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Density operator and Liouville equation

“' Fundamentals “ Applications
¢ CM and QM dynamics ¢ (Non)-linear optics
¢ Statistical Mechanics ¢ Quantum dissipation

¢ Pure and mixed states ¢ Excited state proton transfer
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Fundamentals: Classical Distribution Functions
Classical particle, position 7(¢), momentum p(¢), governed by Hamiltonian H.
Probability density of finding it at position (+(t), p(t)) in phase space I' at time ¢:
p(7(t), (), 1)
Time dependence follows from the Hamilton equations:

dp _0Op  Op dr Op dp _0p Op OH Op OH _ Op

di 0t OF dt ' Op dt ot ' OoF op 0Op o7 — o Ubrl
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Example: The one—dimensional harmonic oscillator

Hamiltonian:
2
P 1
H = o + imngz
Liouville equation:
dp(x,p,t) p Op > Op
ot - mox - mwoxap

Fundamental solution:

p(x1,p1,t|T0,po) = 6(x1 — 2(t))d(p1 — p(1))

with

x(t) = xpcoswot+ sin wot

mwo

p(t) = —mwoxosinwyt + pg coswpt

Phase!space
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Equilibrium solution

Since {f(H),H} =0,

e‘ﬂH

Peq = _ dp [ dx e=BH

Is a solution of the Liouville equation.

Remarks:
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Fokker—Planck and Langevin equations

Inclusion of friction effects (“coupling to a bath”) leads to

Op(@pyt) o POp L 2 00 O O
ot » m8x+mw0x5’p+§8p kBT@p—'_m &

¢ = friction coefficient.

Alternative formulation:
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The Brownian oscillator (1)

Single damped oscillator with random force:

N
~—~
f=)
x
—~
o
=
X
\Y

[
e,
2
=
(S
<

Parameters:
kT
m 1 (wax(t)) = —=e 0% cos0.999¢
mw
wo 1 0
¢ 0.1

kBT ~
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Brownian oscillators (2): coupled oscillators

[
o
2
=
(S
<

Equations of motion:

Note: see also lecture 2

mo

d2$2
dt?

N B R

0.2
0.1

2
= —wiT1 +Yyx2

= —Wwsx2 — (—— + YT

dt
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Langevin equations: non—Markovian behavior (1)

Coupled equations

2
= —WiT1 + VT2

dx
= —wiTy — Cd—: + yx1 + Fr(t)

lead to non—Markovian behavior of oscillator 1:
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Langevin equations: non—Markovian behavior (2)

And do some minor rearrangement to get:

—miw?z (W) — wl (w)z (W) + wgmf:cl(w) = Fp(w)

" Potential of mean force (equilibrium solvation)

2 2

wpmf = W
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Classical conclusions

Classical Liouville equation, Liouville’s theorem: conservation of probability.
Fokker—Planck equation: approach to equilibrium.

Coupled systems: Brownian oscillators, coupled to undamped systems lead to equilibrium
for the initially undamped system.

Langevin equations give equivalent description.

Two simple examples: uncoupled and coupled oscillators.
Application: Kramers theory for chemical reaction kinetics.
Classical Brownian dynamics simulations* are simple (to a point).

Non—Markovian behavior is the result of a lower layer of dynamics.

*A.C. Brahka and D.M. Heyes, Phys. Rev. E60, (1999), 2381.
H.A. Forbert and S.A. Chin, Phys. Rev. E63, (2001), 016703. TR



Quantum dynamics (1): Hilbert Space

Schrddinger equation:

Expansion in eigenfunctions of H:

R.P. Feynman, “Statistical Mechanics, A Set of Lectures”, Ch. 2. ausamne 2004 =p 2



Quantum dynamics (2). Liouville equation

Properties: p is hermitian (p' = p), and
Trlp] =1

Equation of motion (quantum Liouville equation)

dp i
P [,

ot
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Example: two—level system (2LS)

Hamiltonian: H = €|1) (1]
Dipole operator: i = jiy |0) (0] + 1 |

1 [1) (1] + af]0) (1] +[1) (O]]
Interaction Hamiltonian: H;., = —fi - E(t

Ly
E(t)

Exact for spin 1/2 systems (ESR, NMR).
Good approximation for resonant electronic transitions.
In quantum computing: qubit.

Nontrivial (e.g. non—linear optics).

