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Molecular Simulation




Preo- 3 | 0-PACAPIOACONY IIrONy-OCTMECH 2O

3. ae Molecular Dynamics

Behavior of many atoms and molecules

At ~ 1 fs = 0.000000000000001 sec
atom positions and velocities
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Schrddinger equation
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Electronic structure theory and
Molecular dynamics

A happy marriage

Quantumchemistry and Statistical Mechanics

'

A.

Ab initio Molecular Dynamics

chemistry in explicit water

Car-Parrinello MD
Born-Oppenheimer MD
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Car-Parrinello MD

VOLUME 55, NUMBER 22 PHYSICAL REVIEW LETTERS 25 NOVEMBER 1985

Unified Approach for Molecular Dynamics and Density-Functional Theory

R. Car

International School for Advanced Studies, Trieste, Italy

and

M. Parrinello

Dipartimento di Fisica Teorica, Universita di Trieste, Trieste, Italy, and
International School for Advanced Studies, Trieste, Italy
(Received 5 August 1985)

We present a unified scheme that, by combining molecular dynamics and density-functional
theory, profoundly extends the range of both concepts. Our approach extends molecular dynamics
beyond the usual pair-potential approximation, thereby making possible the simulation of both co-
valently bonded and metallic systems. In addition it permits the application of density-functional
theory to much larger systems than previously feasible. The new technique is demonstrated by the
calculation of some static and dynamic properties of crystalline silicon within a self-consistent pseu-
dopotential framework.

PACS numbers: 71.10.+x, 65.50.+m, 71.45.Gm

Electronic structure calculations based on density- very large and/or disordered systems and to .the com-
functional (DF) theory' and finite-temperature com- putation of interatomic forces for MD simulations.
puter simulations based on molecular dynamics? (MD) We wish to present here a new method that is able

have greatly contributed to our understanding of to overcome the above difficulties and to achieve the
condensed-matter systems. MD calculations are able following results: (i) compute ground-state electronic
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Car-Parrinello MD

Roberto Car (1947) Michele Parrinello (1945)
Princeton, USA ETH Zurich (Lugano),
Switzerland

 CPMD (or AIMD or FPMD or DFT-MD) was invented in Trieste (Sissa)
* The 1985 CPMD paper is the 5th most cited paper in Phys. Rev. Lett.
* In 2009, Car and Parrinello were awarded the Dirac Medal
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Starting point

Time-dependent non-relativistic Schrédinger equation

(). (R )et) = HU({r,). (R o0

Hamiltonian

H=-%" & Vi) & \VE:
B — 2M I Laom, "

1
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Electrons and nuclel

Separation of the wave function:

\IJ({I'Z'}, {R]}; t) ~ w({l‘z}, t) X({R[}; t) (omitting a phase factor)

Coupled time-dependent Schrodinger equations:

OV W '
har —ZQmBV?w{/x vn_ede}w

1

electrons move in mean-field of nuclei

aX h2 2 %
Zhat _EI:QMIVIX_I_{/w n—ewdr}x

nuclei move in mean-field of electrons

time-dependent SCF method, introduced by Dirac in 1930
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Ehrenfest dynamics

Nuclei are heavy.

Replace the nuclear density [X({R1};?)]? in the limit of # — 0 by delta
functions centered at the positions of classical particles.

d°R

My dtQI = -V VEUR(t)}) VE: Ehrenfest potential
Lo e oo
ihgy == > 5 Vit Vace (). (Ra(0)} )

1

p=9({ri}, {Rr};?)

The Hamiltonian and the electronic wave function depend now
parametrically on the nuclear positions.

Ehrenfest approach to AIMD includes non-adiabatic transitions
between electronic states using classical nuclear motion and
the mean field (TDSCF) approximation.
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Born-Oppenheimer dynamics

Nuclei are heavy.
Adiabatic separation between nuclei and electrons.
Electrons remain in the ground-state.

Time-independent Schrodinger equation for the electrons

_h?
> 5V + Ve ({ra} {R1(D} ) o = Eotlo
I’R |
MIW — _VI %ln{ <wO’H€‘¢O>} newtonian nuclear motion

The wave function needs to be minimized every time step of the nuclear dynamics
(contrary to Ehrenfest dynamics).

