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Molecular Transitions are Rare Events
chemical reactions phase transitions protein folding

defect diffusion self-assembly stock exchange crash



Rare Events

A B
• A and B are (meta-)stable states, i.e. 

attractive basins


• transitions between A and B are rare


• transitions can happen fast


• system looses memory in A and B

A very long trajectory

• Molecular transitions are not rare in every day life


• They are only rare events with respect to the femto-
second timescale of atomic motions


• Modeling activated transitions by straightforward 
simulation would be extremely costly (takes forever)


• Advanced methods: Transition state theory (TST), 
Bennet-Chandler (Reactive Flux) approach, Transition 
Path Sampling (TPS), Free energy methods, Parallel 
Tempering, String Method,....



Rare Events

k = k0 e-ΔG/kT

 

 

P.G. Bolhuis, D. Chandler,  
C. Dellago, P.L. Geissler 

Annu. Rev. Phys. Chem 2002

Free energy landscape Transition State

The free energy has local 
minima separated by barriers


Many possible transition 
paths via meta-stable states


Projection on reaction 
coordinate shows FE profile 
with transition state barrier


Reaction rate depends 
exponentially on the barrier 
height

Arrhenius equation
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A long trajectory

http://en.wikipedia.org/wiki/Arrhenius_equation


Transition State Theory
• Derived by Henry Eyring and by Meredith 

Gwynne Evans and Michael Polanyi in 1935

• Explains Arrhenius equation (1889)

   (van’t Hoff 1884)

• Activated complex is in quasi equilibrium with 

reactants

• All reactants that reach the activated complex 

state, continue to products


k = Ae�Ea/RT

A+B $ [AB]‡ ! C K‡ =
[AB]‡

[A][B]

probability to reach 
the transition state

k = k‡K‡ = 
kBT

h
e��G‡/RT - rate is frequency of unstable 

mode times the TS probability 
- transmission factor is κ=1 in TST 
(correction for barrier recrossings)frequency

Henry Eyring

http://en.wikipedia.org/wiki/Henry_Eyring
http://en.wikipedia.org/wiki/Michael_Polanyi


Transition State Theory
• what is a transition state? activated structure, 

critical nucleus, entropic bottleneck,…

• where does the refactor (h dependence) come 

from?

• TST rate is an upper limit for the true rate

• The actual rate is slower that the TST estimate 

due to recrossing

• recrossing occur due to a bad estimate for the 

TS (dividing surface) / hidden slow variables (aka 
the reaction coordinate problem) and/or due to 
noisy dynamics from the environment


• is kappa just a cheating factor or does it have a 
physical meaning?

Henry Eyring



Separation of time scales
• Suppose a coordinate X 

describes the reaction 
progress 

• X is coupled to environment 
• the coupling makes the 

dynamics of X stochastic 
(not deterministic) 

• to escape from the reactant 
well, X (=random walker) 
must acquire enough energy 
from the bath 

• this energy must be lost 
again after passing the 
barrier

• The escape time depends on 
the size of the fluctuations 
(X(t)-<X>)2 

• Enoise << Ebarrier =>  Ea/RT >> 1  

⌧s ⇡ 2⇡

r
me↵/

⇣ d2V

dX2

⌘
<< ⌧e = ⌧s exp (E

a/kBT )

escape time τe = 1/krelaxation time τs



Diffusion

Diffusion of particles due to a concentration gradient

Self-diffusion of a particle 
seen as a random walk

Fick’s law

j(r, t) = ⇢(r, t)v(r, t)

Density of particles: ⇢(r, t)
Current density:

A gradient in the density 
leads to a current:

j = �Dr⇢

Mean square displacement:
hx2(t)i = 2Dt

Velocity auto correlation function:

D =

Z 1

0
d⌧hv

x

(⌧)v
x

(0)i

diffusion 
coefficient

ensemble average h. . . i

- also end-to-end distance
- ballistic motion: 

x

2(t) ! t

2



Langevin equation

Describes Brownian motion 
random motion of small particles (pollen grains) in 
a solvent due to thermal fluctuations (Brown 1828)

Robert Brown 
1773-1858

mass x acceleration = force

Paul Langevin 
1872-1946

U is external
potential

viscous drag
γ is friction

(dissipation)

random 
collisions

m

d

2
x

dt

2
= �dU(x)

dx

� �

dx

dt

+ ⇣(t)



