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Molecular Simulation
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Molecular Dynamics
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Electronic Structure

Schrödinger equation
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Density Functional Theory

E = E[�(r)]

�(r) = 2
�

i

⇥�
i (r)⇥i(r)

alternatingly in the focus of the THz beam (4 s cycle time).29 The
measurement of pure water with known dielectric properties was
then used to calibrate the dielectric properties of the mixture that
was measured in parallel. The temperature-dependent measurements
were done using a sample cell with a variable optical path length,
equipped with a Peltier element, as in ref 30.

Results and Discussion

Concentration Dependence. Data and Fit Results. The results
of the combined GHz-THz dielectric relaxation measurements
are shown in Figure 1 for a wide range of TMU-water mixtures,
measured at 25 °C. First, it is interesting to note that upon
increasing the concentration of TMU, the peak of the imaginary
permittivity (Figure 1A) first shifts to lower frequencies (cor-
responding to slower reorientation) and then back to higher
frequencies upon further increasing the concentration. It is also
clear that the imaginary permittivity has a rather asymmetric
shape at those concentrations where the reorientation is slowest.
For pure water, two relaxation processes are needed to describe

the complex permittivity up to ∼1 THz.31,32 It is apparent from
the highly asymmetric signal at intermediate concentrations (e.g.,
for w ) 0.07) that the addition of TMU introduces a third,
slower Debye relaxation process. Thus, we used the following
equation to describe all frequency-dependent permittivities ε̂(ω):

Here, the first term describes the reorientation of the slow
component, with a strength Sslow and a time scale τslow. This
slow component contains both contributions from slowly
reorienting water molecules and from the reorientation of the
solute TMU molecules. The second term describes the reori-
entation of bulk-like water with a strength Sbulk and a time scale
τbulk. Finally, the third term describes a fast dipolar reorientation
process that has been attributed to undercoordinated water
molecules33 with a strength Sfast and a time scale τfast. The
remaining high frequency limit permittivity is given by ε∞. The
high frequency limit is where the transition occurs from the
region where relaxation processes are active to the region where
resonant processes are active, such as intermolecular hydrogen
-bond stretching, located at 5.4 THz,31,33 and intramolecular OH-
stretching, located at 100 THz (3400 cm-1). The strengths Si

are indicative of the dipole density, that is, reflect the number
of water molecules that participate in the corresponding Debye
processes.

In fitting the data to eq 2, it was assumed that the relative
error in the permittivity was constant over the whole frequency
range. The results of the fits are shown as lines in Figure 1,
where the three relaxation strengths Si and time scales τi are
not constrained. Clearly, eq 2 describes the data very well, over
nearly four decades of frequencies and more than two decades
of concentrations. The fit results for the strengths Si are shown
in Figure 2A; the fit results for the reorientation time scales of
the bulk-like water (τbulk) and slow component (τslow) are shown
in Figure 3, along with the viscosity data from ref 34.

The fit results for the relaxation strengths Sslow ) εS - ε1,
Sbulk ) ε1 - ε2, and Sfast ) ε2 - ε∞ were used to extract the
fractions of the three components. Because the slow mode
contains contributions from water dipoles and TMU dipoles,

(29) Tielrooij, K. J.; Timmer, R. L. A.; Bakker, H. J.; Bonn, M. Phys.
ReV. Lett. 2009, 102, 198303.

(30) Tielrooij, K. J.; Paparo, D.; Piatkowski, L.; Bakker, H. J.; Bonn, M.
Biophys. J. 2009, 97, 2484–2492.

(31) Fukasawa, T.; Sato, T.; Watanabe, J.; Hama, Y.; Kunz, W.; Buchner,
R. Phys. ReV. Lett. 2005, 95, 197802.

(32) Rønne, C.; Keiding, S. R. J. Mol. Liq. 2002, 101, 199–218.
(33) Yada, H.; Nagai, M.; Tanaka, K. Chem. Phys. Lett. 2008, 464, 166–

170.
(34) Okpala, C.; Guiseppi-Elie, A.; Maharajh, D. M. J. Chem. Eng. Data

1980, 25, 384–386.

