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Ludwig Boltzmann, who spent much of his life studying sta-

tistical mechanics, died in 1906, by his own hand. Paul

Ehrenfest, carrying on the same work, died similarly in

1933. Now it is our turn to study statistical mechanics.

Perhaps it will be wise to approach the subject cautiously.

David Goodstein, States of Matter.
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“Finally, we can understand why a cup of coffee equi-

librates in a room,” said Tony Short, a quantum physi-

cist at Bristol. “Entanglement builds up between the

state of the coffee cup and the state of the room.”

https://www.wired.com/2014/04/quantum-theory-flow-time/

We prove, with virtually full generality, that reaching

equilibrium is a universal property of quantum sys-

tems: almost any subsystem in interaction with a

large enough bath will reach an equilibrium state and

remain close to it for almost all times.

Linden et al.,Phys. Rev. E 79, 061103 (2009)
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Hamiltonian:

H = T + V =

N
∑

i=1

p2i
2mi

+
∑

i 6=j

V (~ri, ~rj)

(1)

Hamilton equations:

d~ri
dt

=
∂H

∂~pi
=

~pi
mi

,
d~pi
dt

= −
∂H

∂~ri
= ~Fi

(2)

Example: the Harmonic Oscilator (HO)

H =
p2

2m
+

1

2
mω2x2 (3)

d2x

dt2
= −ω2x (4)
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Phase space (Γ) is the 6N–dimensional space of all positions

~r N = {~ri} and all momenta ~pN = {~pi}.

A point in phase space gives the state of the system.

Let ρ(~r N , ~pN , t) be a density distribution on phase space,

that is:

ρ(~r N , ~pN , t)d~r1d~r2 · · · d~pN ≡ ρ(~r N , ~pN , t)dΓ (5)

is the probability of finding particle i with position between ~ri
and ~ri + d~ri and momentum between ~pi and ~pi + d~pi at time t

For every dynamical variable A(~r N , ~pN ) the average

(“expectation value”) is then given by

〈A〉 =

∫

dΓAρ (6)
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An equation of motion for ρ:

dρ

dt
=

∂ρ

∂t
+

N
∑

i=1

[

∂ρ

∂~ri

d~ri
dt

+
∂ρ

∂~pi

d~pi
dt

]

(7)

Liouville’s theorem: (conservation of probability)

dρ

dt
= 0 (8)

Phase space density behaves like an incompressible fluid.
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Use Liouville’s theorem and the Hamilton equations to get

∂ρ

∂t
= −

N
∑

i=1

[

∂ρ

∂~ri

∂H

∂~pi
− [

∂ρ

∂~pi

∂H

∂~ri

]

= {H, ρ} (9)

Let A and B be dynamical variables. Then the

Poisson Bracket {A,B} is defined as

{A,B} =
N
∑

i=1

[

∂A

∂~ri

∂B

∂~pi
−

∂A

∂~pi

∂B

∂~ri

]

(10)

Note that
dA

dt
= −{H, A} (11)
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Antisymmetry: {B,A} = −{A,B}

Distributivity: {A,B + C} = {A,B}+ {A,C}

Product rule: {AB,C} = A{B,C}+ {A,C}B

Jacobi Identity: {A, {B,C}}+ {B, {C,A}}+ {C, {A,B}} = 0

The Jacobi identity implies that

d

dt
{A,B} = {

dA

dt
,B}+ {A,

dB

dt
} (12)

Liouvillian (operator):

L̂· = i{H, ·} (13)

so that
∂ρ

∂t
= −iLρ (14)
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From equilibrium statistical mechanics we know that the

(canonical) equilibrium distribution is given by

ρeq =
e−βH

∫

dΓ e−βH
(15)

for a system in equilibrium at temperature T = (kBβ)
−1

Fundamental Problem (1) Show that (almost?) all

initial distributions go to the equilibrium distribution.

Fundamental Problem (2) The Hamilton equations

are invariant for time reversal. Decay to equilibrium

clearly is not. How is that possible?
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The founding fathers of statistical mechanics, Boltzmann,

Maxwell, Gibbs, and Einstein, invented the concept of ensem-
bles to describe equilibrium and nonequilibrium macroscopic
systems. In trying to justify the use of ensembles, and to deter-
mine whether the ensembles evolved as expected from nonequi-

librium to equilibrium, they introduced further concepts such as
“ergodicity” and “coarse graining.” The use of these concepts
raised mathematical problems that they could not solve, but like
the good physicists they were they assumed that everything was

or could be made all right mathematically and went on with the
physics.

J.L. Lebowitz and O. Penrose, Physics Today, 26, (1973), 155.