Illustration with Octave/Matlab script

m

d

2
x

dt

2
= �dU(x)

dx

� �

dx

dt

+ ⇣(t)

% brownian_2d.m simulates a two-dimensional Brownian motion 

  N=10000;            % number of steps to take 
  T=70;               % maximum time 
  h=T/N;              % time step 
  t=(0:h:T);          % t is the vector [0 1h 2h 3h ... Nh] 
  sigma = 1.0;        % strength of noise 

  x=zeros(size(t));   % place to store x locations 
  y=zeros(size(t));   % place to store y locations 

  x(1)=0.0;           % initial x location 
  y(1)=0.0;           % initial y location 
  for i=1:N           % take N steps 
    x(i+1)=x(i)+sigma*sqrt(h)*randn; 
    y(i+1)=y(i)+sigma*sqrt(h)*randn; 
  end; 

  plot(x,y); 
  grid on             % add a grid to axes 
%  axis([0 T -3 8]);   % set axis limits



Illustration with Octave/Matlab script

m

d

2
x

dt

2
= �dU(x)

dx

� �

dx

dt

+ ⇣(t)

% brownian_2d.m simulates a two-dimensional Brownian motion 

  N=10000;            % number of steps to take 
  T=70;               % maximum time 
  h=T/N;              % time step 
  t=(0:h:T);          % t is the vector [0 1h 2h 3h ... Nh] 
  sigma = 1.0;        % strength of noise 

  x=zeros(size(t));   % place to store x locations 
  y=zeros(size(t));   % place to store y locations 

  x(1)=0.0;           % initial x location 
  y(1)=0.0;           % initial y location 
  for i=1:N           % take N steps 
    x(i+1)=x(i)+sigma*sqrt(h)*randn; 
    y(i+1)=y(i)+sigma*sqrt(h)*randn; 
  end; 

  plot(x,y); 
  grid on             % add a grid to axes 
%  axis([0 T -3 8]);   % set axis limits



Langevin equation
Stokes formula for viscous drag: - laminair flow (small velocities)

- spherical particle with radius α
- γ is the friction
- 1/γ is the mobility
- η is the dynamic viscosity
- v is the velocity of the particle

Equation of motion with only drag and random forces:

m
dv(t)

dt
= �6⇡⌘↵v(t) + ⇣(t)

m
dhv(t)i

dt
= �6⇡⌘↵hv(t)i

Taking the ensemble average:

which implies: hv(t)i = v(0) e�t/⌧

- since average random force is zero

- relaxation time of initial perturbation
⌧ = m/(6⇡⌘↵)

� = �6⇡⌘↵

fd = ��v

- Langevin equation without ∇V
- stochastic differential equation
- what do we know about ζ(t)? 

-  
-  
- (white noise, Wiener process)
- (Markovian dynamics vs memory)

h⇣(t)i = 0
h⇣(t)⇣(t0)i = 2D�2�(t� t0)



strong friction
Particle in a very viscous solvent:

m

d

2
x

dt

2
= �dU(x)

dx

� �

dx

dt

+ ⇣(t)-  

- particle is driven by fluctuating solvent
- no inertial motion -> m=0
- no external potential

�

dx

dt

= ⇣(t)

solving the differential equation:

x(t) = x(0) +
1

�

Z t

0
dt

0
⇣(t0) h⇣(t)i = 0- since 

- unsurprisingly: 
- consider many paths from x(0) 

hx(t)i = hx(0)i

what about the variance?
⌦�
x(t)� x(0)

�2↵
=

1

�

2

Z t

0
dt

0
1

Z t

0
dt

0
2

⌦
⇣(t01)⇣(t

0
2)
↵

- x(0) to the left and square both sides

- particle gets 1016 (gas) to 1020 (liquid) kicks per sec.  
- kicks are very fast and considered uncorrelated
- h⇣(t)⇣(t0)i = 2D�2�(t� t0)

⌦�
x(t)� x(0)

�2↵
= 2Dt



weaker friction
Particle in a less viscous solvent:

m

d

2
x

dt

2
= �dU(x)

dx

� �

dx

dt

+ ⇣(t)-  

- inertial motion -> m > 0
- still no external potential
- τ=m/γ

x(t) = x(0) +

Z t

0
dt

0
v(t)