Figure 1. Combined data (dots) and fits (lines) from GHz and THz
dielectric relaxation spectroscopy, showing the imaginary (ε′′) (A) and real
(ε′) (B) permittivity as a function of frequency for different TMU
concentrations, given in ratios of TMU:H2O. The insets show the frequency
dependence in the THz regime more closely. (C) A decomposition into the
three dielectric relaxation processes (slow hydration shell water, bulk-like
water and fast water) for w ) 0.07.

Figure 2. (A) The extracted relaxation strengths Si for the slow component,
the bulk-like water, and the fast water. (B) The extracted fraction of bulk-
like water, based on the fits to the GHz-THz data and the fs-IR data, as a
function of TMU concentration.
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Dynamics of Water in the Hydration Shell of TMU A R T I C L E S
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Electronic structure theory and 
Molecular dynamics

A happy marriage 

Quantumchemistry and Statistical Mechanics

Ab initio Molecular Dynamics

Car-Parrinello MD
Born-Oppenheimer MD

chemistry in explicit water
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Car-Parrinello MD
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Car-Parrinello MD

Roberto Car (1947)
Princeton, USA

Michele Parrinello (1945)
ETH Zurich (Lugano), 
Switzerland

• CPMD (or AIMD or FPMD or DFT-MD) was invented in Trieste (Sissa)
• The 1985 CPMD paper is the 5th most cited paper in Phys. Rev. Lett.
• In 2009, Car and Parrinello were awarded the Dirac Medal
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Starting point
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Time-dependent non-relativistic Schrödinger equation

Hamiltonian
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Electrons and nuclei

Separation of the wave function:

Coupled time-dependent Schrödinger equations:

 ({ri}, {RI}; t) ⇡  ({ri}; t)�({RI}; t) (omitting a phase factor)
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time-dependent SCF method, introduced by Dirac in 1930

electrons move in mean-field of nuclei

nuclei move in mean-field of electrons
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Ehrenfest dynamics
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Nuclei are heavy.

Replace the nuclear density                       in the limit of              by delta 
functions centered at the positions of classical particles.
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The Hamiltonian and the electronic wave function depend now 
parametrically on the nuclear positions.

Ehrenfest approach to AIMD includes non-adiabatic transitions 
between electronic states using classical nuclear motion and 
the mean field (TDSCF) approximation.

 =  ({ri}, {RI}; t)
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Born-Oppenheimer dynamics

Nuclei are heavy.
Adiabatic separation between nuclei and electrons.
Electrons remain in the ground-state.

Time-independent Schrödinger equation for the electrons

MI
d2R

dt2
= �rI min

 0
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X

i

�~2
2me
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⌘
 0 = E0 0

newtonian nuclear motion

The wave function needs to be minimized every time step of the nuclear dynamics 
(contrary to Ehrenfest dynamics).

In principle Born-Oppenheimer dynamics also be applied to some specific 
electronically excited state, however without including interference with other states...
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Classical Molecular Dynamics
Why MD simulations?

1. observe the dynamics of atoms and molecules
2. compute ensemble averages of model systems

Limitations:
• many particle systems exhibit chaotic dynamics 

• trajectories starting from similar initial conditions diverge exponentially fast:

• choice of initial conditions is inaccurate
• models are inaccurate
• integration of equations of motions contains discretization errors
• computers have rounding errors

Therefore:
• A single trajectory is not likely do represent any “true” molecular trajectory.
• But statistical averages over trajectories are useful to estimate ensemble averages

|�Z(t)| ⇡ e�t|�Z0| with λ a (positive) Lyapunov exponent
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Classical Molecular Dynamics [1,2]

How can we trust the statistics from MD trajectories?  
(Considering the limitations of MD simulations)

A trustworthy integrator (MD algorithm) has the 
following features:
• time-reversible
• phase-space conserving

H(p, q) = T (p) + V (q)