Don’t you just want to be a good physicist (of the: ‘Shut up,

and calculate!’ variety)?
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µ–space: A lower (6) dimensional phase space, in which

every point gives the position ~r and velocity ~v of a particle. A

gas is a cloud of particles in this space.

One–particle density f(~r,~v, t)d~rd~v is the number of particles

with position in a volume d~r at position ~r and velocity in a

volume d~v at velocity ~v at time t.

∫

d~v f(~r,~v, t) = n(~r, t) : particle density (16)

∫

d~rd~v f(~r,~v, t) = N : number of particles (17)

Boltzmann: Derive an equation for f .
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f changes because of flow:

(

∂f

∂t

)

flow

= −~v ·
∂f

∂~r
−

~F

m
·
∂f

∂~p
(18)

(compare Liouville equation) and because of collisions:

(

∂f(~r,~v,t)
∂t

)

coll
=

∫

d~r1d~v1d~r
′d~v ′d~r ′

1d~v
′
1P2(~r

′~v ′, ~r ′
1~v

′
1, t)W (~r ′~v ′, ~r ′

1~v
′
1|~r~v, ~r1~v1)

−
∫

d~r1d~v1d~r
′d~v ′d~r ′

1d~v
′
1P2(~r~v, ~r1~v1, t)W (~r~v, ~r1~v1|~r

′~v ′, ~r ′
1~v

′
1)

(19)

Gain: particles with ~r ′~v ′, ~r ′
1~v

′ collide and produce particles

with ~r~v (first term) and ~r1~v1.

Loss: Particles with the correct position and momentum are

lost in a collision (second term).
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W (~r ′~v ′, ~r ′
1~v

′
1|~r~v, ~r1~v1): transition function, can be calculated

from interparticle potential.

P2(~r~v, ~r1~v1, t): two particle distribution function.

Assumptions

1. Dilute gas, range of potential ≪ distance between

particles.

2. Only binary collisions between spherical particles)

3. Spatial variation ignored within a volume element.

4. W has all the symmetries of the Hamiltonian (translation,

time (velocity) reversal)

5. Molecular Chaos: P2(~r~v, ~r1~v1, t) = f(~r~v, t)f(~r1~v1, t).
Also known as Stosszahlansatz.
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A considerable amount of straightforward algebra later we get

The Boltzmann transport equation

∂f

∂t
= −~v ·

∂f

∂~r
−

~F

m
·
∂f

∂~v

+

∫

d~v1d~v
′d~v ′

1

(

f ′f ′
1 − ff1

)

C(~v,~v1|~v
′, ~v ′

1) (20)

with indices of f indicating the argument:

f ≡ f(~r,~v, t) f1 ≡ f(~r,~v1, t) etc (21)

This equation is the basis of a vast amount of literature and

applications (according to WoS 12000 papers in the last ten

years), as well as formal properties.
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Here I am interested in only one thing: The H–theorem (300

papers between 2006–1016).

H =

∫

dµ f(~r,~v, t) ln f(~r,~v, t) (22)

so that

dH

dt
=

∫

dµ (ln f + 1)
∂f

∂t
=

∫

dµ (ln f + 1)

(

∂f

∂t

)

coll

(23)

Insert the collision integral, and after similar algebraic

manipulation leading to the Boltzmann equation, the result is

dH

dt
=

∫

d~rd~vd~v ′d~v1d~v
′
1(f

′f ′
1 − ff1) ln

ff1
f ′f ′

1

C(~v ~v1|~v
′~v′1) (24)
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The integrand of Eq. (24) is always smaller than zero (see

exercise 13). Therefore

dH

dt
≤ 0

That is: the function H can only decrease, which is

irreversible behavior from reversible equations. Is it really?

If ff1 = f ′f ′
1 H remains at its minimum value. In that case

ln f is a collision invariant, of which there are three.

ln f + ln f1 = ln f ′ + ln f ′
1 (25)
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Conservation laws in collisions:

m+m1 = m′ +m′
1 (26)

m~v +m1~v1 = m′~v ′ +m′
1 ~v1

′ (27)

1

2
mv2 +

1

2
m1v1

2 =
1

2
m′v′

2
+

1

2
m′

1v
′
1
2

(28)

Therefore

f eq(~r,~v) = g(~r)eam+m~v·~b+c 1

2
mv2 (29)

Again some algebraic manipulation to get

f eq(~r,~v) = g(~r)e−
1

2
βm(~v−~u)2 (30)

which gives the Maxwell–Boltmann distribution if we identify

β = 1/kBT . ~u is the average velocity at ~r.
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According to the laws of mechanics, for each trajectory in

phase space for which H decreases, there is another

trajectory for which H increases, which is obtained from the

former by reversing, at a particular instant, the signs of the

velocities of all the molecules in the gas.
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Poincaré showed that for any starting point in phase space