For the position we use:

take the ensemble average

hx(t)i = x(0) +

Z t

0
dt

0hv(t)i

hx(t)i = x(0) +
m

�

v(0)
�
1� e

��t/m
�

hv(t)i = v(0) e��t/m

time
po

si
tio

n
γ=2.0

γ=0.001

γ=0.1

γ=1.0



Fluctuation-dissipation

m
dv(t)

dt
= �6⇡⌘↵v(t) + ⇣(t)

dissipation of kinetic 
energy into heat of the bath

conversion of heat
into kinetic energy 
of the particle

hv
x

(t1)vx(t2)i =
D�

m
e��(t2�t1)/m

Velocity auto correlation in weak friction:
- decays to zero with τ=m/γ
- i.e. correlated when t2 – t1 < m/γ

Gives also the kinetic energy:
hv

x

(t)v
x

(t)i = D�

m

Ekin =
1

2
mhv(t)2i = 3D�

2

-  

- equipartition theorem: Ekin =
3

2
kBT

D =
kBT

�

- fluctuation-dissipation theorem:
there is a relation between the 
kicking and the friction!

Einstein relation: - combine with MSD -> determine kB ! 

- Jean Baptiste Perrin 1926 Nobel prize

hx2i = kBT

⇡⌘↵
t



Fokker-Planck
Integrating the Langevin equation from an initial point (x0,t0) 
results in a stochastic trajectory. What is the probability to arrive 
at point x at time t?  —> P(x,t | x0,t0) 
 - we could integrate over all possible trajectories 
 - or try to predict how the probability evolves

E.g. strong friction case: �

dx

dt

= ⇣(t)
m

d

2
x

dt

2
= �dU(x)

dx

� �

dx

dt

+ ⇣(t)

- (now in 3 dimensions)hx2(t)i = 6Dthx(0)i = 0

The distribution that gives this variance is a Gaussian:

,

P (x, t) = (
1

4⇡Dt
)3/2e�x

2/4Dt
Z

d

3
xP (x, t) = 1- prefactor from: 

Solution of diffusion equation:
@P

@t
= Dr2P - simplest Fokker-

Planck equation

conditional probability



Diffusion equation

Solution of diffusion equation:

@P

@t
= Dr2P

- current probability (or 
current density)

Fick’s law:

Conservation law:

volume 
with P

∆x

flux outflux in

jj

j

P

Combine:

j = �DrP

j(x, t) = P (x, t)v(x, t)

@P

@t
= � @j

@x

P (x, t) = (
1

4⇡Dt
)3/2e�x

2/4Dt



Illustration with Octave/Matlab script
P (x, t) = (

1

4⇡Dt
)3/2e�x

2/4Dt

% Script tp plot diffusion equation 
clear; 
clf; 

  N=1000;              % number of steps to take 
  T=50;               % maximum time 
  h=T/N;              % time step 
  nx=100;             % size of xgrid 
  xmin=-5.0;           
  xmax=5.0; 
  dx=(xmax-xmin)/nx; 
  x=zeros(size(nx));   % place to store y locations 
  y=zeros(size(nx));   % place to store y locations 
  sigma = 0.01;        % strength of noise 
  D=1.0*4*3.14159265; 
  t=0.00001; 

  for it=1:T 
    for ix=1:nx 
      x(ix)=xmin + ix*dx; 
      y(ix)= (1.0/(D*t))^(3/2) * exp(-(x(ix)^2)/(4*D*t)); 
    end; 
     
    plot(x,y,"linewidth"), hold on; 
    title(num2str(it*h)); 
    xlabel ("X"); 
    ylabel ("P(X)"); 
    axis([xmin xmax 0.0 10.0]); 
    grid on; 
    pause(1); 

    t=t+h; 
  end; 



Summary part 1

Transition state theory (Eyring, 1935) k = 
kBT

h
e��G‡/RT

Diffusion, Brownian Motion, Langevin equation:

m

d

2
x

dt

2
= �dU(x)

dx

� �

dx

dt

+ ⇣(t)

D =
kBT

�
Fluctuation-dissipation theorem, Einstein relation:

@P

@t
= Dr2PDiffusion equation, Fokker-Planck equation:

Matlab/Octave scripting and plotting



Fokker-Planck
More general: with an external potential:

- strong limit —> m=0

m

d

2
x

dt

2
= �dU(x)

dx

� �

dx

dt

+ ⇣(t)

�v = �rV + ⇣(t)

�x = v�t = � 1

�
rV �t+

1

�

Z t+�t

t
dt0⇣(t0)