Quantum state:  [¢)) = cos @ |0) + sin e |1)
cos? 0 cos 0 sin fe'? >

Density matrix: = :
y P ( cos 0 sin fe—1? sin” 6
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Equilibrium

Ensemble average:

p=2 W r) = Prn

Equilibrium density matrix (coherences vanish, and diagonal elements become equilibrium

_eFR ] 1 0
Peq = Q 1+ efe 0 e—Be

populations):
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Quantum dynamics (3): Liouville space

Inner product:
((A| B)) = Tx[A"B]

Liouville equation:

) :
=7 L1p))  with L g = Hindj — Hisou

System (2LS) Liouvillian:
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Quantum dynamics (4)

Why not add friction to the Scrdodinger equation

" We don’t want the wave functions to go to zero

"~ If we do it in the Heissenberg picture commutation relations go to zero, and we don’t want
that either, we want decay to the ground state (for instance)

"~ Apart from the T = 0 case, equilibrium is not a state. An impure density matrix does not
correspond to a quantum state, but to a mixture.
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Liouville space

Liouville space is the space of operators. It is also a Hilbert space.

" Itis a complex vector space.

¢ Addition of operators is defined, and multiplication by complex numbers
¢ Addition is commutative, multiplication distributive
¢ There is a unit element.

* There is an inner product: ((A| B)) = Tr[ATB].

Exercise: calculate ((A| A)) and | A)) ((A].
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Coupled systems, reduced density matrix (1)

The B820 subunit is a dimer of bacteriochlorophylls

Hamiltonian;

H ="H; ‘|‘H2‘|‘Hint=€1|1> <1\®12+11®€2|1><1’+

Wﬁl (1= PP] - i
T

M.H.C. Koolhaas, G. van der Zwan, F. van Mourik, and R. van Grondelle, Biophys. J. 72, (1997), 1828.
R.G. Stomphorst, T.J. Schaafsma, and G. van der Zwan, J. Phys. Chem. A, 105, (2001), 4226. Lausanne 2004 — p.19



Coupled systems, reduced density matrix (2)

States of the dimer: |ij) = |i) ® |j), monomer 1 in state ¢, monomer 2 in state j.
Hamiltonian (only transition dipole moments):

Diagonalize to get the new states:
10) = ¢1 ]00) + s1|11)
11) = 2 |00) + s2|11)
12) = —52]00) + 2 |11)
13) = —51]00) 4 ¢1 |11)

Reduced density matrix for system 1, when total system is in the ground state:

2
91

71 = Tra]0) (0] = ( :

0
5 ) Not a pure state
S1
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Coupling to external fields

External (electric) fields E(t) couple to the dipole operator. These fields can be due to

" Other systems (such as in previous slides): excitonic coupling.

Optical fields E(t) = Ege—*F™ 1 cc: linear and non—linear optics.

Applied static electric fields (such as in Stark spectroscopy).
Random fields in polarizable media: homogeneous and inhomogeneous broadening.

Reaction fields in polarizable media: electronic structure changes.
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Example: 2LS in external optical field

Liouville space dipole operator, neglecting permanent moments:

now on: h = ¢ = 1 (so everything can be expressed incm-+).
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Linear and non-linear optics

Expand the formal solution to the desired order:

t
p(1)) = €270t |0)) — 2mi / dr e2TiLo(r=O £, ()] 0)) —

t T
472 / dr / dry 2 0Tt p. (T)e2ﬂi£°(T1_T)£int (11)]0)) +
0 0

t e T

Linear optics, absorption, CD, LD, etc.

Third order non—linearities; TG, 3PEPS, PP, etc.
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Coupling to a heat bath

Schrddinger equation does not offer the option for dissipation: there is no state
corresponding to equilibrium. Liouville space is much bigger.

Since [f(H),H| = 0, the equilibrium distribution is a stationary solution to the quantum
Liouville equation. As in the classical case, there is no approach to this solution, without
introducing a decay mechanism.

Some equilibrium considerations: 2LS in polarizable media; symmetry breaking,
lineshapes, and (fluorescence) Stark spectroscopy.

Redfield theory: weak coupling, and slow relaxation (NMR). Projection operator formalism.

Mixed classical-quantum theories. Strong coupling. Formalities and direct simulation.

Systems:
(1) 2LS in a cavity in a polarizable medium.

(2) 2LS coupled to (quantum, classical, damped, fluctuating) oscillator(s).
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2LS in constant electric field

Hamiltonian:

H=dUM—ﬁE=<

Diagonalize: new energies

1 e - -
€g.e = 5 €= (Ho+ 1) - EF \/ (€ = (il — flo) - E)? + 4(ji - E)?
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Transition energies and dipole moments

Vo = 12500 cm™
pH=6.3D

/
/ /
/

Apu=0D /

-60 -40 -20 0 20 40 60
E (MV/cm)

New transition frequency, and new dipole moments:

-20 0
E (MV/cm)

hvg = € —¢€= \/(hl/() — Afi-E)2+4(i- E)?
g = 1it2 (o + 2tiT + t° /1)
T = 1+1t2 (t°fio — 2ti1 + fir)
e = o (tAT+(1-2)f)

F. van Mourik, M. Chergui, and G. van der Zwan, J. Phys. Chem. B, 105, (2001), 9715.
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Random fields and the absorption spectrum (1).