(except possibly for a set of measure zero) dynamical motion

(which is volume preserving) will eventually lead the path

arbitrarily close to the starting point. This is known as the

Recurrence Theorem

On the basis of this Zermelo argued that if at any point in time

H is not at its minimum value, the system will eventually visit

this value again.
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● The existence of an equilibrium solution to the Boltzmann

equation does not prove that all distributions converge to

that solution. e−βH is also a solution to the stationary

Liouville equation, and not a single density matrix

converges to that solution.

● The H–theorem does not prove that H always decreases.

Only if the gas is in a state of molecular chaos this

happens. But after a collision velocities are correlated,

and molecular chaos is violated.

● There has been a lot of discussion about the precise

meaning of the Stosszahlansatz and/or Molecular Chaos.

See the literature section for some recent papers.
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● Dog 1 (on the left) has 2N numbered fleas, dog 2 (on the

right) is initially flea free.

● Every second we pick a random number between 1 and

2N , look up the corresponding flea, and put it on the other

dog.
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● A microstate is a complete specification of the positions of

all fleas: fleas n1, n2, n3 · · ·nN+n on dog 1, and fleas

nN+n+1, · · ·n2N on dog 2.

● A macrostate n is the number of fleas on each dog: N + n
on dog 1, and N − n on dog 2.

● With macrostate n correspond Nn = (2N)!
(N+n)!(N−n)!

microstates.

● For 100 fleas there are in total 2100 ≈ 1.3× 1030

microstates.

● Every jump brings you to another microstate. In the

course of time all microstates are visited.

● The lifetime of the universe is ∼ 1018 s.
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● Black line: one realization.

● Red line: expectation for the average.

Program in R made available (Ehrenfest.R)
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P (n|m; s): Probability of finding macrostate m after s steps if

we start in macrostate n at time 0.

Master equation:

P (n|m, s+1) =
R+m+ 1

2R
P (n|m+1, s)+

R−m+ 1

2R
P (n|m−1, s)

(31)

Can be solved analytically (Kac*), The first moment can be

derived directly from the equation

〈m〉 (s) = n

(

1−
1

R

)s

≈ ne−s/R (32)

shown as the red line in the figure.

* In Wax’s book.
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Boltzmann: The entropy is proportional to the number of

microstates compatible with a given macrostate

SB = kB lnNn = kB ln
(2N)!

(N + n)!(N − n)!

≈ kB [2N ln 2N − (N + n) ln(N + n)− (N − n) ln(N − n)]
(33)

● SB is a fluctuating quantity that can occasionally

decrease.

● The equilibrium state is the one with maximum entropy:

n = 0, for which

Seq
B = 2NkB ln 2 +O(lnN) (34)



Boltzmann and Gibbs Entropy II

❖ Finally!

Phase Space and
the Liouville
Equation

Boltzmann’s
Equation and the
H–Theorem.

Ehrenfest Dog–Flea
Model

❖ Dog–Flea

❖ States

❖ Simulations

❖ Analytics

❖ Entropy

❖ Entropy

❖ Results

Harmonic Oscillators

Literature

29 / 52

Gibbs: Entropy is an ensemble property.

● SG = −kB
∑

i pi ln pi
pi = probability for a microstate.

● Scg
G = −kB

∑

m Pm ln Pm

Nm

Pm = probability for a macrostate.

For the dog–flea model:

● pi =
1

22N
: all microstates are equal.

● Pm = 1
22N

(

2N
N+n

)

: some macrostates are more equal.

The Gibbs entropy does not fluctuate, and only increases in

time.
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1. Pm is a stationary, or equilibrium distribution.

2. Detailed Balance:

PmP (m|m+ 1, 1) = Pm+1P (m+ 1|m; 1).

3. Decay to the stationary state.

4. Continuum limit: Smoluchowski equation for an elastically

bound Brownian particle

5. The model is microscopically reversible and

macroscopically irreversible.

6. Return to the initial state takes a long time.

7. How long does it take for 100 fleas?



Harmonic Oscillators

❖ Finally!

Phase Space and
the Liouville
Equation

Boltzmann’s
Equation and the
H–Theorem.

Ehrenfest Dog–Flea
Model

Harmonic Oscillators

❖ The Harmonic
Oscillator

❖ Solution Methods

❖ Damping

❖ Forces

❖ Langevin

❖ Fluctuations

❖ Coupling

❖ Langevin

❖ Planck

❖ Problems

Literature

31 / 52



The Harmonic Oscillator

❖ Finally!