- after a small displacement
- integrate over the random 

kicks during this small time 
interval

h�xi = � 1

�
rV �t

The expectation value of a small displacement:
- since h⇣(t)i = 0

The correlation between displacements is also not difficult:

h�xi�xji = � 1

�

2
h@iV @jV i�t2 � �t

Z t+�t

t
dt

0h@iV ⇣j(t
0) + @jV ⇣i(t

0)i+
Z t+�t

t
dt

0
Z t+�t

t
dt

00h⇣i(t0)⇣j(t00)i

h�xi�xji = � 1

�

2
h@iV @jV i�t2 � �t

Z t+�t

t
dt

0h@iV ⇣j(t
0) + @jV ⇣i(t

0)i+
Z t+�t

t
dt

0
Z t+�t

t
dt

00h⇣i(t0)⇣j(t00)i
- one integral drops in last 

term because
- 1st and 2nd terms: order (δt)2

h⇣(t)i = 0

- i, j are different directions  



Fokker-Planck
h�xi�xji = � 1

�

2
h@iV @jV i�t2 � �t

Z t+�t

t
dt

0h@iV ⇣j(t
0) + @jV ⇣i(t

0)i+
Z t+�t

t
dt

0
Z t+�t

t
dt

00h⇣i(t0)⇣j(t00)i

h�xi�xji = 2�ijD�t+O(�t2)

So, which probability distribution has this average and variance? 
Let’s start from the conditional probability:

- ignore terms of order (δt)2

- average: h�xi = � 1

�
rV �t

probability to be at x at t+dt, 
if we were at  x’ at time t

=
ensemble average over all 
possible displacements δx 
such that go from x’ to x

P (x, t+ �t|x0, t) =
⌦
�
�
x� (x0 + �x)

�↵

We bravely Taylor expand the delta-function at δx=0:

- (what are the derivatives of 
the delta function???)

P (x, t+ �t|x0
, t) =

⇣
1 + h�xii

@

@x

0
i

+
1

2
h�xi�xji

@

2

@x

0
i@x

0
j

+ . . .

⌘
�(x� x

0)



Fokker-Planck
P (x, t+ �t|x0

, t) =
⇣
1 + h�xii

@

@x

0
i

+
1

2
h�xi�xji

@

2

@x

0
i@x

0
j

+ . . .

⌘
�(x� x

0)

Use the Chapman-Kolmogorov equation:

P (x, t|x0, t0) = �
Z 1

�1
d3x0P (x, t|x0, t0)P (x0, t0|x0, t0)

at t’, in-between t and t0 the 
particle had to be somewhere!
so, integrate over all possible x’

P (x, t+ �t|x0, t0) = P (x, t|x0, t0)�
@

@x

0
i

⇣
h�xiiP (x, t|x0, t0)

⌘
+

1

2
h�xi�xji

@

2

@x

0
i@x

0
j

P (x, t|x0, t0) + . . .

P (x, t+ �t|x0, t0) = P (x, t|x0, t0)�
@

@x

0
i

⇣
h�xiiP (x, t|x0, t0)

⌘
+

1

2
h�xi�xji

@

2

@x

0
i@x

0
j

P (x, t|x0, t0) + . . .

fill in our Taylor expansion:

P (x, t+ �t|x0, t0) = P (x, t|x0, t0) +
1

�

@

@x

0
i

⇣
@V

@xi
P (x, t|x0, t0)

⌘
�t+D

@

2

@x

2
P (x, t|x0, t0)�t+ . . .

P (x, t+ �t|x0, t0) = P (x, t|x0, t0) +
1

�

@

@x

0
i

⇣
@V

@xi
P (x, t|x0, t0)

⌘
�t+D

@

2

@x

2
P (x, t|x0, t0)�t+ . . .

- use:                                     andh�xi = � 1

�
rV �t h�xi�xji = 2�ijD�t



Fokker-Planck
P (x, t+ �t|x0, t0) = P (x, t|x0, t0) +

1

�

@

@x

0
i

⇣
@V

@xi
P (x, t|x0, t0)

⌘
�t+D

@

2

@x

2
P (x, t|x0, t0)�t+ . . .

Left hand side is also:
P (x, t+ �t|x0, t0) = P (x, t|x0, t0) +

1

@t
P (x, t|x0, t0)�t+ . . .

