed balance symmetry Cn(—w) = C%5(w)



Time correlation functions, the Kubo transform

Standard QM analog:
C%B(t) _ Q—lTr {e—ﬁﬁlﬁeiﬁ]t/hge—iﬁt/h}

Class of QM correlation functions that have the same classical limit:

chpt)=Q 'r

(BN j N it/ Be—iﬁt/h} 0< A< B

If A = /2, then the QM function shares the same properties as the
classical function (real valued, even, detailed balance)

Kubo transform correlation function:

uno 1 6
K = 3 / A (1)

- Kubo transform can easily be transformed into other QM correlation functions
- |Is sampled by PIMD, CMD, RPMD quantum dynamics simulations
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An accurate and simple quantum model for
liquid water

F. Paesani, W. Zhang, D.A. Case, T. E.
Cheatham Ill, G.A. Voth

- simple point charge/flexible SPC/Fw
model

« normal-mode path-integral MD
 centroid molecular dynamics

Conclusions:

“‘guantum water” is:

* less structured liquid

 reduced amount of hydrogen bonding
* better matching experiment
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FIG. 1. Radial distribution functions for oxygen-oxygen (a) (the inset is a
magnification of the second and third peak), oxygen-hydrogen (b), and
hydrogen-hydrogen (c) atom pairs computed with the SPC/Fw water model.
Solid line: quantum results from normal-mode path-integral molecular dy-
namics simulations. Dashed line: results from classical molecular simula-
tions (Ref. 28). Dotted line: experimental data from Ref. 36, panel (a), and
from Kef. 35, panels (b) and (c).



Current developments

- Dynamics, time correlation functions (lan Craig, David
Manolopoulos, et al.)

 Ring contraction / reduction of number of beads (Michele
Ceriotti et at, T.Markland, D.E.Manolopoulos et al.)
- coloured noise Langevin thermosetting of PIMD
- website: http://gledmd.org/

« Combination with non-adiabatic electron transfer and
excited states (Thomas Miller et al)

- i-Pi website: http://ipi-code.org/about/features/



http://ipi-code.org/about/features/

Summary / take home messages

Why nuclear quantum dynamics?

e Zero-point energy and quantum tunnelling are non-negligible for various room-temperature properties
(e.g. heat capacity) and processes (e.g. chemical reaction rates)

Feynman path integral formulation
e Schrédinger/Heisenberg/Feynman pictures of quantum mechanics
» double split experiment revisited
e action principle in quantum mechanics
e imaginary time <—> inverse temperature
e isomorphism between quantum distribution and classical ring-polymer

e Practical implementations
e (Centroid molecular dynamics
* Ring polymer molecular dynamics

e Time correlation functions Application

e classical, Onsagers regression hypothesis, computing transport properties from equilibrium
fluctuations

e quantum mechanical, which correlation is it?, Kubo transform

Current/Future developments
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