The Hamiltonian is the sum of kinetic energy and potential energy 

ṗ = �@H

@q

q̇ =
@H

@p

q: position
p: momentum

The phase space density is constant 
along the trajectory (Liouville's theorem) 

q

p

dρ[q(t),p(t)]

dρ[q(t’),p(t’)]
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Integrators

Algorithms to numerically solve ordinary differential equations (ODE) 
ODE is an equation that relates the function value to the value(s) of its 
derivatives

Examples of applications:
• Calculation of an integral
• Solving Schrödingers’ equation: 
• Geometry optimization
• Molecular dynamics:

Examples of integrators:
• Euler method
• Runga-Kutta
• Verlet
• Velocity Verlet
• Leap-frog
• Beeman’s algorithm
• ...
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Molecular dynamics
Integration of Newton’s equations

F = m · a
F = �rV

�dV

dri
= mi

d2ri
dt2

Choose initial 
positions and 
velocities

Start

Calculate 
atomic forces

Move atoms 
according to 
forces

Analyse and 
compute 
properties

End

main MD loop
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Example

• Newton’s Law of Gravitation
– force is an inverse square law
– same equations of motion as MD

• Simple Numerical Model in Reduced Units:
– Assume Sun is stationary (M >> m)
– For convenience we use Earth Units
     • GM=1
     • circular orbit for r=v=1
     • each revolution takes 2 time!units

distance r
Mass M

Mass m

x r=1

v=1

F = �GMm

r2

H =
1

2

X

i

miv
2
i +

GMm

|r|

d2r

dt2
= � 1

r3
r
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Integrator (1): Euler method

• Truncate Taylor expansion after the acceleration term

– Local Error: O(Δt3) in position and O(Δt2) in velocity

• Euler method is OK for projectiles, but for MD ...

x(t+�t) = x(t) + v(t)�t+ a(t)
(�t)2

2

v(t+�t) = v(t) + a(t)�t
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Integrator (1): Euler method

h=0.1;        % timestep
pos=[1 0];    % initial position
vel=[0 1.0];  % initial velocity
plot(1,0,'g-',pos(1),pos(2),'ko',0,0,'ro')

for i=1:100
  x(i)=pos(1);
  y(i)=pos(2);

  plot(x,y,'g-',pos(1),pos(2),'k*',0,0,'r+')
  title(num2str(i*h))
  axis equal;
  axis([-2.0 2.0 -2.0 2.0]);
  pause(0.05);

  r=norm(pos);
  accel=-1/r^2 * pos/r;

  pos=pos + h*vel + 0.5*h*h*accel;
  vel=vel + h*accel;
end

Plotting instructions

Compute force

Integrate

Matlab/Octave script

Consider:
• h=0.1 ; steps=100
• h=0.05 ; steps=200
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Integrator (1): Euler method

Euler method is OK for projectiles, 
but for MD ...
– trajectory spirals outward
– local error accumulates with 
time (i.e. large global error)
– reducing timestep h just delays 
the inevitable
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Improved integrators

• Symplectic integrators correctly reproduce long-time dynamics

• Common ODE methods such as Runge-Kutta are not suitable
- error always accumulates in a manner analogous to the Euler 
example – unreliable long-term behaviour

• A good MD integrator should:
- be time reversible (thus honouring Newtonian mechanics) 
- conserve phase-space volume (pendulum is illustrative)
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Integrator (2): Verlet method

• Combine forward and backward Taylor expansions
– Local Error: O(Δt4) in position and O(Δt2) in velocity

• Velocities not required: [x(t–Δt),x(t)]        [x(t+Δt)]

• Not self-starting – apply a single Euler step to begin
– stable even with large time!steps
– local error does not accumulate (i.e. small global error)

x(t+�t) = 2x(t)� x(t��t) + a(t)(�t)2

v(t) =
1

2�t

[x(t+�t)� x(t��t)
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Integrator (2): Verlet method

h=0.2;        % timestep
pos=[1 0];    % initial position
vel=[0 1.0];  % initial velocity

for i=1:50
  x(i)=pos(1);
  y(i)=pos(2);