- Taylor expansion in dt

Combining with previous result gives:

@P (x, t)

@t
=

1

�
r · (P (x, t)rV (x)) +Dr2P (x, t)

drift or transport diffusion

D here independent of 
position; otherwise D is 
inside of ∇ 2

The Fokker-Planck equation 
or Smoluchowski equation  
or Kolomogorov’s forward equation 
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Fokker-Planck
@P (x, t)

@t
=

1

�
r · (P (x, t)rV (x)) +Dr2P (x, t)

FP as a continuity equation:
@P (x, t)

@t
= rJ

J =
1

�
(P (x, t)rV (x)) +DrP (x, t)

- J is probability current or flux

Helps to see that probability is conserved:
@

@t

Z
d

3
xP =

Z
d

3
x

@P

@t

=

Z
d

3
xrJ = 0

drift diffusion

Z
d

3
xP = 1- 

- the particle should be 
somewhere

FP tells us how a system evolves: 
 - for V=0 (diffusion equation), the system spreads out forever 
 - for generic V, stationary solutions with ∇J=0: 

P (x) ⇠ e

�V (x)/�D
P (x) ⇠ e

�V (x)/kBT

Einstein relation

D =
kBT

�
- 

- Boltzmann 
distribution!



Escape over a barrier
Thermal escape from 1D potential

V (x) ⇡ 1

2
!

2
min(x� xmin)

2

P (x, t = 0) =

s
!

2
min

2⇡k
B

T

e

�!min(x�xmin)
2
/2kBT

With initial distribution in the left well:

 - initial distribution is not 
the equilibrium distribution
 - there is no equilibrium
 - assume small flux

Steady state flux:
J =

1

�
(P (x, t)rV (x)) +DrP (x, t)

D =
kBT

�

now integrate both sides from xmin and x*

 equilibrium 
distribution

 density ~ 0

source sink

e

�V/kBT @

@x

�
P · eV/kBT

�
=

1

kBT

@V

@x

P +
@P

@x

Je

V (x)/kBT =
k

B

T

�

@

@x

�
e

V (x)/kBT

P

�

J =
k

B

T

�

e

�V (x)/kBT

@

@x

�
e

V (x)/kBT

P

�



Escape over a barrier

Next, the integral at the left, which is 
dominated by the potential at V(xmax):

at x* P is practically zero

 first integrate the right side

at xmin P is at equilibrium

V (x) ⇡ V

max

� 1

2
!

2

max

(x� x

max

)2

J

Z
x⇤

x

min

eV (x)/kBT = JeVmax

/kBT

s
2⇡k

B

T

!2

max

Z
x⇤

xmin

Je

V (x)/kBT =

Z
x⇤

xmin

k

B

T

�

@

@x

�
e

V (x)/kBT

P

�

J

Z
x⇤

xmin

e

V (x)/kBT =
k

B

T

�

⇥
e

V (xmin)/kBT

P (xmin)� e

V (x⇤)/kBT

P (x⇤)
⇤
=

k

B

T

�

s
!

2
min

2⇡k
B

T

Combining the to pieces gives the rate over the barrier as:

TST rate

- Kramers results for the reaction rate for 
strong friction! (no inertial motion; m=0)

- transmission coefficient:  = !
max

/�

J =
!
max

�

!
min

2⇡
e�V

max

/kBT

kappa



Escape over a barrier

Kramers rate equation:

Strong friction (over-damped) limit

Weak friction limit:

k =
!
max

�

!
min

2⇡
e�V

max

/kBT

k =
1

!
max

⇣
� �

2
+

r
�2

4
+ !2

max

⌘!
min

2⇡
e�V

max

/kBT

Including inertial motion (m>0):

TST ratekappa (correction to transition state theory rate)

k = p�
I(E

max

)

kBT

!
min

2⇡
e�V

max

/kBT



Escape over a barrier
Transmission coefficient  as a function of 
the reactant-solvent coupling

k = p�
I(E

max

)

kBT

!
min

2⇡
e�V

max

/kBT k =
!
max

�

!
min

2⇡
e�V

max

/kBT

 ⇠ �

if               then� ! 0  ! 0

 ⇠ ��1

weak coupling: over-damped coupling:

� ! 1  ! 0if                then

Kramers cross-over region



Langevin dynamics in 2D barrier crossing
Muller-Brown potential% Octave script for velocity Verlet algorithm + Langevin for 

% dynamics in the 2D Muller-Brown potential 
% Langevin dynamics using PRE 75, 056707 (2007) Bussi & Parrinello 
clear; clf; 