In principle Born-Oppenheimer dynamics also be applied to some specific
electronically excited state, however without including interference with other states...
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Classical Molecular Dynamics

Why MD simulations?

1. observe the dynamics of atoms and molecules
2. compute ensemble averages of model systems

Limitations:
* many particle systems exhibit chaotic dynamics
* trajectories starting from similar initial conditions diverge exponentially fast:

0Z(t)| =~ e**|6Zg| with A a (positive) Lyapunov exponent

 choice of initial conditions is inaccurate

* models are inaccurate

* integration of equations of motions contains discretization errors
e computers have rounding errors

Therefore:
* A single trajectory is not likely do represent any “true” molecular trajectory.
» But statistical averages over trajectories are useful to estimate ensemble averages
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Classical Molecular Dynamics .2

How can we trust the statistics from MD trajectories?

Considering the limitations of MD simulations , ,
( : ) dolq(t),p(t)]

A trustworthy integrator (MD algorithm) has the P
following features:

 time-reversible

e phase-space conserving

14}
A3
@& dp[q(t),pt)]
(?

The phase space density is constant
along the trajectory (Liouville's theorem)

The Hamiltonian is the sum of kinetic energy and potential energy

: OH
H(p, q) — T(p) —+ V(Q) g: position p= r
p: momentum
_OH

Friday, 12 December, 14



Integrators

Algorithms to numerically solve ordinary differential equations (ODE)
ODE is an equation that relates the function value to the value(s) of its
derivatives

Examples of applications:

e Calculation of an integral 72

» Solving Schrédingers’ equation: Ey(r) = ——V2(r) + V(r)v(r)
« Geometry optimization | 2m

* Molecular dynamics: 0 — 5 Z mi2 + V(1)

Examples of integrators:
e Euler method
* Runga-Kutta
 Verlet
* Velocity Verlet
| eap-frog
 Beeman’s algorithm
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Molecular dynamics

Integration of Newton’s equations

F=m-a

F=-VV

Choose initial Move atoms Analyse and
o Calculate .
positions and . according to compute
" atomic forces .
velocities forces properties
End

Start ‘ h l

main MD loop
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Exam ple Mass m

Mass M .
distance r

e Newton’s Law of Gravitation

— force is an inverse square law
— same equations of motion as MD

e Simple Numerical Model in Reduced Units:
— Assume Sun is stationary (M >> m)
— For convenience we use Earth Units GMm d?r 1
- GM=1 F=—-——F7 > = ——3
« circular orbit for r=v=1 r at r
* each revolution takes 2 timelunits

. .
X4
Y4 ‘\
4 A}
q ) § =1
| 1
[ ] |
' X
1 _1 (]
r 1
) § 4
. V4
< 4
A 3 4
~ v
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Integrator (1): Euler method

e Truncate Taylor expansion after the acceleration term

— Local Error: O(At3) in position and O(At?) in velocity

(At)°
2

x(t+ At) = z(t) + v(t)At + a(t)

v(t) + a(t)At

v(t + At)

e FEuler method is OK for projectiles, but for MD ...
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h=0.1;
pos=[1 0];
vel=[0 1.0];

Integrator (1): Euler method

o©°

timestep
initial position
% initial velocity

o°

Matlab/Octave script

plot(1,0, 'g-',pos(1l),pos(2), 'ko',0,0, 'ro')

for i=1:100
X(i)=pos(1l);
y(i)=pos(2);

plot(x,y,'g-"',pos(1l),pos(2), 'k*",0,0, r+")
title(num2str(i*h))

axis equal;
axis([-2.0 2
pause(0.05);

r=norm(pos);
accel=-1/r"2

pos=pos + h*vel + 0.5*h*h*accel;

.0 -2.0 2.0]);

* pos/r;

vel=vel + h*accel;

end

D4

Consider:
« h=0.1; steps=100
« h=0.05 ; steps=200

Plotting instructions

Compute force

Integrate
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Integrator (1): Euler method

Euler method is OK for projectiles,
but for MD ...