Phase Space and
the Liouville
Equation

Boltzmann’s
Equation and the
H–Theorem.

Ehrenfest Dog–Flea
Model

Harmonic Oscillators

❖ The Harmonic
Oscillator

❖ Solution Methods

❖ Damping

❖ Forces

❖ Langevin

❖ Fluctuations

❖ Coupling

❖ Langevin

❖ Planck

❖ Problems

Literature

32 / 52

● Hamiltonian of the unperturbed

oscillator:

H =
p2

2m
+

1

2
mω2

0x
2 (35)

● Equation of Motion:

m
d2x

dt2
= −mω2

0x (36)

● Solution:

x(t) = A cos(ω0t+ φ) (37)
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● Trial and error (mostly taught in elementary courses): try

an exponential eαt. This gives α2 = −ω2
0 , or α = ±iω0.

General solution is then

A1e
iω0t +A2e

−iω0t (38)

A1 and A2 follow from initial conditions.

● For linear initial value problems: use Laplace Transform.

f̂(s) =

∫ ∞

0
dt e−stf(t) (39)

with inverse:

f(t) =
1

2πi

∫ i∞

−i∞
ds estf̂(s) (40)
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● Equation of Motion:

m
d2x

dt2
= −mω2

0x− ζ
dx

dt
(41)

● Laplace Transform:

(

s2 + s
ζ

m
+ ω2

0

)

= ẋ0 + sx0 +
ζ

m
x0 (42)

● Solution:

x(t) =
1

2πi

∫ i∞

−i∞
ds

ẋ0 + (s+ ζ/m)x0
s2 + sζ/m+ ω2

0

est (43)
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● Solution for t ≥ 0:

x(t) =
(ẋ0 + (s1 + ζ/m)x0) e

s1t − (ẋ0 + (s2 + ζ/m)x0) e
s2t

s1 − s2
(44)

with

s1,2 = ω0



−
ζ

2mω0

±

√

(

ζ

2mω0

)

2

− 1



 (45)

● Graphs for underdamped and overdamped motion; cf Eq. (44).
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● Equation of Motion:

m
d2x

dt2
= −mω2

0x− ζ
dx

dt
+ F0 cosωf t

(46)

● On the left: amplitude for the un-

damped, underdamped, and over-

damped oscillator for an oscillating

force.

● Solution (for times t ≫ (ζ/2m)−1):

x(t) =
F0/m

(ω2

0
− ω2

f )
2 + 4ω2

0
ω2

f (ζ/2mω0)2
cos(ωf t+ φ) (47)

with

tanφ =
ζ/2mω0

ω2

0
− ω2

f

(48)
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● Equation of Motion (Planck):

m
d2x

dt2
+

2e2ω2

0

3mc3
dx

dt
+mω2

0x =
e

m
E(t) (49)

● Friction term is due to ‘radiation damping’ and the external force is the

electric field in the cavity.

The study of conservative damping appears to me to be of fundamental

importance due to the fact that through it one’s view is opened towards

the possibility of a general explanation of irreversible processes with the

help of conservative forces.

M. Planck, 1896.

Boltzmann disagreed and pointed out that Planck’s system was also

microscopically reversible. Eventually Planck abandoned this idea.
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The oscillator is constantly buffeted by molecules in the

environment. This leads to friction and random forces.

External Force is a random force due to fluctuations in the

medium (Brownian Motion).

● Equation of motion:

m
d2x

dt2
+ ζ

dx

dt
+mω2

0x = FR(t) (50)

● Random Force:

〈FR(t)〉 = 0 and
〈

FR(t)FR(t
′)
〉

= Cδ(t− t′) (51)

The average of the force is zero and is uncorrelated for

different times.
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For long times the system should go to equilibrium:

〈

x2
〉

=
kBT

mω2
0

and
〈

v2
〉

=
kBT

m
(52)

● Formal Solution (ignore initial conditions which decay

rapidly anyway):

x(t) =
1

2πi

∫ ∞

−i∞
ds

F̂R(s)/m

(s− s1)(s− s2)
(53)

● Consequence: strength of the random force is correlated

with the friction

lim
t→∞

〈

x(t)2
〉

=
kBT

mω2
0

=⇒ C = 2kBTζ (54)
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0
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oscillator 1

oscillator 2
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m2 1

ω1 1

ω2 2

γ 0.2

ζ 0.1

Equations of motion:

m1
d2x1
dt2

= −ω2
1x1 + γx2

m2
d2x2
dt2

= −ω2
2x2 − ζ

dx2
dt

+ γx1
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● Coupled equations

m1

d2x1

dt2
= −m1ω

2
1x+ γx2

m2

d2x2

dt2
= −m2ω

2
2x− ζ

dx2

dt
+ γx1 + FR(t) (55)

lead to non–Markovian behavior of oscillator 1.