Nsteps=2000;       % number of stepps 
h=0.01;            % timestep 
pos=[0.5 0.0];     % initial position 
vel=[10.0 0.0];    % initial velocity 
force=[0.0 0.0];   % initial force 
friction=2.0;      % langevin friction 
temp=30.0; 
mass=1.0; 
c1 = exp(-0.5*friction*h) 
c2 = sqrt( (1-c1*c1) * temp * mass ) 

% initiate force 
[Vpot(1), force] = Muller_potential(pos); 
Ekin(1)=0.5*norm(vel)^2; 
Etot(1)=Ekin(1) + Vpot(1); 
t(1)=1; 

% main loop 
for i=1:Nsteps 
  t(i)=i; 
  x(i)=pos(1); 
  y(i)=pos(2); 

% plot trajectory and energy   
  figure(1); 
  plot(x,y,'b-','linewidth',2,pos(1),pos(2),'ko',0,0,'ro') 
  title(num2str(i*h)) 
  axis equal; 
  axis([-2 1.5 -0.5 2.5]); 
  grid on; 
  figure(2); 
  plot(Etot,'g-'), hold on; 
  plot(Vpot,'r-'), hold on; 
  plot(Ekin,'b-'); 
  title("Total energy"); 

% velocity verlet half step for velocities and positions 
  vel = c1*vel + c2*randn; 
  vel += 0.5*force*h; 
  pos += vel*h; 

% force calculation 
  [Vpot(i), force] = Muller_potential(pos); 
   
% velocity verlet second half step for velocities 
  vel += 0.5*force*h; 
  vel = c1*vel + c2*randn; 

% compute energies 
  Ekin(i)=0.5*norm(vel)^2; 
  Etot(i)=Ekin(i) + Vpot(i); 

end 



Rare event simulation

Macroscopic phenomenological theory 

Chemical reaction: A B

dcA(t)
dt

= �kA�BcA(t) + kB�AcA(t)

dcB(t)
dt

= +kA�BcA(t)� kB�AcA(t)

d[cA(t) + cB(t)]
dt

= 0 dcA(t)
dt

=
dcB(t)

dt
= 0

�
cA

⇥
�
cB

⇥ =
kB�A

kA�B

Total number of molecules: Equilibrium:



Rare event simulation

Macroscopic phenomenological theory 

Make a small perturbation:

cA(t) =
�
cA

⇥
+ �cA(t) cB(t) =

�
cB

⇥
+ �cA(t)

�cA(t) = �cA(0) exp[�(kA�B + kB�A)t]
= �cA(0) exp[�t/� ]

� =
�
kA⇥B + kB⇥A

⇥�1

= k�1
A⇥B

�
1 +

⇤
cA

⌅
/
⇤
cB

⌅⇥�1 =
⇤
cB

⌅

kA⇥B

d�cA(t)
dt

= �kA�B�cA(t)� kB�A�cA(t)



Rare event simulation

Microscopic linear response theory

!F

q

BA

q*

�(q � q�) =

�
0 if q � q� < 0 (Reactant A)
1 if q � q� > 0 (Product B)

H = H0 � �gA(q � q�)

gA(q � q�) = 1� �(q � q�) = �(q� � q)

�cA =
�
cA

⇥
�
�

�
cA

⇥
0

�cA =
�
gA

⇥
�
�

�
gA

⇥
0

Perturbation
add bias to increase concentration cA

    probability to be in state A
�
gA

⇥



Linear response theory: static

H = H0 � �B
�
�A

⇥
=

�
A

⇥
�

�
A

⇥
0

�
A

⇥
=

⇤
d�A exp[��(H0 � ⇥B)]⇤
d� exp[��(H0 � ⇥B)]

�
A

⇥
0

=
⇤

d�A exp[��(H0)]⇤
d� exp[��(H0)]

⇧
⇤⇥A

⇤⇥

⌃
=

⌥
d��AB exp[��(H0 � ⇥B)]

⌥
d� exp[��(H0 � ⇥B)]

� ⌥
d� exp[��(H0 � ⇥B)]

⇥2

�
⌥

d�A exp[��(H0 � ⇥B)]
⌥

d��B exp[��(H0 � ⇥B)]
� ⌥

d� exp[��(H0 � ⇥B)]
⇥2

= �
�⇤

AB
⌅
0
�

⇤
A

⌅
0

⇤
B

⌅
0

⇥



Very small perturbation: linear response theory

�cA =
�
gA

⇥
�
�

�
gA

⇥
0 H = H0 � �gA(q � q�)