— trajectory spirals outward

— local error accumulates with
time (i.e. large global error)

— reducing timestep h just delays
the inevitable

1.9

8.5

16
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Improved integrators

* Symplectic integrators correctly reproduce long-time dynamics

* Common ODE methods such as Runge-Kutta are not suitable

- error always accumulates in a manner analogous to the Euler
example — unreliable long-term behaviour

* A good MD integrator should:
- be time reversible (thus honouring Newtonian mechanics)
- conserve phase-space volume (pendulum is illustrative)
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Integrator (2): Verlet method

e (Combine forward and backward Taylor expansions
— Local Error: O(At%) in position and O(At?) in velocity

r(t + At) = 22(t) — z(t — At) + a(t)(At)?

o(t) = oo le(t + At) — a(t — A

e \/elocities not required: [x(t—At),x(t)] —> [x(t+At)]

e Not self-starting — apply a single Euler step to begin
— stable even with large timelsteps
— local error does not accumulate (i.e. small global error)
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Integrator (2): Verlet method

Matlab/Octave script
h=0.2; % timestep
pos=[1 0]; % J:.nJ:.tJ:.al positJ:.on Consider:
vel=[0 1.0]; % 1nitial velocity e h=0.1 ; steps=‘|00
fo;i?i;zg(l); « h=0.5; StepS=1OO
y(i)=pos(2); - h=1.5; steps=50

o©°

plotting instructions

r=norm(pos);
accel=-1/r"2 * pos/r;

if i==
next=pos + h*vel + 0.5*h*h*accel;
else
next=2*pos - prev + h*h*accel;
vel=(next-prev)/(2*h);
end

Etot(i)=0.5*norm(vel)”2 + 1/norm(pos); <: Conserved quantity

prev=pos;
pos=next;
end
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Integrator (2): Verlet method

Total energy

2 T T T
2 T T T T T T T h=8.1
P S
1.5 F i
1.5
1 - - *
O
8.5 i
e r O . 1r
-8.5 - -
-1 — = 9.5 -
-1.5 =
_2 1 | 1 1 1 | 1
-2 -1,5 =1 -8.5 8 8.5 1 1.5 2 8 ' ; :
8 5 10 15
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Conserved quantities

* We can’t exactly numerically integrate, yet “good” integrators
oscillate around the true solution

- Numerical trajectory ‘shadows’ the exact orbit, with the
proximity to the exact orbit varying with At

- Despite lacking the exact solution, we can gauge the Global
Error numerically via conserved quantities

- Momentum (linear & angular ) can be conserved too

- Linear drift in the conserved quantity is a sign that the
equations of motion are not being integrated correctly

e Even with high precision integration, trajectories are extremely
sensitive to initial conditions (i.e. chaotic)
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Integrator (3): Velocity Verlet

 Resembles Euler method (but with two-step update)
- Local Error: O(At%) in position and O(At3) in velocity

(At)?
2

x(t+ At) = z(t) + v(t) At + a(t)

[a(t) + a(t + Al
2

v(t + At) = v(t) + At

* |dentical Trajectory to Verlet Method

» Uses present state only: [x(t),v(t)] —> [x(t+At),v(t+At)]
- Self-starting
- Easy to change the time-step

Reduces to Euler
method
if a(t+At)= a(t)
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half-step velocities

* Velocity Verlet is often represented in half-steps:

At

2
<}: apply thermostat

ot + %At) — u(t) + a(t)

x(t+ At) = z(t) + v(t + %At)At

compute forces

1 At
v(t + At) = v(t + §At) + a(t + At)7

* In Leap-Frog Verlet the coordinates are defined at full
timesteps (i, t+At, t+2At...), while the velocities are
defined at half-steps (t-At/2, t+At/2, t+3At/2...).
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What is your Hamiltonian?

The model: how are the interactions approximated?

