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Common misunderstandings

1) The best orbitals are the HF orbitals
or

HF 1s the best one-electron model (because lowest one-det.

energy)
No: HF orbitals and density are too diffuse!

la) In HF the one-el. properties are OK (el. density, kinetic

energy),
the error 1s in W (el.-el. energy) due to neglect of correlation

No: errors 1n one-el. terms 7 and V are larger!



2) The KS orbitals have no physical meaning, they serve only

to build the density.

No: the orbitals have a better shape and energy (see 3) than

the HF orbitals. They

are better suited for qualitative and

quantitative MO theory.

3) There 1s no Koopmans’ theorem in DFT. The occupied
orbital energies (except the first) are meaningless.

No: there 1s a better-t|

han-Koopmans relation in DFT between

orbital energies and I

Ps: deviation for valence of ca. 0.1 eV,

against HF deviation of ca. 1.1 eV.
And theoretically justified!



4) the KS band gap (orbital energy gap between HOMO and
LUMO 1n a molecule) 1s wrong (much too small)

No: In molecules the KS gap (HOMO-LUMO orbital energy
difference) 1s much smaller than /-A (called the fundamental
gap) but it is physically expected to be

(and numerically found to be)

an excellent approximation for the first excitation energy
(optical gap).

In solids the fundamental gap (/I-A) and optical gap (usually
close to fundamental gap) are very different from the KS band
gap for a reason (not because of the derivative discontinuity).




5) Charge-transfer transitions (excitation out of the HOMO of
one molecule to the LUMO of another molecule) are not OK
in TDDFT “because of”” the derivative discontinuity

No: they are more problematic than local excitations because
of the physical nature of the KS unoccupied orbitals

6) Computational cost of KS 1s same as Hartree, much lower
than HF.

No: higher cost than HF

(unless tricks: density fitting to scale Coulomb part down to
N scaling)



The Hohenberg-Kohn Theorems
for non-degenerate ground states

HK theorems are a consequence of the variation
theorem.

Var. theorem: E[W]= <

Va\

wiAw)

(wjw) 7

E[W]: E 1s functional of W: assigns to each W (out of
the domain on which E[W] is defined) a real number E.

Function f(x) maps real (or complex) variable x on real
(or complex) f.

Functional F[f] maps function f(x) on real
(or complex) F.



Inequality!

Var. Theorem:
in particular for a non-degen. ground state ¥, :

it W=W,:, and W is normalized, then
(P|H|¥) > E,

Equality only it W =W, !



Formulation of HK theorems-1

HK-1: for non-degenerate ground states W, and local
external potentials v(r) (usually el.-nucl. pot. v, (7)):

=> one-to-one mapping

Po(r) <= v(r)<=W¥,

Only ground states W, and ground state densities p,!
— 1f you change v, then W, and p, must change!

- two different v’s cannot have the same p, (or W)

- different: v, —v, # C (over a finite domain)

— map W, — p, 18 invertible: W, <> p,



Formulation of HK theorems-2

Conseq.: all gr. state properties are functionals of p,:

Alpg | = <W0[Po]‘12\‘lpo[ﬂo 1)

e.g. 11p,] kinetic energy (not full IRDM needed)
Elp,] total energy (not full 2RDM needed)

Note: in E[p,] the operator H depends on 0,: 0,
determines v, and therefore H =T +V + W

N N
T = E Vz( Ev(r E—

i=1 i=1 i<j l]

l\)lr—*



Formulation of HK theorems-23
Elpg]= <‘Po[,00]‘f + V[Po] + W“PO[POD

This energy has no obvious lower bound:

We can always look for a p, belonging to a system
with a lower energy 1.e. with a more attractive v(r).

HK-2: a functional with lower bound exists:
For a fixed potential v, the functional
E,[p01={W[p,1|T +V +W|¥[p0,])
™~ keep v(r) fixed /

assumes a minimum for the p, that corresponds to v(r)



Corollary of HK: take v, different from v,

H, H,

<tp2 ‘P2> > <‘P1

T2+W2+f,02v1dr>T1+Wl+fp1vldr

‘P1> =FE, because W, = W,

and
<1111 ‘P1> > <‘P2

Tl+Wl+f,01v2dr>T2+W2+fp2v2dr

H, H,

sum up
f,ozv1 dr+fp1v2 dr > f/olv1 dr+fp2v2 dr (HK: p, = p; leads to
or contrdiction)

[ (02 -, =v)dr <0, ie. [ApAvdr<0

There 1s an 1terative way to find the unique v(r) belonging
to a given p,: change v(r) locally to increase or decrease p.