How does the response (!c) depend on the perturbation (!")?

d�cA

d⇥
= �

⇤�
(gA)2

⇥
0
�

�
gA

⇥2

0

⌅

= �

⇤�
gA

⇥
0

⇤
1�

�
gA

⇥
0

⌅⌅

= �

⇤�
cA

⇥
0

⇤
1�

�
cA

⇥
0

⌅⌅
= �

�
cA

⇥
0

�
cB

⇥
0

gA(x)gA(x) = gA(x)

Outside the barrier

gA = 0 or 1

Switch of the perturbation: dynamic linear response

�cA(t) = �cA(0)
�gA(0)�gA(t)�

cA

⇥�
cB

⇥

= �cA(0) exp[�t/� ] holds for sufficiently long times



exp[�t/� ] =
�
�gA(0)�gA(t)

⇥
�
cA

⇥�
cB

⇥

�1
�

exp[�t/� ] =
�
gA(0)ġA(t)

⇥
�
cA

⇥�
cB

⇥ =
�
ġA(0)gA(t)

⇥
�
cA

⇥�
cB

⇥

kA�B(t) =
�
ġA(0)gA(t)

⇥
�
cA

⇥

ġA(q � q�) = q̇
�gA(q � q�)

�q
= �q̇

�gB(q � q�)
�q

ka⇥B(t) =

⇤
q̇(0)�gB(q(0)�q�)

�q gB(t)
⌅

�
cA

⇥

Derivative

For sufficiently short t

! has disappeared 
because of derivative



Stationary

d

dt

�
A(t)B(t + t�)

⇥
= 0

�
A(t)Ḃ(t + t�)

⇥
+

�
Ȧ(t)B(t + t�)

⇥
= 0

�
A(t)Ḃ(t + t�)

⇥
= �

�
Ȧ(t)B(t + t�)

⇥



Eyring’s transition state theory

Correlation between velocity of states that are at the top of the barrier at 
t=0 and in the product state B some time t later.

Let us consider the limit t     0+ :

lim
t⇥0+

= ⇥
�
q(t)� q�

⇥
= ⇥

�
q̇(t)

⇥

kTST
a⇥B(t) =

⇤
q̇(0)�(q(0)� q�)⇥(q̇)

⌅
⇤
⇥(q� � q)

⌅

ka⇤B(t) =

⇤
q̇(0)�gB(q(0)�q�)

�q gB(t)
⌅

�
cA

⇥

=
�
q̇(0)�(q(0)� q⇥)⇥(q(t)� q⇥)

⇥
�
⇥(q⇥ � q)

⇥



Bennett-Chandler approach
(or Reactive flux method)

ka⇥B(t) =
�
q̇(0)�(q(0)� q�)⇥(q(t)� q�)

⇥
�
⇥(q� � q)

⇥

ka⇥B(t) =
�
q̇(0)�(q(0)� q�)⇥(q(t)� q�)

⇥
�
�(q(0)� q�)

⇥ ⇥ �(q(0)� q�)
⇥(q� � q)

Conditional average:
given that we start on top of barrier 

q̇(0)�(q(t)� q�)
Probability to find q 
on barrier top

Computational scheme:
• Determine the probability with free energy calculation

• Compute conditional average from “shooting” trajectories from barrier top



Free energy methods

It is very (very) difficult to compute (or measure) absolute 
thermodynamic properties, such as free energy and entropy, that 
depend on the size of the phase space.

But we can compute relative free energies, in particular free energy 
differences between thermodynamic states.

Reaction equilibrium constants

Examples:
- Chemical reactions, catalysis, isomerization, etc...
- Protein folding, ligand binding affinity, protein-protein association
- Phase diagrams, coexistence lines, critical points, transitions

A B

K =
[B]
[A]

=
pB

pA
= [��(GB �GA)]K =

[B]
[A]

=
pB

pA
= exp [��(GB �GA)]



Free energy perturbation

��F = � ln(QB/QA) = � ln
�⇤

dsN exp(��UB)⇤
dsN exp(��UA)

⇥

�F = �kBT ln
⇤⇧

dsN exp(��UA) exp(���U)⇧
dsN exp(��UA)

⌅

= �kBT ln
�
exp(���U)

⇥
A

�F = �kBT ln
�
exp(���U)

⇥
A

= �kBT ln
�
exp(��U)