  ...        % plotting instructions

  r=norm(pos);
  accel=-1/r^2 * pos/r;

  if i==1
    next=pos + h*vel + 0.5*h*h*accel;
  else
    next=2*pos - prev + h*h*accel;
    vel=(next-prev)/(2*h);
  end

  Etot(i)=0.5*norm(vel)^2 + 1/norm(pos);

  prev=pos;
  pos=next;
end

Conserved quantity

Matlab/Octave script

Consider:
• h=0.1 ; steps=100
• h=0.5 ; steps=100
• h=1.5 ; steps=50
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Integrator (2): Verlet method
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Conserved quantities

• We can’t exactly numerically integrate, yet “good” integrators 
oscillate around the true solution

- Numerical trajectory ‘shadows’ the exact orbit, with the 
proximity to the exact orbit varying with Δt
- Despite lacking the exact solution, we can gauge the Global 
Error numerically via conserved quantities
- Momentum (linear & angular ) can be conserved too 
- Linear drift in the conserved quantity is a sign that the 
equations of motion are not being integrated correctly

• Even with high precision integration, trajectories are extremely 
sensitive to initial conditions (i.e. chaotic)
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Integrator (3): Velocity Verlet

• Resembles Euler method (but with two-step update) 
- Local Error: O(Δt4) in position and O(Δt3) in velocity

• Identical Trajectory to Verlet Method
• Uses present state only: [x(t),v(t)]         [x(t+Δt),v(t+Δt)]

- Self-starting
- Easy to change the time-step

x(t+�t) = x(t) + v(t)�t+ a(t)
(�t)2

2

v(t+�t) = v(t) +
[a(t) + a(t+�t]

2
�t

Reduces to Euler 
method 
if a(t+Δt)= a(t)
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half-step velocities

• Velocity Verlet is often represented in half-steps:

• In Leap-Frog Verlet the coordinates are defined at full 
timesteps (t, t+Δt, t+2Δt...), while the velocities are 
defined at half-steps (t-Δt/2, t+Δt/2, t+3Δt/2...).

v(t+
1

2
�t) = v(t) + a(t)

�t

2

v(t+�t) = v(t+
1

2
�t) + a(t+�t)

�t

2

x(t+�t) = x(t) + v(t+
1

2
�t)�t

apply thermostat

compute forces
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What is your Hamiltonian?
The model: how are the interactions approximated?

• Empirical forcefields
VLJ

r

1

r12

� 1

r6

Lennard-Jones pair-potential

V LJ(r) = �4✏

✓⇣�
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⌘12
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⌘6
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Lennard-Jonesium

V LJ(r) = �4✏

✓⇣�
r

⌘12
�
⇣�
r

⌘6
◆

Phase transitions of the Lennard-Jones system, 
Jean-Pierre Hansen and Loup Verlet,  
Phys. Rev. 184 (1969), 151
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Empirical forcefields
Non-bonded interactions

• Van der Waals 
(Lennard-Jones, Buckingham, ...)

• Electrostatic interaction

• H-bonds, 3-body interaction, polarization, ...

Bonded interactions

• bond

• angle

• dihedral

• improper

• ....
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2
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Epot = Ebonded + Enon�bonded

Total potential

Epot =
X

bonds

V bond +
X

angles

V angle

X

dihedrals

V torsion +
X

i

X

j 6=i

V LJ +
X

i

X

j 6=i

V Coulomb

MMS
CFF
AMBER
CHARMM
GROMOS
OPLS
UFF

MARTINI (CG)

Common forcefields

Simulated heating of
water molecules

Empirical forcefields
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Empirical forcefields

MMS
CFF
AMBER
CHARMM
GROMOS
OPLS
UFF

MARTINI (CG)

Epot = Ebonded + Enon�bonded

Total potential

Epot =
X

bonds

V bond +
X

angles

V angle

X

dihedrals

V torsion +
X

i

X

j 6=i

V LJ +
X

i

X

j 6=i

V Coulomb

Common forcefields

partial unfolding of 
photoactive yellow 
protein
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Empirical forcefields

Classical (Forcefield) Molecular Dynamics
• parameterizations available
• implemented in efficient parallel programs
• system sizes of 106 particles
• simulation times of ~ microseconds

Limitations
• transferability (molecular environment, thermodynamic state)
• often: no polarization, many-body interactions
• no bond-breaking (chemistry)
• no information on the electronic structure (spectroscopy)
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Ab initio molecular dynamics

Empirical forcefields are often fitted to ab initio calculations.
Why not obtain the ab initio potential on the fly?