Polarization in the medium means fluctuations of the electric field at the center of a cavity.
Probability for finding polarization P at position 7

P x e‘ﬁG[ﬁ]

> 1 5
I / B - P(7) +
D(ANT! . D(!
l/df’/df”v P(C)V_)P( )
2 17— 7|

Electric field at the origin:

3€, 1
2¢, + 1 dmwege, 13

dE =

<E(0)> —0 and <E(0) -E(O)> = 47T€10a3 2;2 I)kBT

B.U. Felderhof, J. Chem. Phys. 67, (1977), 493.
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Random fields and the absorption spectrum (2).

For a cavity of diameter 4A, \/(E?2) ~ 20 MV/cm.
Absorption spectrum (see sheet 20):

AWw) = () = 2 ()

v —vg)?+ 2

Averaging is over the electric field fluctuations ( ).

Au=0D
p=6.3D

Vo = 12500 cm”
y =100 em?

0 =10 MV/cm

1

"Eq = 15 MV/cim
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zwan_43.pdf

Self—consistency: Onsager revisited (1)

2LS in a spherical cavity in polarizable medium.

" Expectation value of the dipole operator in the ground state causes polarization in the
medium, and a reaction field.

" Reaction field changes the state of the system

Hamiltonian:
H=1¢€l0){0] —ji-Eg
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Onsager revisited (2). Symmetry breaking.

This leads to a fourth order equation in t:
Af - ittt + 3 [2Au2+Au§ —e] + A - Afit? +t [AﬁQ'Aﬁ—QAM2 —e} — Ajlp- i =0
Simple case: jipg = ji1 =0
t2 [2Ap* — €] —t[2Ap* + €] =0

Solution:

it 24p% > €

t=0 and *=
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Onsager revisited (3). Free energy and polarization fluctuations.

Free energy related to electric field fluctuations at the origin of the cavity (see also sheet 27):

L E? 1 2(e.—1)
El= — th A= —
GlE] 2A - degad 2¢, +1

Free energy of quantum system in fluctuating field:

G[W, E] = (¥| Ho |¥) — (¥| i |¥) - E

Lausanne 2004 — p.31



Onsager revisited (4). Free energy surface.

Free energy surface above symmetry breaking threshold:

"IIIIIIII”
/] //
AT 777 e
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Classical-Quantum coupling in equilibrium

Equilibrium density operator:

Pl B+ /28] _ 2 o= Pt B2 24) ) (g] 4 e Bt B 2A) o) (e

2l

N p——
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Some conclusions

For pure states Schrddinger and Liouville are equivalent descriptions.
“purity” is conserved by unitary transformations (Hamiltonian dynamics)

Impure states can be the result of reducing the density matrix by
coupling to other quantum systems
coupling to classical fluctuations
equilibrium statistical mechanics

impure (density operator) states have no Hilbert space equivalent.

No inconsistency problems are apparent in equilibrium

Coupling to (classical) optical fields — linear/non linear optics

Coupling to static fields: Stark effect, lineshapes, possible symmetry breaking
Approach to equilibrium (non—conservation of purity)?

Dynamical coupling (“quantum backreaction”)?
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The need for quantum—classical dynamics

Some systems need to be described quantum mechanically:
" Proton transfer reactions (even at high temperatures), high frequency vibrations, spin.
" Changes in electronic density of the molecule (including electron transfer reactions).

"~ (High energy physics).
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Direct simulation of the Liouville equation

%’;» = —2miLy | p)) — 2miL(t) | p))

with

L(t) =— [ILA‘[, - ] . By (t)e?mivst

where the (slowly developing) envelope of the field is given by a Gaussian shaped pulse:

E_’O (t)E’Oe—(t—T)2/2a2

webpage
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Coupled quantum and classical dynamics.

Question: Why not simulate Liouville equation coupled to classical field directly?

% = —2mi[Ho, p(t)] — 2milfi, p(t)] - E(t)

E(t): electric field at the center of the cavity. Assume damped oscillatory behavior

simulations.pdf
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Coupled quantum and classical dynamics. No Relaxation

&
S
2
= 1
S
<
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Coupled quantum and classical dynamics. Relaxation

~roblem: Starting from any non—equilibrium situation we want the density operator to go to the
equilibrium density.