⇥
B

Sampling problems may lead to hysteresis between the two samples 



Umbrella Sampling

P (q) =
⇧

drN⇥(q�(rN )� q) exp
�
� �(U(rN ) + w(q�)� w(q�))

⇥
⇧

drN exp
�
� �(U(rN + w(q�)� w(q�))

⇥

P (q) =
⇧

drN⇥(q�(rN )� q) exp
�
� �(U(rN ) + w(q�))

⇥
exp(�w(q�))⇧

drN exp
�
� �(U(rN + w(q�))) exp(�w(q�))

⇥

P (q) =
⇤
⇥(q�(rN )� q) exp(�w(q�))

⌅
biased⇤

exp(�w(q�))
⌅
biased

P (q) =
exp(�w(q))⇤

exp(�w(q�))
⌅
biased

Pbiased(q)

Bias the samping along an order parameter q

Add and subtract bias potential w(q):

F (q) = kBT lnP (q) = �kBT lnPbiased(q)� w(q) + const

• Let w(q) be a good 
guess of minus the free 
energy F(q), or

• Choose w(q) to confine 
sampling to a specific 
window along q.

• Or do both.



Constrained MD

The derivative of the free energy F(!) with respect 
to ! can be written as an ensemble average.

�
⇤F (⇥)

⇤⇥

⇥

NVT

=
⇧

drN (⇤U(⇥)/⇤⇥) exp[��U(⇥)]⇧
drN exp[��U(⇥)]

=
⇤

⇤U(⇥)
⇤⇥

⌅

�

The free energy difference between states A and B can then be obtained by 
thermodynamic integration

F (�B)� F (�A) =
⇤ �B

�A

d�

�
⇥U(�)

⇥�

⇥

�

In the case “hard” constraints are used, additional corrections are needed to unbias 
for sampling in a constraint ensemble (instead of the actual NVT ensemble)



Steered MD

Mechanical work to bring the system 
from state A to state B

WA�B � �FA�B

�
exp[��WA�B ]

⇥
A

= exp[���FA�B ]Jarzynski’s equality

Surprisingly, we can obtain the equilibrium free energy difference from a non-
equilibrium simulation, in which we force the system in a finite time to move 
from A to B.

Although, this may sound as a free lunch method, note that it requires 
sampling an exponential distribution of the work. For infinitely slow switching 
from A to B, the system is always in equilibrium so that a single simulation 
gives !F. But the faster the switching the more rare are the important low-
work contributions to the average, so that many steered simulations are 
required for convergence.



Metadynamics

V (t, s) =
∑

t′<t

Ht′

∏

α

exp

[

−(sα − st
′

α)2

2δ2
αW 2

]

Escaping free-energy minima,
Laio and Parrinello, PNAS (2002)

• The metadynamics biasing potential “grows” with time, by adding relatively small 
repulsive Gaussian potentials.
• The potentials placed at visited points in the space of order parameters (collective 
variables) enhance sampling of unexplored regions.
• The Gaussian “hills” accumulate in the free energy minima, until the counter-
balance the basins and allow the system to escape to product states, where the 
process repeats
• The biasing potential is an estimator of the free energy.

⇥ = Cd

�
HWS

D�⇤�

 The error depends on the height, width, and time 
interval of the added Gaussians, and on the 
diffusion, temperature and order parameter space 
of the system.





Example
Relative solvation free energy of hexane molecule

The solvation free energy free difference of a solute in different solvents 
is here used a target property to parameterized a coarse-grain forcefield. 

water

hexane

dz=0

dz=10

dz=20

dz=30



Umbrella Sampling

Weighted Histogram Analysis Method (WHAM) 
to connect the piecewise free energy curves



Constrained MD

!F / [kcal/mol]

Running average constraint force

Spline fit of constraint force measurements



Steered MD



Metadynamics

Simulation in two parts with different 
size of the Gaussian “hills”:
• Part 1: H=0.25 K, W=0.4 Å
• Part 2: H=0.10 K, W=0.2 Å





Summary
• Intro Kramers theory 
• Transition State Theory 
• The Langevin equation 
• The Fokker-Planck equation 
• Kramers reaction kinetics 
• high-friction vs low-friction limit 
• memory, Grote-Hynes theory

• Bennet-Chandler approach 
• Reactive Flux 
• Transmission coefficient calculation 
• Free energy methods 
• Summary 
• Bibliography
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