«  Empirical forcefields 4
VLJ

o - 1

V(rij

o ©

Lennard-Jones pair-potential

o= {22
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Lennard-Jonesium

Phase transitions of the Lennard-Jones system,
Jean-Pierre Hansen and Loup Verlet,
Phys. Rev. 184 (1969), 151

1T

FIG. 3. Coexistence curve for the Lennard-Jones

system (temperatures and densities in reduced units).
The solid line gives our theoretical results. The broken
line gives the experimental argon liquid-gas coexistence
line taken from Michels et al.'"** The circles are ex-
perimental argon melting data taken from van Witzenburg
and Stryland, " the crosses are experimental melting
data taken from Crawford and Daniels.’' The triangles
indicate the crystallization densities according to the
“law” stating that crystallisation occurs whenever

Slky reaches the value 2.85,
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Empirical forcefields

Non-bonded interactions

o -+((2)- ()

e \/an der Waals

(Lennard-Jones, Buckingham, ...) VBuck(r) = Aexp(—Br) — (’;
,
e Electrostatic interaction 1
VCoulomb (’I“) 9192
Admeg T
e H-bonds, 3-body interaction, polarization, ...
Bonded interactions
*bond  yharm(y) = %k’b(r —7p)? ymorse () = D (1 — e~ @r—re))2
1
eangle V™M™ (g) = —%(9 — 6)*
* dihedral j/ Fourler Z —Va[l 4 cos(nw — )]
* improper
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Empirical forcefields

Total potential

Epot _ Ebonded + Enon—bonded

Epot Z Vbond_l_ Z Vangle Z Vtorsion+S:S:VLJ _|_S:S:VCoulomb

bonds angles dihedrals 1 jFi 1 jFi

Common forcefields

MMS

CFF
AMBER
CHARMM
GROMOS
OPLS
UFF

MARTINI (CG)

Simulated heating of
water molecules
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Empirical forcefields

Total potential

Epot _ Ebonded + Enon—bonded

Epot _ Z Vbond_|_ Z Vangle Z Vtorsion+ZZVLJ _|_ZZVCoulomb

i#i

bonds angles dihedrals jF£i

Common forcefields

MMS

CFF
AMBER
CHARMM
GROMOS
OPLS
UFF

MARTINI (CG)

partial unfolding of
photoactive yellow
protein
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Empirical forcefields

Classical (Forcefield) Molecular Dynamics

e parameterizations available

* implemented in efficient parallel programs
e system sizes of 10° particles

e simulation times of ~ microseconds

Limitations

e transferability (molecular environment, thermodynamic state)
e often: no polarization, many-body interactions

* no bond-breaking (chemistry)

* no information on the electronic structure (spectroscopy)
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ADb Initio molecular dynamics

Empirical forcefields are often fitted to ab initio calculations.
Why not obtain the ab initio potential on the fly?

Which level of ab initio theory?
- (semi-emprical), HF, DFT, MP2, CASSCF, CC,... would all be possible.

Density Functional Theory is a good compromise between accuracy and
computational cost.

- GGA functionals may have limited accuracy

- Van der Waals interactions are problematic

- better non-local functionals, hybrid functionals, etc, are costly
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Density Functional Theory

The energy is a functional of the electron density
E = E|p(r)] Hohenberg & Kohn (1964)

Variation principle:

(o] |F1W (o)) = / drv(r) p(r) + Tlp] + Viels] = Eulp] > Eolpl

external Kinetic electron-
potential energy electron
(nuclei) interaction second HK theorem

Non-interaction potential yields the same density:

Elp] = Ts|p] + Vnlp] + Jee|p] + Exc|p] Kohn-Sham (1965)

plr) =23 [oi(x)[°

Walter Kohn (1923)
Nobelprize 1998
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Density Functional Theory

Elp] = Ts[p] + Vn|p| + Jeelp] + Exclp]

non-interaction nuclear Coulomb  Exchange +
kinetic energy potential interaction  correlation

T,(p) =~ 5 3 [ dr i () 920i(o

Valo] = / dr v (r) p(r)

Jeelp] = % / dr / dr’ p‘(rr)_pg?

Exc [,0] — ‘/ee — Jee [,0] -+ T[IO] — TS [,0] the rest

Friday, 12 December, 14



Density Functional Theory

Minimization of the Kohn-Sham equations (variational principle)

: n? p(r') | 9Ex[p]
HKS = v2 ext —/dI‘ | xC .= €;1;
vi= 1 2m v r—1/|  p(r) i = ey
Local Density Approximation:
ELD _ / drp(r) ex.
Generalized Gradient Approximation
Becke Exchange functional (1988)
B _ 5.1/3 x° _|Vp
€XC T 6/0 . —1 L = 4/3
(1 4+ 68xsinh™ " x) p

B = 0.0042
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Born-Oppenheimer dynamics

Nuclei are heavy.
Adiabatic separation between nuclei and electrons.