[ (02 - (v, =v)dr <0, ie. [ApAvdr<0

If in a small region the potential is decreased, Av < 0,

then p must change (cf. HK!),
and Ap must be positive over that region, and vice versa.

Apply to the KS potential v_: by locally adjusting v, the density can be
made to approach the exact (correlated) density from e.g. Cl arbitrarily
closely — generates the exact KS potential

0.2 -

0.0 1

Av

H atom

1.0

ria.u.)

1.5

Example:
Calculate H atom in Gaussian basis:
small deviations from exact density.

Generate potential that produces
exactly that Gaussian density: small
deviations from =1/r,

when Ap positive Av negative,

and vice versa.

Schipper, Gritsenko, Baerends,
Theor. Chem. Acc. 98 (1997) 16



Criticisms of HK

1) What about degenerate ground states? There are many!
2) Only ground states! What about excitations?

3) Can (good approximations to) E [o] or Fy[p] ever be found?



Degenerate Ground States

Suppose set of acceptable potentials V contains potentials v(r) that
have a degenerate ground state:
HY.=E,W,i=1,. g (nondegenerate case for g =1)

v defines a space {W,} of ground state wave functions:
q q

lI’=Eci‘Pi, Elci |2=1
i=1 i=1

Group together ground state densities corresponding to v(r) in set N, :

{NV}={p(r) ‘ p(r)=f|‘P(rG,X2...XN)\2 dodx,...dXy, ‘PE{‘PV}}

{‘Pv} = {\P

Total sets of wavefunctions and of densities by union:

(W= [ (w3 (N} = [ J{v,}

vevV veV



Mapping of potentials on wavefunctions on densities

4 (wy= | J{w,} Ny = V)

vEevV vev



properties of maps:

C 1s no longer a proper map: one potential v is associated with more
W’s. If v, # v, + constant, then each element of {W, ;} differs from each
element of {W ,} (same argument as before).

C‘I:{‘Pvl} — v, 18 a proper map (sets {¥ ;} and {W ,} etc. are disjoint)
map D: two ground states W and ¥, coming from different potentials
vy # vy +constant lead to different densities p,(r) # p;(r) (same argument

as before) — sets V,,; and N, 5 are disjoint.

However, W' and W coming from the same v may yield the same density:
D! is not a proper map, W[p] is not a unique functional.

Example: v(r) = -Z/r, set p states, p_ = (1/\/2)(px+ipy) etc.

P @F = lp_) = 12)([p ) + [py(0) ) # [po@)]* = p ()



Summary for degenerate states:

1) Ground state expectation values of an arbitrary operator A

is not a unique functional of p, since (W|A|¥) may differ from (¥'|A

V)

2) But energy is still unique functional of p, since W and W' that give the
same o must belong to same v, characterized by the degenerate

ground state energy.
Therefore F,,[0] may be defined as Frx[p]=(¥;[p][T + W|¥;[p])
with Wile1 €W, 3, v =vl[p]

E [p] 1s now defined for all densities p(r) corresponding to a
ground state (degenerate or not). It 1s variational:

E [pl = E, (the ground state energy of v) if pE N,
E [p]>E)if pEN,,



Is minimization of £ [ o] with constraint
Jo(r)dr=N viable? (orbital-free DFT)

E,[p]=(¥,[p]|T +V +W|¥y[p]) is minimum at p, of v

Ry
E [p]- dr-N||=0
pvet LTI [ r
O, o0 o1+ Wiph) = —v(r)+
op(r) op(r) 0o of v

But the HK theorems offer no presciption for obtaining 77p] or W[p].
Until now no success in finding sufficiently accurate T functional.

Therefore: this route has not been successful!