Which level of ab initio theory? 
- (semi-emprical), HF, DFT, MP2, CASSCF, CC,... would all be possible.

Density Functional Theory is a good compromise between accuracy and 
computational cost.
- GGA functionals may have limited accuracy
- Van der Waals interactions are problematic
- better non-local functionals, hybrid functionals, etc, are costly
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The energy is a functional of the electron density

Variation principle:

Non-interaction potential yields the same density:

Density Functional Theory

Hohenberg & Kohn (1964)E = E[⇢(r)]

h [⇢] |Ĥ| [⇢]i =
Z

dr v(r) ⇢(r) + T [⇢] + Vee[⇢] = Ev[⇢] � E0[⇢]

second HK theorem 

⇢(r) = 2
occX

i

| 
i

(r)|2

E[⇢] = Ts[⇢] + V
N

[⇢] + J
ee

[⇢] + E
xc

[⇢]

kinetic
energy

electron-
electron

interaction

external
potential
(nuclei)

Kohn-Sham (1965)

Walter Kohn (1923)
Nobelprize 1998
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Density Functional Theory
E[⇢] = Ts[⇢] + V

N

[⇢] + J
ee

[⇢] + E
xc

[⇢]

non-interaction
kinetic energy

Jee[⇢] =
e2

2
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potential
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interaction

Exchange +
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E
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ee
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ee
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Density Functional Theory

ĤKS i = [� ~2
2m

r2 + vext +
e2

2

Z
dr

⇢(r0)

|r� r0| +
�E

xc

[⇢]

�⇢(r)
] i = ✏i i

Minimization of the Kohn-Sham equations (variational principle)

Local Density Approximation:

Generalized Gradient Approximation
Becke Exchange functional (1988)
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Born-Oppenheimer dynamics

Nuclei are heavy.
Adiabatic separation between nuclei and electrons.
Electrons remain in the ground-state.

Time-independent Schrödinger equation for the electrons

MI
d2R

dt2
= �rI min

 0

{h 0|He| 0i}

X

i

�~2
2me

r2
i + Vn�e

⇣
{ri}, {RI(t)}

⌘
 0 = E0 0

Newtonian nuclear motion

Rigorous wave function minimization every MD step 
(matrix diagonalization).
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To optimize the Kohn–Sham orbitals 

these one electron wave functions are expanded in an 
orthogonal basis

for example: Gaussians, Slater functions, or plane waves.

Plane waves describe well free electrons (valence 
electrons in metals)

- frozen core approximation
- pseudo-potential replaces nucleus + core electrons
- valence electrons are represented by pseudo-wave 
functions
- projector augmented wave (PAW): local functions + 
(pseudo-) plane waves

Basis sets

 i =
X

k

cik�k

Ĥ i = ✏ i

 i(r) =
X

k

cik exp(ikr)

|k|2  Ecut
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Summary of yesterday

• Method by Car and Parrinello (1985)

• BOMD: Combine classical MD of nuclei with QM time-
independent Schrödinger equation of the electrons

• Classical MD

• Integrators: Euler versus Verlet
• time-reversibility, phase-space conserving (can be checked)
• force fields (harmonic bonds, Lennard-Jones, ... )
• parameters: Amber, Gromos, OPLS, CHARMM, UFF, ReaxFF
• programs: Amber, NAMD, DLPoly, LAMMPS, Gromacs

• Density Functional Theory (see Prof. Baerends lecture)