Electrons remain in the ground-state.

Time-independent Schrodinger equation for the electrons

5 02+ Ve ({r0), (R () ) = Bt

d“R

MJW = =V fglbioﬂ{Wo!HeW@}

Rigorous wave function minimization every MD step
(matrix diagonalization).

Newtonian nuclear motion
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Basis sets

To optimize the Kohn—-Sham orbitals

A

H; = e);

these one electron wave functions are expanded in an
orthogonal basis

i
Y = § CLXk
k
for example: Gaussians, Slater functions, or plane waves.

Plane waves describe well free electrons (valence Vi (r) = Z cy, exp(ikr)
electrons in metals) k
k|? < Eeut
- frozen core approximation
- pseudo-potential replaces nucleus + core electrons
- valence electrons are represented by pseudo-wave
functions
- projector augmented wave (PAW): local functions +
(pseudo-) plane waves
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Summary of yesterday

Method by Car and Parrinello (1985)

BOMD: Combine classical MD of nuclei with QM time-
independent Schrdodinger equation of the electrons

Classical MD

e |Integrators: Euler versus Verlet

e time-reversibility, phase-space conserving (can be checked)
e force fields (harmonic bonds, Lennard-Jones, ...)

e parameters: Amber, Gromos, OPLS, CHARMM, UFF, ReaxFF
e programs: Amber, NAMD, DLPoly, LAMMPS, Gromacs

Density Functional Theory (see Prof. Baerends lecture)

e simulated annealing versus matrix diagonalization
e equation of motion for coefficient dynamics
e fictitious “electron” mass, constraint orthogonality

CP extended Lagrangian
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Car-Parrinello MD

Optimizing the coefficients to minimize the Kohn-Sham energy has some
analogy with a geometry optimization.

 the coefficients move in a coefficient space
 with the constraint of orthonormality

) ) . 1 for Z’ - j
1% ]
E CL Ci. = 04 With 045 = { .
- 0 for i #

We can even define equations of motions:

d?ct OF -
et === — ) NijG
dt dc;, .
J
fictitious . gradient constraint
acceleration
mass force force

Wave functions optimization through Simulated Annealing
e start from random coefficients
* integrate EOMs
» damp dynamics to converge
 Alternative for matrix diagonalization
» Useful for large systems
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Car-Parrinello MD

Simultaneous dynamics of the nuclei and the wave function coefficients

Lagrangian formalism of CPMD

dR[ dC :
L= § | MI E : ik E[{c}g},{RI}] +) X (O ciclSw — di5)
1, k,l
Kinetic energy “kinetic energy” Kohn-Sham holonomic
of nuclei coefficients potential constraints
Hellman-Feynman forces
E Cz’ R OUs H W OH In the electronic ground
_ [{ k}’ { I}] — < 0| ‘ O> <\IJO| |\IJO> state, the wave function
0 RI aRI 3R[ derivatives are zero
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How can this work?

Simultaneous dynamics of the nuclei and the wave function coefficients

The wave function dynamics should be cold
- sufficiently close to the ground state
- but fast enough to follow the nuclei

Adiabatic separation of nuclei and wave function dynamics

Te <K T] = EtOt ~ TI —|— VKS conserved quantity

UL L LA L N B L DL

40 - . periodic super cell

i | containing 8 Si atoms in
P - the diamond structure

20 |- —

G. Pastore, E. Smargiassi,

F Buda, Phys. Rev. A 44

JlJM
{00 ML, 5 (oo G334

0 2000 4000 6000 8000
w (THz)

7(w) (arb. units)
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How can this work?