The Kohn-Sham molecular orbital model of DFT

Kohn-Sham Ansatz: there 1s an independent particle system of non-
interacting electrons, all moving in the same local potential v (r) such
that the density 1s equal to the exact one (of the interacting electron
system in given external potential v, (r):

Kohn-Sham orbitals from: (— % v? () +v (r )) @;(r;) = &;(xy)

N
with o (r) = Y| ¢,(r) [*= p* (r)
i=1

The HK theorems also hold for non-interacting electrons (W=0) since
proofs do not use form of W.
So v (r) is in one-one correspondence with gr. st. p (r) (and p“**“(r)).

If v (r) exists (no proof by KS; non-int. v-represent. problem) then it is

unique: no other system, with different v and p,, has same v..
It determines KS orbitals and energies: these are system properties.



Kohn-Sham model -1

How to obtain approximations to v (r)? Later.

Suppose we have v (r), obtain the true KS orbitals and p, = p™““' = p.
Write exact total energy:

E=TS +fpV dr"'(l/z)fpVCouldr"'Exc

ext

N N\
1
— E(gpi ‘ — EVZ ‘§0i> everything we don’t know 1f {(pl-} are known
=1

E_ . called exchange-correlation energy of DFT;
1s defined by above equation: that part of exact £ we do not yet

know when {¢;} and p have been obtained.

E_. 1s functional of o since other terms are:
E,lpl = E[p}-T[pl- Jov,ydr —(1/2)] pVc,p,,dr



Kohn-Sham model -2

How does E . compare to exchange energy of HF, EXHF , and the
correlation energy of HF, E _H?

E " is exchange energy of det. wavef.: —(1/2)X K,

E HF — | _ EHF

What is the exchange energy and what is the correlation energy in DFT?

Write exact energy in the traditional way:

E=T +fpv,  .dr+(1/2)[pVe,, dr+ W,

ext

exact kinetic energy exchange-correlation part of el.-el. interaction

W, = VTV— (1/2) [V, de = (172)f pe)) v, o)) dr
I
<‘P0|Erf|w0>

i<j U



Kohn-Sham model -3

v, °(r,) is the potential of the exact hole p “*(r ; r,) surrounding an
electron at position r:

if a given electron 1s at ry, the probability to find any one of the other
electrons at a point r, 1s not the total density o(r,) (which gives the
Coulomb potential),

but 1s diminished in the neighborhood of r; due to the Coulomb
repulsion between electrons



An electron traveling through a
molecule

does not see p(r,) with

potential v, ;= [ p(r,)/r,dr,
but p(r,) + Ik Ole(rz; r)

W = <W> - % [ il‘(l,z)dldz

N2 P N2
1 0(2) I'.1,2)
~ 2 (p() p) [ =222 g2 41
Zf f N2 f pny
VeourM f’;g’e Is)t;;lssitclgal
W = WCOMI + ch/ definition




Exchange-correlation energy W...

1
E=<‘P|H|1P>=T+f,o(r)v(r)dr+Ef’O(rl)'o(rz)dr1 dr, +W_,

§P)
1 PX(ry 1)
Wxe =+ drlp(l’1)f dr,
2 H2
holve
Yxc (r;)

I'(r,r)=p@)p)+I' (1,1)=

con I'(r,r
P (ryimy) = -T2
p(r)

= p(r2)+\rxc(r1,l’2)/,0(r12

hol
PXOCe (1)



Definitionot £, E_, E .

E = <‘IJ H 1P> =T+ fpvdr + lfPVcouz dr+W_.  Ein traditional
2 way
1
E=T + f,OV dr + EfpVCoul dr + E.. E in Kohn-Sham way

=>Exc=T_Ts T ch EEC+Wx=>Ec=Exc_Wx

T
C

N
Use KS orbitals to write exchange energy as W, = —%EKU
i

W..—-W, =W, the correlation part of W,
E.=T.+W. the correlation energy of DFT



Compare E, to E "

pHF _ pp_ pHF

C

C

EC

HF

+fpvdr—prder =prvdr ad 2

HF HF
+WCoul — ""Coul — WCoul,c
HF
+ch — Wx — W HF

HF HF HF HF HF
E." =T, +V." + WCoul,c +W.

=T .+W_ 1s much simpler!