• simulated annealing versus matrix diagonalization
• equation of motion for coefficient dynamics
• fictitious “electron” mass, constraint orthogonality

• CP extended Lagrangian

Friday, 12 December, 14



Content

• Introduction

• Classical Molecular dynamics

• Density Functional Theory

• Born-Oppenheimer Molecular Dynamics

• Car-Parrinello Molecular Dynamics

• Extensions

• Applications

Friday, 12 December, 14



Car-Parrinello MD
Optimizing the coefficients to minimize the Kohn-Sham energy has some 
analogy with a geometry optimization.
• the coefficients move in a coefficient space
• with the constraint of orthonormality

We can even define equations of motions:

X

k

ci⇤k cjk = �ij with �ij =

⇢
1 for i = j
0 for i 6= j

µk
d2cik
dt2

= � @E

@ci⇤k
�

X

j

�ijc
j
k

fictitious
mass acceleration gradient

force
constraint

force

Wave functions optimization through Simulated Annealing
• start from random coefficients
• integrate EOMs
• damp dynamics to converge
• Alternative for matrix diagonalization
• Useful for large systems

(m a = F)
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Car-Parrinello MD

Lagrangian formalism of CPMD

L =
X

I

1

2
MI

����
dRI

dt

����
2

+
X

i,k

1

2
µk

����
dcik
dt

����
2

�E[{cik}, {RI}] +
X

i,j

�ij(
X

k,l

cilc
j
kSkl � �ij)

kinetic energy 
of nuclei

“kinetic energy” 
coefficients

Kohn-Sham
potential

holonomic
constraints

Hellman-Feynman forces

In the electronic ground 
state, the wave function 

derivatives are zero
�@E[{cik}, {RI}]

@RI
=

@ h 0|H | 0i
@RI

= h 0|
@H

@RI
| 0i

Simultaneous dynamics of the nuclei and the wave function coefficients
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How can this work?
Simultaneous dynamics of the nuclei and the wave function coefficients

The wave function dynamics should be cold 
- sufficiently close to the ground state
- but fast enough to follow the nuclei

Adiabatic separation of nuclei and wave function dynamics

µe << MI ) !e >> !I

Te << TI ) Etot ⇡ TI + V KS conserved quantity

periodic super cell 
containing 8 Si atoms in 
the diamond structure

G. Pastore, E. Smargiassi, 
F Buda, Phys. Rev. A 44 
(1991), 6334 
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How can this work?
Simultaneous dynamics of the nuclei and the wave function coefficients

periodic super cell 
containing 8 Si atoms in 
the diamond structure

G. Pastore, E. Smargiassi, 
F Buda, Phys. Rev. A 44 
(1991), 6334 

spectrum of electronic modes

fastest ionic mode

Clear separation between characteristic electronic 
and ionic frequencies
• small fictious mass (μ=300 au = 0.165 Dalton)
• small time step (dt = 5 atu = 0.12 fs)

!ij =

s
fj(✏i � ✏j)

µ

small gap leads 
to coupling
(metals require 
thermostats)
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CPMD versus BOMD

CPMD
• wave function dynamics

• close to Ψ0 every MD step

• time step: ~0.1 fs

• noisy forces

• small global error (Etot 
conserved, when adiabatic)

BOMD
• matrix diagonization

• at Ψ0 every MD step

• time step: ~1 fs

• converged (HF) forces

• risk of growing global error

cpmd 
program

cp2k
program

VASP 
program
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Periodic boundary conditions

Copies of the system in all directions
- effects due to walls are avoided
- finite size effects are less
- plane waves are already periodic

Con’s
- isolated systems are difficult
- fictitious periodicity
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Ensembles

The equation of motion derived from Lagrangian (or Hamiltonian) 
dynamics conserve the total energy of the system.
• The micro-canonical ensemble is sampled (NVE)

Other ensembles:
NVT ensemble, by coupling the system to a thermostat (“heat bath”)
• Nose-Hoover chain (deterministic)
• Canonical Sampling through Velocity Rescaling (“bussi thermostat”)
• Langevin dynamics

NPT ensemble, coupling to a thermostat and a barostat
• Parrinello-Rahman
• Berendsen

Grand canonical (μPT), coupling to bath of particles (i.e. electrons)
....