Simultaneous dynamic

s of the nucleil and the wave function coefficients

spectrum of electronic modes

1 4 I [ 1 1 1 I '

.
40 -

20 |- !{

7(w) (arb. units)

o

|

LI S I B periodic super cell
containing 8 Si atoms in
the diamond structure

1

G. Pastore, E. Smargiassi,
F Buda, Phys. Rev. A 44
(1991), 6334

1 o J 1 1 A J

J l mllm 1. fj(ﬁfz: —Ej) small gap leads

0 2000 4000 6000 8000 Wij = to coupling
w (THz) f (metals require
thermostats)

fastest ionic mode

Clear separation between characteristic electronic
and ionic frequencies

e small fictious mass (u=300 au = 0.165 Dalton)

e small time step (dt = 5 atu = 0.12 fs)
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CPMD versus BOMD

BOMD

e matrix diagonization

« at Wo every MD step
 time step: ~1 fs

» converged (HF) forces

e risk of growing global error

VASP cp2k
program program

CPMD

e wave function dynamics

e close to Wo every MD step
e time step: ~0.1 fs

* noisy forces

» small global error (E'
conserved, when adiabatic)

cpmd
program
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Periodic boundary conditions

C T &€ b
G O <
_____ &Y &Y &Y |
T é X E 8|t ST b
el AY &Y &Y |
£ T &€ b
_____ AY &Y (&Y |

Copies of the system in all directions con’s
- effects due to walls are avoided
- finite size effects are less

- plane waves are already periodic

- isolated systems are difficult
- fictitious periodicity
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Ensembles

The equation of motion derived from Lagrangian (or Hamiltonian)
dynamics conserve the total energy of the system.
* The micro-canonical ensemble is sampled (NVE)

Other ensembles:
NVT ensemble, by coupling the system to a thermostat (*heat bath”)
* Nose-Hoover chain (deterministic)

« Canonical Sampling through Velocity Rescaling (“bussi thermostat”)
e Langevin dynamics

NPT ensemble, coupling to a thermostat and a barostat

* Parrinello-Rahman
 Berendsen

Grand canonical (uPT), coupling to bath of particles (i.e. electrons)
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Computing properties

Ergodicity hypothesis

_ [ deNapN AN, p™) exp[-BH (xN, pV)]
[ deNdp¥ exp[—BH (xN, pV)]

(A)

ensemble average

1 t
(A) = lim — dt/A(I‘N,pN) time average

t—oo 0

Time correlation functions can be related to transport properties

Di — / d7'<?]f,; (T)?JZ(O» diffusion coeffient
0

Fourier transform of time-correlation functions allow for experimental spectra
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Water

O-0 Radial distribution function mean square displacement
2.5 1 l 1 [ L ] I [ Ll ] 1 ]
250 - .-
I CPMD ]
2
200
1.5
S 150
-
1
1
100
0.5 &
0 0

t (ps)

64 water molecules
BLYP functional

30 ps simulation Time-Dependent Properties of Liquid Water: A Comparison of Car-
NVE (T~423 K) Parrinello and Born-Oppenheimer Molecular Dynamics Simulations

I-FW. Kuo, C.J. Mundy, M.J. McGrath and J.l. Siepmann
J. Chem. Theory Comput. 2006
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Nuclear quantum effects

W Path-integral CPMD
2 CPMD results BLYP, BP ater Robert Car et al. (website)
versus Neutron diffraction (dotted) 35 : e
2 S B e T SN B L E— I s Exp.2
3.0 v Exp.3
[ & (e PBEO+Nuclear Quantum Effect
25 A .
%1 3 = &
(@) g 20F
R: i
0 ] 1.5
0 1 :
1.0
2 T T T T T T T e
0.0k
01 o
= = Distance(angstrom)
(@)
0 0  DFT GGA water is too structured
e Diffusion coefficient is too low
3 (BP: 0.35 10° vs EXP: 2.35 10 cm?/s)
02 ] e correcting for VAW is important
o1 - * ZPE correction can be included
0 CPMD contributed significantly to
0

understanding water and solvation
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Acidity of Fe(lll)

Felll(H,O)e3+ + H,O <—> Felll(H,0)s5(OH)?*+ + H30+

B0, Cttion
[HB] 1 — ZE(HgO_l_)

pKa = log(

Method x(H3O)" kA
CPMD
static DFT

expt

Friday, 12 December, 14



Warshel, Sprik,

Red OX pOtentiaIS Blumberger, Sulpizi,

Rudolph A. Marcus Cheng, and others

1992 Nobel prize in Chemistry HOMO-LUMO . ; d
B - gap is not a goo
Ae=1IP D + EAA estimate of the redox potential

»