Projection operator formalism

System+bath hamiltonian:
H="Hs + Hp + Hint

where
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Projection operator formalism (2)

System+bath are described by a density operator p(s, b, t).
Concentrating on the system:

o(s,t) = Try[p(s, b, t)]

Projection operator

P = 0eq(b)Trp[o(s, b, )]

where o.,(b) is the bath equilibrium density operator, found by Trs[pcq(s, b)].
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Projection operator formalism (3)

Define

Pp(s,b, 1)
[1—Plp(s,b,t)
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Projection operator formalism (4)

0o (s,t)
ot

= —2milso(s,t) — 2miTr [ﬁinte_%i[ﬁs+‘C”+(1_P)‘Cint]tn(s, b, O)}

t
—tn? [ dr Ti, [ Lipe 2O APIIET) £, (B)o(s, )
0

This is still exact: no weak coupling, no separation of time scales.

L can contain coupling to for instance optical field if the system is molecule and the bath a
solvent.

Initial condition: 7(s, b, 0) = peq(s,b) — 0eq(s)oeq(b) could be important for short time
dynamics upon excitation, and for consistency (stationary solution)

No “slow” or “fast” variables. (cf. Mori).
Last term is already second order in the interaction.
Second order will give Redfield™*, a modification of Redfield theory, but no “backreaction”.

The initial value term also contains second order contributions (see
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Projection operator formalims (5)

Up to second order (neglecting the initial condition term):

Jo(s,t)
ot

t
= —2miLso(s,t) — 4772/0 dr Try, [Cinte_%i[ﬁs+£b](t_T)Eintpeq(b)a(s,T)]

" Ly in the exponential vanishes.
" 0.4(b) replaced by pe,(b) = e P /Q.
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Projection operator formalism (6)

Bath correlation functions.
In order to get to the bath correlation functions we use the explicit form of the interaction
Hamiltonian

i
g5 = —2miLo(t) — 47r2/ dr Try, [Hint, e 2Tl (E=7) o= 2miLy (t—7) [Hint ,Oeq(b)O'(T)]]
0

ot
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Projection operator formalism (7)

Z Z @ {(Ske—zmcs(t—ﬂsk/g(,r)) Tty |:bl6—27'('i£b(t—’7') (b7, peq(B)]| +

[Skz, 6_27”5“’“_7)8@0(7)} Ty [ble_Qm‘C”(t_T)bwpeq(b)]} =

S 3" apan { (Ske—zmﬁs(t—T)Sk,a(T)> ([bu, by (= 7))oy +

[Sk, 6—27riﬁs(t—7')8k/0'(’7')} (biby (t — 7')>eq}

Exercise: Take the classical limit of the bath correlation functions.

Result is Redfield™™ (some extra terms, better behavior for t— > o0)
Bath dynamics not influenced by system dynamics: only for weak coupling.
Bath equilibrium distribution is also not influenced by the presence of the system.

Initial condition terms can be included for short time behavior.
Higher orders give more bath system interaction, but:

Exercise: Show that summing over all higher order terms neglecting the change of bath
dynamics and bath equilibrium distribution leads to the cumulant expansion.
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Strange issues remaining

“If we only add a random force, or non—Markovian force to a classical system, it does not
relax. For instance

d?x
ﬁ — _ng + FR(t)
with solution
1 00 F st
x(t) = 2 cos wot + msinwgt—k — ds%

so how come Redfield theory actually does give relaxation?
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A very fundamental problem

Coupling classical and quantum mechanics.

Classically:
dp
Quantum mechanically:
dp :
a — 27”[7_{7 ,0]

Both [,] and {, } are Lie brackets, satisfying the Jacobi identity:
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A few further remarks

The limit A — 0 is by no means trivial.

Certainly it can not be done in the Schrodinger equation.

Often it is stated that in the limit 7 — 0 the commutators reduce to Poisson brackets, but
there is no mathematical procedure to do that.

Some coherent states may go to classical states.

Does the Wigner distribution help? (Only for quadratic Hamiltonians, (A.J. Dragt, S. Habib,
ArXiv:quant-ph 9808056).

Can it be done on a correlation function level? In the projection operator formalism we
encounter the following bath correlation functions:

i () = Trp [peq(b)biby ()]

and

0

B
b (®) = Too o (0, pea D) = i | dheus(6 = i)

Often it is stated that in the classical limit the trace over Hilbert space goes to a phase
space integral, but there is no mathematical procedure to do that.

Bohm Theory? Hydrodynamic approach (works for quadratic Hamiltonians)?
QM/MM?
Feynman path integrals?
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