Friday, 12 December, 14



Computing properties

Ergodicity hypothesis

hAi =
RR

drNdpNA(rN ,pN
) exp[��H(rN ,pN

)]RR
drNdpN

exp[��H(rN ,pN
)]

ensemble average

hAi = lim
t!1

1

t

Z t

0
dt0A(rN ,pN ) time average

Di =

Z 1

0
d⌧hvi(⌧)vi(0)i

Time correlation functions can be related to transport properties 

diffusion coeffient

Fourier transform of time-correlation functions allow for experimental spectra
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mean square displacement

Water

O-O Radial distribution function

CPMD
vs

BOMD

Time-Dependent Properties of Liquid Water: A Comparison of Car-
Parrinello and Born-Oppenheimer Molecular Dynamics Simulations
I-F.W. Kuo, C.J. Mundy, M.J. McGrath and J.I. Siepmann
J. Chem. Theory Comput. 2006

CPMD
vs

BOMD

64 water molecules 
BLYP functional
30 ps simulation
NVE (T~423 K)
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Water Nuclear quantum effects
Path-integral CPMD  
Robert Car et al. (website)2 CPMD results BLYP, BP

versus Neutron diffraction (dotted)

• DFT GGA water is too structured
• Diffusion coefficient is too low 
(BP: 0.35 10-5 vs EXP: 2.35 10-5 cm2/s)

• correcting for VdW is important
• ZPE correction can be included

CPMD contributed significantly to 
understanding water and solvation
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Method x(H3O)+ kA pkA

CPMD

static DFT 

expt

0.130 0.034 1.47

10,000 -4.00

0.006 2.2

FeIII(H2O)63+ + H2O <––> FeIII(H2O)5(OH)2+ + H3O+ 

pKa = � log

�
[B�][H3O+]

[HB]

⇥
= � log

�
(x(H3O+))2[HB]0

1� x(H3O+)

⇥

Acidity of Fe(III)
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Redox potentials Warshel, Sprik, 
Blumberger, Sulpizi, 
Cheng, and others

€ 

Δε = IPD + EAA HOMO-LUMO gap is not a good 
estimate of the redox potential

Rudolph A. Marcus 
1992 Nobel prize in Chemistry

A

ΔA

∆E�∆E�O �∆E�R

AR

AO

�E = ER(r
N )� EO(r

N ).

The vertical energy gap quantifies the 
polarization by the environment.
• reaction coordinate: 
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oxidation and protonation states

Lumiflavin
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Redox potentials

P⌘(�E0) = Z�1

Z
drNe��E⌘�(�E ��E0)

= lim
⌧!1

1

⌧

Z ⌧

0
�(�E(rN (t))��E0) dt

We can histogram dE during an MD 
simulation:

�E = ER(r
N )� EO(r

N ).

DFT-MD (BO simulations)
CP2K program
PBE + DZVP/300Ry

lumiflavin + 102 H2O
Lbox=15 A (PBCs)
NVT ensemble
sim. time: 30-50 ps
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Redox potentials

P⌘(�E0) = Z�1

Z
drNe��E⌘�(�E ��E0)

= lim
⌧!1

1

⌧

Z ⌧

0
�(�E(rN (t))��E0) dt

We can histogram dE during an MD 
simulation:

A⌘(�E) = �kBT ln [P⌘(�E)]

And make the free energy profiles:

�E = ER(r
N )� EO(r

N ).

DFT-MD (BO simulations)
CP2K program
PBE + DZVP/300Ry

lumiflavin + 102 H2O
Lbox=15 A (PBCs)
NVT ensemble
sim. time: 30-50 ps
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Redox potentials
What is the reorganization?

(which changes correlate with dE?)