Compare to HF

In Hartree-Fock E™" = <\11HF g wHF >

=>E—EHFEE£{F

And DFT? Put KS orbitals in determinant:

EKS _ <\11

Vo

1
HIPS>=TS+ vdr+— [ pve, dr+W,
fp 2fpcz
Compare to exact £

|
E=T + vdr + — Y dr+ E
Ry fp zfp Coul Xxc

 E_EXS_F _w =g  Correl energy of DFT is also
X X 7TC energy of det. w.r.t. exact energy

\)



Definition of correlation energy

‘PS 1S determinant of KS orbitals

PHE s Hartree-Fock determinant

A

—EKS=<‘I’H

\)

9

(T pHF _ <q,HF quF>

A

H

DFT <
HF<

Eexact

ET| > ESS
but by how much?



The one-particle model of DFT: Kohn-Sham

Minimization of

N
1 1
k= E@Jz | - 5V2|wi> + fpvnucdr t Ef p(rlzllz(rz) drydr; + Ly
i=1

=TS+V+WC0ul+Exc

leads to one-el. equations for optimal (KS) orbitals:

1 \
(—Evz(l) + Ve (1) + Veour (1) + Ve (1 )/wi(xl) = i (X1)

f p(rZ)dr ‘SExc [P
2
n2 op(ry)

What about potentials, orbitals and density in the KS model?
Common statements: ~KS orbitals have no physical meaning”
“The only use for the KS orbitals is to build the density”

We will prove these statements to be totally wrong!



Energy density for E, .

E..=Jp(X)e,  (x)dx

Approximations: LDA, GEA, GGA.,.....:
£,.-X) = flox), p(x), p"(x),....)

Exact g, .(X) from

E. =W . +T-1

= (112) [ p(x)v " ®)dx + Jo(R) (Vi (¥~ i (X)X

T | |
"y ALL) 7(L1)

CI CI KS



El. correlation 1s described by ®(2...Nl1)

so no wonder that v can be derived from ®(2...NI1):

hole
Vs = Vexr T YCoul TVye T (Vkin - Vs,kin) + VY

’ " from @
M ‘/‘ M Iro
VCO,l\nd Ve kin \

from ® y and y

resp

_OE,.[p] No information from this expression:
op(r)  Shape?

Physics?

Even E, [p] is unknown




Composition of v, ..

OF
V,.(r)=—= Not very transparent! Therefore use:

op(r)
E=T-T+W, = [pE)W, 4 @)dr+— f o(r)Vv™ € (r)dr

ev

OF (Sp(l’) hole
XC d
So(r) 2f Sp(r) Vi (F)dr

%/_J
o(r-r’)

op(r’) N g —p . (r)
V. i, () dr c,kin
gl dp(r)

+ [ p(r')

hole
e (r)

0
op(r)| 2

[ 1 hoze (r') + Ve kin (r') [dr'— VP (r)



Fermi hole
1 RH-H = 1.4 bohr
e

Holes 1n H,

+ Coulomb hole

RH-H =5.0 bohr

= total hole

Y

——e

NB.v .=

c kin

+V, hole + yresp

—le



In H, Fermi hole p,/*(r,|r,) for el. at r, is only self-
interaction correction term —|o,(r,) |?

So independent of r !

When R(H-H) 1s large and r is close to nucleus b, hole is,
with 0,(r,) = (1/V2) [1s,(r,) + Lsy(r,)],

—|ag(r2) 2= — (1/2) [|1s ,(rp)|> + [1s,(ry)> + 2.1s,(1,).15,,(1,)]
~ ()

Since total p is |Ls(r,)|? + |Ls,(r,)|? , the field that the HF electron at r
feels is due to o(r,)+0,(x,|r,) = (1/2) [|Ls (x,)? + |Lsp(x,)|? ]

Wrong! The other el. should be around nucleus a!
The erroneous charge of (1/2)|1sy(r,)|* that el. around b feels screens
nucleus b: the HF orbital becomes too diffuse.



