
first-principles electronic structure 
calculations for the solid state 

some remarks 



first-principles calculations 
most of the techniques used for molecules can also be applied 
to the solid state: DFT, HF, MBPT, CC  
e.g., DFT  
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Example - hexagonal cell
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shifted to !before aftersymmetrization

in certain cell geometries (e.g. hexagonal cells) even meshes break the symmetry

symmetrization results in non equally distributed k-points

Gamma point centered mesh preserves symmetry
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 k

 metals need a dense k-point grid 

self-consistency: 
 metals converge slowly 
 magnetic metals even more so 



the work horse: Density Functional Theory (DFT) 
formation energies / heats of formation covalent/ionic bonding 
calculated with DFT/GGA (PBE) are typically accurate  
on a scale of 0.1 eV (10 kJ/mol) 

van Setten et al., JPCC 111, 9592 (2007); PRB 72, 073107 (2005) 
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... but the error can be larger ...  

formation energy MgH2 

0.57 eV/H2 (GGA/PBE/ZPE) 

0.76 eV/H2 (Exp) 
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Density Functional Theory (DFT) 

weak interactions need a van der Waals functional 

Farmanbar & GB, submitted, arXiv:1510.04337 

GGA: PBE 

vdW: opt88-vdW-DF 
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Density Functional Theory (DFT) 

Vanpoucke, Thesis, UTwente (2008) 

2.3. GERMANIUM IN DFT 25

Figure 2.6: a) The Ge bulk DOS, calculated with the provided LDA and GGA
potentials. The inset shows a semi-log magnification of the states around the
Fermi-level. b) Comparison of the LDA and GGA Ge band structure along
lines of high symmetry. The Fermi energy is chosen as the energy zero. c) Ge
band structure taken from reference [71] for comparison. Dashed lines are LDA
calculations, solid lines GWA calculations.

is fixed and the dangling bonds are passivated with H atoms. This side of the
slab should then represent the bulk phase. The other surface is allowed to relax
and will be referred to as ‘the surface’. When counting the number of layers in
this type of system, the layer of H atoms is never included, only the Ge layers
are counted. The second model is a symmetric model. Here both faces of the
slab are allowed to relax and/or reconstruct, while the two layers at the center
are kept fixed to represent the bulk phase. For the symmetric system we will
refer to the thickness as the number of layers counting from a surface layer to
the bulk phase layers. This means that a 4 layer symmetric system contains
8 layers of Ge, 4 layers going from one surface to the bulk, and 4 layers going
from the bulk to the other surface. During the convergence tests performed
below, no surface dimer-reconstructions appear, only relaxation of the layers
along the z-direction, i.e. orthogonal to the surface.

The k-point convergence shows that for a system with a 2 × 4 surface cell a
k-point grid of 6 × 3 × 1 is sufficient to reach a total energy convergence < 1
meV/atom. For a 1 × 2 surface cell this requires a 14 × 7 × 1 k-point grid.

Because of the periodic boundary conditions, the 2×4 or 1×2 surface cell is
duplicated infinitely in the x and y directions. In the z direction however, the
periodic boundary conditions introduce periodic copies of the slab. To prevent
these copies from interacting, a sufficiently large vacuum region is necessary.
Figure 2.7 (a) shows the convergence behavior with regard to the vacuum thick-
ness for a 4-layer system. Both for the H-passivated and the symmetric system
it clearly shows the ground state energy keeps rising at a roughly constant rate
for vacuum thicknesses larger than ∼ 2.5 a (≈ 14 Å). Because we are using
a plane-wave approach, the vacuum we are introducing is not empty, but is
filled with plane waves, contributing to the total energy of the system. The
jaggedness of the curves is due to basis set incompleteness (when the volume
changes, additional plane waves are added resulting in a discontinuous change
of the energy) and the discontinuous change of the FFT grid when the volume
changes. The vacuum thickness was therefore chosen at the beginning of the

spectrum obtained from DFT/GGA (LDA) is not so impressive 

exp.:    Ge is a semiconductor with band gap 0.7 eV 

GGA/LDA:  Ge is a metal 

band dispersions are quite reasonable ~ 1-10% 

density of states band structure bulk Germanium 
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Hartree-Fock (HF) 

Svane, PRB 35, 5496 (1987) 

exp:. Ge semiconductor with band gap 0.7 eV 

HF:   Ge    insulator       with band gap 4.2 eV 

band dispersions unreasonable ~50% too wide 

the spectrum obtained from HF  

is even less impressive 

HARTREE-FOCK BAND-STRUCTURE CALCULATIONS KITH. . . 5499
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FIG. 1. Hartree-Fock band structure of diamond. FIG. 3. Hartree-Fock band structure of germanium.

valence-band widths of 29.9, 18.0, 18.9 and 16.0 eV are
roughly a factor 1.5 larger than found experimentally.