> e (AEyo  <(AE»s  AE

PR & 0 Yy
v

o ;; L The vertical energy gap quantifies the
- Qf’ v & polarization by the environment.
e P Y « reaction coordinate:

(e Dae™ N N

~/ O AFE = Er(r™) — Eo(r").
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Lumiflavin

oxidation and protonation states

LF- LFH-
| |
N N_ O N N._ O
=z
:@[ = \EH @: | \EH
LF N N
| e ' ) : O
N N_ O
Z
ﬂ I‘:r H'IPIL\ o H* | PT2
Z NH
N
0
o | LA
N N_. O R
= e, H
LLXE = XK
NH NH
H o H 0
LFH LFH>
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AE = En(r) — Eo(r™). Redox potentials

We can histogram dE during an MD
simulation:

P, (AE") =7z / drNe PEn§(AE — AE)

~ fim ~ / CSAEEN (1) — AE') dt

T—00 T

DFT-MD (BO simulations)
CP2K program
PBE + DZVP/300Ry

lumiflavin + 102 H20
Lbox=15 A (PBCs)
NVT ensemble

sim. time: 30-50 ps
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simulation:

AFE = ER(I'

— lim —
T—00 T

")

— EO(I'

v Redox potentials

We can histogram dE during an MD

P, (AE') = 2~ / drN e PES(AE — AE')

/ CSAEEN (1) — AE') dt

And make the free energy profiles:
A, (AE) =

—kpTIn[P,(AE),

DFT-MD (BO simulations)
CP2K program
PBE + DZVP/300Ry

lumiflavin + 102 H20
Lbox=15 A (PBCs)
NVT ensemble

sim. time: 30-50 ps

P(AE)

2.0

1.0

LF< LF

AE / [eV]
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Redox potentials

What is the reorganization?
(which changes correlate with dE?)
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Redox potentials

What is the reorganization?
(which changes correlate with dE?)
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Introduction

Classical Molecular dynamics

Density Functional Theory
Car-Parrinello Molecular Dynamics
Born-Oppenheimer Molecular Dynamics
Extensions

Applications
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AIMD implementations

CPMD

PAW

VASP
quantum-espresso

Siesta
CP2K

ADF
(Gaussian

Friday, 12 December, 14



Extensions

extension to DFT-based AIMD (CPMD, BOMD)

 combined CP/BO MD, wave function propagation + minimization (CP2K)
* Brillouin zone sampling, k-space integration
 TD-DFT MD, ROKS-MD excited state molecular dynamics
e Ehrenfest, Tully’s minimum hops approach, ...
* PIMD, path-integral, ring-polymer dynamics
 HF, BSLYP, MP2 — MD
e enhanced sampling methods
e constrained MD, steered MD, metadynamics, transition path sampling
- QM/MM
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The rare event problem:

chemical reactions take place on a time
scale that as much longer than can be

simulated with AIMD

Enhanced sampling methods:

e constrained MD

e umbrella sampling
e steered MD
 metadynamics

e transition path sampling

Longer time scales

mm —
S 00 :
| h h ybrig 0049 '0’0)8
t k.
eng AA/CG %, %0
MM - Cx
RS %’%:
’é/.
47 2?2
nm — : 0/47
% ¢
(7 — hods
60(0 e e nt met
z SR
A
| | | [ | |
fs ps ns 1S ms S
time

CPMD/BOMD
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Longer time scales

Transition path sampling of electron transfer
self-exchange between Ru?* and Ru3* in water

Sampling ensemble of transition paths
* Monte Carlo scheme

* No reaction coordinate needed d‘-u
* description of stable states /’ >
* Needs initial path

L
» Can relax an unphysical (enforced) path ﬂ

(T3

Products

(‘(—33

Reactants
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Free energy calculations

Constrained Molecular Dynamics

ol
\‘I
~
ale

. HYA
+ ‘c—cr » | Cl-----C----- Cl | —» cI—C' + CI

,‘C
H

Landau free energy

. Q L
: \ < mirror
-20 - \% O reverse |
AA()\.) f d)\v _zsf N D N S S S ~0.4
A v N\ 02 03 04 05 06 07 0.8

reaction E
force of constraint coordinate

reaction coordinate
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Larger length scales