Hartree-Fock densities are often
poor due to bad HF potential: H,

corr COrr Ccorr Ccorr
E total Tkin Vel —nudg Wel —el

H, (R=R.) “1.1eV |[+13 |05 [-19

H, (R=50bohr) |-39 |+89 |-85 |44

H, (R=100 bohr) [-63  |+79 |-8.6 |-5.6




Hartree-Fock densities are often poor
due to bad potential: He, H,O, Ne, N,

Bt | TG Vel W2
He -1.1  |+1.1 |-0.1 2.1
H,O 70 |+65 |[+1.0 |-145
Ne -89 |+83 |+14 |-18.5
N, -11.0 |+13.7 |-13.8 |-11.0




Hartree-Fock densities are often poor
due to bad potential: TM complexes

COTT | ~corr |y,corr corr

Etotal Tkin VelZnuc|Wel-e
MnO,~ -14.4 |+35.77 |-115.5 |+654
Ni1(CO), -34 |-350 |+147.8 [+116.3

Cr(CO), 45 |45 |+308 |-18.5




Hartree-Fock errors for bond energies (kcal/mol),
because of lack of left-right correl. in bond orbitals

Error
HF Obs.
(% of Obs.)
N, 115.2 228.6 —49.6%
F, —-37.1 38.5 — 196 .4%
H,O 155.5 232.2 —33.0%
O, 33.1 120.5 —72.5%
H, 83.8 109.5 234 %




Holes 1n H,

Fermi hole + Coulomb hole = total hole
. RH-H=1.4bohr ; -
e AEV e
LLocalized hole in DFT
| Slater: uniform

depth —o(r,)/2

RHH—50bohr i .
Cc
\/ ““' ' “\/ )

——e

NN
b\&“
N

T
&

NB.v . = + V. h"le + yresp

c kin



Total energy (a.u.)

E versus R curves (restricted HE/KS)
for dissociating H,

Bond length (a.u.)

Griining, Gritsenko, Baerends, JCP 118 (2003) 7183

Error
45

Kcal/mol



Energy

The anomalous F, case:
RHF energy above two F atoms!

Energy of

R(F-F) 2 F atoms



The functional Cloud

wB97

oeow L M81 28502 B

EBO mfv%: TLYp P B E V5LYP
wegvgigf PBESOI |W3X ag%%gggmp

BOP
. GLr;r;n B BMKO4
Bh3LYP DP 7
s PO X X
KT2 PBE muB88 MO6-2X HL71 MO6- HF mp,\\/q(05
rev HCTH PKZB99

PBEO e A S 40 LG% PL8I
wigner VWN5I§ n%g% PP§6

LC‘“ZEs?g’iBS%BBB%ng] TPSSP“E%%BJ%

EDF2 m =
~GO6CAEIT

Courtesy of Peter Elliott, Hunter College, New York



"exact" KS and HF energies of N, D,=0.37 a.u.

R (bohr) 2.074 3.0 35

T 109.070  |108.095 |108.223
T —THF = 0.296 0.692 0.903
T-T,= Ty, (KS) [0.329 0328  |0.313
T-THF = Tp.;)" (HF ) 0.625 1.020 1.216

(exact=KS) |-303.628 |-288.260 [—283.780

el -nuc

Vo e (HF) 0558  |-1330 |-1.759
W, (exact) 75 068 67858  |65.666
Wéou (HF) 0.274 0716  |0.980

Gritsenko, Schipper, Baerends, J. Chem. Phys. 107 (1997) 5007



KS and HF energies of N,  D_,=0.37 a.u.
R (bohr) 2.074 3.0 3.5
W, (KS orbitals) —13.114| -12.621| —-12.490
W, — W HF= 0.006| —0.040| -0.067
W. =Wy -Wy ~0.804| —0969| -1.063
W.(HF) =Wy - Wi —0.810| —1.009| -1.124
E. 0475 -0.641] -0.750
E (HF) —0469| -0.603| —-0.687
E.— E (HF) ~0.006| —0.0038| -0.063

Gritsenko, Schipper, Baerends, J. Chem. Phys. 107 (1997) 5007




Hartree-Fock: good for atoms,
not for molecules (bonds)

In an electron pair bond:

a) HF orbitals will be too diffuse (density too diffuse)

— kinetic energy too low

— electron-nuclear energy too high (not negative enough)

b) this 1s worse in case of multiple bonds

C) common statement

“one-particle properties (also the electron density!) are good in the
Hartree-Fock model, it 1s the el.-el. interaction that 1s wrong,

because of lack of electron correlation

(electrons do not avoid each other sufficiently, cf. the presence of 1onic
configurations in the H, wavefunction)”

IS WRONG



Conclusion HF versus KS det.