Friday, 12 December, 14



Redox potentials
What is the reorganization?
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AIMD implementations

CPMD
PAW
VASP
quantum-espresso
Siesta
CP2K
...

ADF
Gaussian
...
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Extensions

extension to DFT-based AIMD (CPMD, BOMD)

• combined CP/BO MD, wave function propagation + minimization (CP2K)

• Brillouin zone sampling, k-space integration

• TD-DFT MD, ROKS-MD excited state molecular dynamics

• Ehrenfest, Tully’s minimum hops approach, ...

• PIMD, path-integral, ring-polymer dynamics

• HF, B3LYP, MP2 – MD

• enhanced sampling methods

• constrained MD, steered MD, metadynamics, transition path sampling

• QM/MM

Friday, 12 December, 14



Longer time scales

The rare event problem:

chemical reactions take place on a time 
scale that as much longer than can be 
simulated with AIMD

Enhanced sampling methods:
•  constrained MD
•  umbrella sampling
•  steered MD
•  metadynamics
•  transition path sampling

CPMD/BOMD
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Longer time scales
Transition path sampling of electron transfer

self-exchange between Ru2+ and Ru3+ in water

Sampling ensemble of transition paths
• Monte Carlo scheme
• No reaction coordinate needed 
• description of stable states
• Needs initial path
• Can relax an unphysical (enforced) path
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Free energy calculations
Constrained Molecular Dynamics

€ 

ΔA(λ) =
∂U
∂λ T ,V ,λ

dλ∫
reaction coordinate

Landau free energy 

force of constraint
reaction 
coordinate
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Larger length scales

QM/MM
• important part of the system
with QM (semi-empirical, HF, 
DFT,... 
• environment included with 
MM (empirical force field)

Karplus, Levitt, Warshel
Chemistry Nobelprize 2013

QM-MM coupling
• Mechanical coupling: bonds, angles, VdW
• Electrostatic coupling to include 
environment interaction into the QM system.

- polarization of electron density

• Link atom/pseudo potential at hybrid (QM/
MM) bonds
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QM/MM
Appa (BLUF)
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FIG. 3: Vertical energy gap distributions (top panel) and free energy curves (bottom panel) of

the first reduction of flavin in gas, aqueous and protein systems during the oxidized (⌘=0) and

reduced (⌘=1) states. The data are obtained from QM/MM simulations at T = 300 K.

The typical single-well free energy landscape that we already saw in the previous work37

is known as ”Marcus inverted region”. A final remark to make about the environmental

response seen in the free energy landscapes in Figure 3 is that for each system the widths

of the distributions, in the oxidized and reduced states are very similar (see also �O and �R

in Table I), which indicates the linearity of the environment (protein or solvent) response
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the first reduction of flavin in gas, aqueous and protein systems during the oxidized (⌘=0) and

reduced (⌘=1) states. The data are obtained from QM/MM simulations at T = 300 K.

The typical single-well free energy landscape that we already saw in the previous work37

is known as ”Marcus inverted region”. A final remark to make about the environmental

response seen in the free energy landscapes in Figure 3 is that for each system the widths

of the distributions, in the oxidized and reduced states are very similar (see also �O and �R

in Table I), which indicates the linearity of the environment (protein or solvent) response

embedded flavin

QM/MM Redox potential calculation
- flavin molecule in different environments
(water, BLUF, LOV photo-receptor proteins)

- CP2K
- flavin: QM, protein+water+ions: MM
- Sim. time: ~25 ps
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QM/MM + enhanced sampling
Proton Shuttles and Phosphatase 
Activity in Soluble Epoxide Hydrolase

- CPMD QM/MM
- constrained MD

Computational study of phosphatase activity in soluble epoxide hydrolase: 
high efficiency through a water bridge mediated proton shuttle.
Marco De Vivo, Bernd Ensing, and Michael L. Klein
Communication in J. Am. Chem. Soc. 127 (2004), 11226-11227
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QM/MM + enhanced sampling
Proton transfer during signal 
propagation in Photoactive Yellow 
Protein

- CPMD QM/MM
- transition path sampling
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