The band structure of diamond in the HF approxima-
tion has been considered in Refs. 23—26, which find con-
cordant results of 29.1—30.5 eV for the valence-band
width and 13.9—15.0 eV for the direct gap at I . The HF

band structure of silicon was considered in Refs. 27, 22, 5,
26, and 28. In these works a direct gap of 7.9—9.4 eV is
calculated, a valence-band width of 17.0—19.8 eV and a
minimum gap of 5.1—6.4 eV along I X, with the exception
of Ref. 27, which finds the minimum gap coinciding with
the gap at I and equal to 9.4 eV. Our values for these

1
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FIG. 2. Hartree-Fock band structure of siiicon. FIG. 4. Hartree-Fock band structure of a-Sn.

HF computationally more expensive than DFT: 1-2 orders of magnitude  

HF total energies are worse than DFT band structure 
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Hartree-Fock (HF): from bad to worse 

Brocks, AQM lecture notes (2004) 

For metals the spectrum obtained from HF is a disaster 
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A correction for the Hartree-Fock Density of States for Jellium without Screening

Alexander I. Blair, Aristeidis Kroukis and Nikitas I. Gidopoulos
Department of Physics, Durham University, South Road, Durham, DH1 3LE, United Kingdom

We revisit the Hartree-Fock (HF) calculation for the uniform electron gas, or jellium model, whose
predictions – divergent derivative of the energy dispersion relation and vanishing density of states
(DOS) at the Fermi level – are in qualitative disagreement with experimental evidence for simple
metals. Currently, this qualitative failure is attributed to the lack of screening in the HF equations.

Employing Slater’s hyper-Hartree-Fock (HHF) equations, derived variationally, to study the
ground state and the excited states of jellium, we find that the divergent derivative of the energy
dispersion relation and the zero in the DOS are still present, but shifted from the Fermi wavevector
and energy of jellium to the boundary between the set of variationally optimised and unoptimised
HHF orbitals. The location of this boundary is not fixed, but it can be chosen to lie at arbitrarily
high values of wavevector and energy, well clear from the Fermi level of jellium.

We conclude that, rather than the lack of screening in the HF equations, the well-known qualitative
failure of the ground-state HF approximation is an artifact of its nonlocal exchange operator. Other
similar artifacts of the HF nonlocal exchange operator, not associated with the lack of electronic
correlation, are known in the literature.

INTRODUCTION

The uniform electron gas, or jellium model, is an
archetypal example in solid-state physics and many-body
theory. Its treatment, in the Hartree Fock (HF) approxi-
mation, can be found in classic textbooks [1–6], where, we
learn that the HF equations applied to the ground state
of the jellium, admit plane wave solutions with energy-
wavevector dispersion relation given by,
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kF is the Fermi wavevector, k3F = 3π2(N/V ). The single-
particle energy ε(k) is the sum of the free-electron energy,
k2/2, and the single-particle exchange energy. The Fermi
wavevector kF is often expressed in terms of the mean
radius per particle rs = 3

√

9π/4k3F [5]; for typical values
of rs in metals, the two terms in (1) are comparable in
size.
It is well known in the literature that the dispersion

relation (1) has a logarithmically divergent derivative at
the Fermi energy, shown in Fig. 1. Another marked dif-
ference between the free electron result and the HF so-
lution for jellium, evident in Fig. 1, is the considerably
increased bandwidth of the HF dispersion. Finally, it
is well known that in the HF approximation the DOS
for jellium vanishes at the Fermi level (Fig. 1), since the
DOS is inversely proportional to the derivative of the dis-
persion. The zero in the DOS at the Fermi level suggests
that jellium is a semimetal, in obvious disagreement with
experimental evidence for simple metals, such at sodium
or aluminium, which are described accurately by the jel-
lium model.
In the literature, the qualitatively wrong description of

jellium in the HF approximation is attributed to the long
range of the Coulomb repulsion [1–6]. It is well known
that the flawed description can be corrected by the intro-

Figure 1: Solid lines show ground-state HF results for
jellium, compared to free-electron results in dotted
lines. (rs/a0 = 4, ε0F = k2F /2.) Top: Energy vs wave
vector dispersion relation ε(k). The logarithmic

divergence in the derivative, dε/dk, is marked with a
triangle (!). Bottom: DOS, showing the unphysical

zero at the Fermi level for jellium.

duction of electronic many body correlation effects [1–7],
which screen the bare Coulomb potential and thus elimi-
nate the unphysical divergent derivative of the dispersion
relation, the zero in the DOS at the Fermi level, and also
reduce the bandwidth of the HF dispersion relation of
jellium.
In an effort to understand whether HF’s lack of screen-

ing actually plays a role, we revisit the HF study of jel-

density of states group velocity 

e.g. homogeneous electron gas (jellium) free electron spectrum ≈ MBPT 

density of states 
at EF is zero 

electron velocity 
at EF is infinity 

metals: electrons with energy E ≈ EF are doing the conduction 
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Electron correlations 
truncated correlated methods don’t work well for extended systems 

MP2 + = for metals    ∞ 

infinite summation methods work 

RPA = + + + .... 

coupled cluster full CI 

all these methods are computationally very expensive 

CI SDT....   0 