● Formally solve the second equation (use Fourier transforms):

x2(ω) =
γx1(ω) + FR(ω)

m2(ω2
2 − ω2)− iωζ

(56)

● And substitute in the first:

m1(ω
2
1 − ω2)x1(ω)−

γ2x1(ω)

m2(ω2
2 − ω2)− iωζ

=
γFR(ω)

m2(ω2
2 − ω2)− iωζ

(57)
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● Some minor rearrangement:

m1(ω
2
pmf − ω2)x1(ω)− iωζ1(ω)x1(ω) = FR(ω) (58)

● Potential of Mean Force (“Equilibrium Solvation”):

ω2
pmf = ω2

1

(

1−
γ2

ω2
1ω

2
2

)

(59)

● Frequency dependent friction:

ζ1(ω) =
γ2

ω2
2

−iω + ζ/m2

m2(ω2
2 − ω2)− iωζ

(60)

● Fluctuation–Dissipation Theorem:

〈

FR(ω)FR(ω
′)
〉

= 2kBTζ1(ω)2πδ(ω − ω′) (61)
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If you want consistency with thermodynamics, and with ex-

perience, this is only possible on the basis of a new hy-

pothesis which is independent of the Maxwell equations.

Such an hypothesis is contained in the later (section 9)

introduced concept of “Natural Radiation”. If an electro-

magnetic beam has the properties of natural radiation, this

means succintly: the energy of the radiation is divided over

the modes comprising the beam in a completely random

way

M. Planck, 1899.
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The Remark

In effect Planck is defining natural radiation as any actual

field which permits the use of eqs. (13) with ǫ = η = 0.

That device is precisely the one Boltzmann had employed

in defining molecular disorder, as any distribution that sat-

isfied equation (II-1)

T.S. Kuhn, 1978.

The Question

Now read the Linden paper, and see if they make an

assumption similar to molecular chaos, or natural radiation.

Do you indeed feel that we “finally understand why a cup of

coffee equilibrates”?
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But we should rather choose an example more closely re-

lated to physical theories; the present state of the world

as it appears from the point of view of any statistical the-

ory, kinetic theory, or quantum theory. These all affirm the

world (or that part of it that is accessible to our investiga-

tion) tends to the most probable state and it is assumed

that this tendency lasted a very long time before the ap-

pearance of organic life on earth and will last a very long

time after this moment. But that implies that all this time

the state of the world is far from being the most probable!

So we seem to accept at the same time the most probable

changes of the word state and a quite not probable state of

the world itself.

T. Ehrenfest–Afanassjewa, 1958.
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Feynman’s problem solving algorithm according to Murray

Gell–Mann:

1. write down the problem;

2. think very hard;

3. write down the answer.
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1. Derive Eq. (4) from the Hamilton equations.

2. Show that the path of the HO in phase space is an ellips.

3. Prove Liouville’s theorem, Eq. (8).

4. Calculate {~rj , ~pk}.

5. Solve the Liouville equation for the HO with initial condition

ρ(x, p, 0) = δ(x− x0)δ(p− p0).
6. Prove Eq. (12).

7. Show that the Hamilton equations are invariant for time reversal.

8. What is the relation between ρ(~r N , ~pN , t) and f(~r, ~v, t)?
9. Fill in the details in the derivation of the Boltzmann equation to get to

(20).

10. Use the BBKGY hierarchy starting from the Liouville equation (see for

instance ref.3) to give an alternative derivation of the Boltzmann

equation.

11. Show that the flow term does not contribute to eq. (23).

12. Derive Eq. (24), using the symmetries of the function C, and

permuting integration variables.

13. Show that (x− y) ln(y/x) ≤ 0.

14. Prove all the statements in the Dog–Flea model section.
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15. Use Laplace transform to derive Eq. (42).

16. Derive Eq. (44) from Eq. (43). You need complex integration for this,

and use Cauchy’s theorem. Prove first that the poles s1,2 are in the

negative half of the complex plane.

17. Use the Laplace transform to derive the solution of the forced oscillator

Eq. (47). Ignore all terms related to the initial conditions or turning on

the force.

18. Prove the fluctuation dissipation theorem, Eq. (54). Actually this

involves quite a bit of work, and you may want to consult literature.

Also about the relevance of this type of theorems.
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