R )
QM/MM A X _~ >-\
e important part of the system N A " /: ;r
with QM (semi-empirical, HF, , : ‘l
OFT.. K ) )
e environment included with TN e . g ot e
MM (empirical force field) / ( A N ) ~

. ez f{ | \#

N s

QM-MM coupling

 Mechanical coupling: bonds, angles, VdW

* Electrostatic coupling to include Karplus, Levitt, Warshel

environment interaction into the QM system. Chemistry Nobelprize 2013
- polarization of electron density

* Link atom/pseudo potential at hybrid (QM/
MM) bonds
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QM/MM

embedded flavin Appa (BLUF)

QM/MM Redox potential calculation :
- flavin molecule in different environments 3

(water, BLUF, LOV photo-receptor proteins) g -

2 L
- CP2K !
- flavin: QM, protein+water+ions: MM I

- Sim. time: ~25 ps -

AE / [eV]
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QM/MM + enhanced sampling

Proton Shuttles and Phosphatase

C-terminal domain

Activity in Soluble Epoxide Hydrolase  termins domain

- CPMD QM/MM

- constrained MD
- 20:_ i b Rl
6 1 ! S

£ 15 ;

T 10+ i INTa _
=, 5 R proton: AW
L._fj F shuttleu |

h 0 : L 1 et | | L | J

I |
ol 3.0 2\‘_\ ri -
L 3+ ‘\\‘\\‘ - -
(@) . 5 ]
S 2.5 d1 /
S I gL . N al
o 4 ——r ) DN - 172
S 1.5 I , d2
.8 d2 /}I‘
1 : Wz
| 1 i | Bl "

RC [A]

Computational study of phosphatase activity in soluble epoxide hydrolase:
high efficiency through a water bridge mediated proton shuttle.

Marco De Vivo, Bernd Ensing, and Michael L. Klein

Communication in J. Am. Chem. Soc. 127 (2004), 11226-11227
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QM/MM + enhanced sampling

Proton transfer during signal ( 4

propagation in Photoactive Yellow ..f—\i
Protein v

- CPMD QM/MM
- transition path sampling

50 (——y—r———r—

| B S E S pa—— 80 T T T T T
x % OX2-Tyrd2 4 ! 1 % OX2.Tyrd
\ =% OX1-TheS0 % OX1-TreS0
T 40 / OX1-ArgSami11 - OX1-ArgSan11
= J ll % GL480LDL-THSONHED 60 1 PN G480 ThrSONHED |
< - % OX2-ArgSaH11 4 % C
- g | OX1.-Tyrd2 -0
- 4 ’ o
X W ] \ n i %0
T £ ll s .:
A a \ 1 £
& . .0 ‘I ~
T “ o — ,,':
> | \
O \
J \ -
ATHY / \
Intal PATHY - —
— PATHZ
r Intial PATH2
| -
: L L 1
1 '
1 1.5 2 25 e e
06 08
proton transfer (A) HMe in PICOSeconds distance (A)

Friday, 12 December, 14



Bibliography

1.Understanding Molecular Simulation; From Algorithms to Applications. D. Frenkel and B. Smit. Academic Press,
London, UK (2001).

2.Computer Simulation of Liquids. M.P. Allen and D.J. Tildesley. Oxford University Press Inc. New York, USA
(1987).

3.Unified Approach for Molecular Dynamics and Density Functional Theory. R. Car, M. Parrinello, Phys. Rev. Lett.
55,2471 (1985)

4.The Unified Approach for Molecular Dynamics and Density Functional Theory. R. Car and M. Parrinello (1989),
in Simple Molecular Systems at Very High Density, vol. 186 of NATO ASI Series, series B, Physics, P.P. Loubeyre
and N. Boccara (Eds.) (Plenum Press, NY) pages 455-476.

5.Molecular dynamics without effective potentials via the Car-Parrinello approach. D K. Remler, and P.A. Madden
(1990), Mol. Phys., 70(6), page 921-966.

6.Ab Initio Molecular Dynamics, Basic Theory and Advanced Methods. D. Marx and J. Hutter. Cambridge
University Press, Cambridge, UK, 2009.

Friday, 12 December, 14



fin

Friday, 12 December, 14