—WHF better total energy (marginally)
E.<EHr

W better for:
%

el-nuc

WCoul
T : (much) smaller correl. error

no correlation error

HF "distorts" density (more diffuse) if:
gain by lowering T"" is larger

(even if barely) than
loss by less stable V



Energy components for CO at R,=2.132 bohr

LDA |BLYP | |EXX |HF KS CI
T, |111.951 |113.181 | |112.395 |112.641 |112.881 |113.185
AKS | +0.930 | —0.300 +0.790 | +0.544 | +0.304 | (T)
V, |-310.170 |-311.520 | |-310.651 |-310.879 |-311.256 |-311.256
AKS | -1.086 | +0.264 -0.605 | -0.377 0.00
W, | 76204 | 76.391 76.251 | 76262 | 76399 | 76.399
AKS | +0.195 | +0.008 +0.148 | +0.137 0.00
Wy -12.064 |-13475 | |-13296 |-13331 |-13.319 |-14.089
AKS | =1.255 | +0.156 -0.023 | +0.012 (Wyxc)
Sum |-134.079 |-135.423 | |-135.301 |-135.307 | -135.295 |-135.761
ACT -0.460 |-0.454 |-0.466
E |-0950 |-0.486 (=0.460) |(-0.454) |(-0.466)
E, . |-135.029 |-135.909 Baerends, Gritsenko | 135761
-0.732 | +0.148

JCP 123 (2005) 062202




Energy components for CO at R=2.8 bohr

LDA BLYP |EXX HF KS CI
T, |111.023 [112257 (111437 |111.662 [111.977 [112.270
AKS | +0950 |—0280 | 40833 | +0.608 | +0.293
vV, |-298.862(-300.239 |-299.216 |-299.430 |-299.777 [-299.777
AKS | —0915 | 40462 | —0.561 | —0.347 0.00
W, |71038 [71241 [71.071 [71.045 [71.073 |71.073
AKS |+0.035 |-0.168 |+0.002 |[+0.028 0.00
W, in(-11.752 [-13.168 |-12973 [-13.027 [-12.980 [-13.822
AKS | —1228 | +0.188 | —0.007 | +0.047 (Wye)
Sum |-128.553 [-129.909 |-129.738 [-129.750 |-129.707 |-130.256
AC ~0.518 | -0.506 | —0.549
E | 0935 | -0472 |(-0.518) | (- 0.506) | (- 0.549)
E . [-129.489 |-130.381 Baerends, Gritsenko | —130.256
ACI | —0.767 | +0.125 JCP 123 (2005) 062202




Time-dependent DFT

Runge-Gross: HK theorem holds for time-dependent case

v(r,1) < p(r,1) < W (1)

Kohn-Sham (orbital model) in time-dependent case :

(-1V2 + vS(r,t))wf(l’J) = ihiwf(rﬁ
) ot

N 2
py(r0) = Z i (e.0) = ™ )
1=1




LINEAR RESPONSE (15" order Pert. Theory)

op(r,w) = f x(r,r' w)ov(r' w)dr'
x(r,r',w) :first order response function; difficult

(requires sum over all excited states)

Kohn - Sham : 0p(r,w) = 0p, (r,w)
= [ x5 x @)y (r' w)dr’
|

response function of

noninteracting system: simple!

ov,(r',w): how related to ov(r',w)? (difficult?)



Linear response: ov

OV (r',w) = ov(r',w) + v oy (r',w) + vy . (r',w) = ov(r',w) + OVipduced @ @)
¢ !
f 5[)([' f 6VXC (f ’w)5p(r",a))dr"
ﬁp(r ,w)J
fxc (I'Y,I'” : O())

the xc kernel

OF OF

_ xc PN — xc
VaeE0)= o o) S e (£,1,00) Sp(r.0)00(r )
4K 1/3

LDA-Xonly: E,. =K [ p*dr; Ve (00) = —=p 1 (r.0);

fxe(@.r',m) in local, adiabatic appr. (ALDA) = 471{ p—2/ 3(r)o(r - 1)



){S(r x') from first order perturbation theory:

Perturbation Ov (r) induces changes in the orbitals:

Op;(r) =

@, (r)

25 <¢”5V‘¢%>

p#l P gi

p(r) = En,-qomcpf (r)
i=1

H
50(r) = Y m;(@:(r)dg; (1) + 8, (1) ()

-S3

i=1 p=i

i=l1

~{g,lov|e, o, @ ()

g0 {@ilovle,) 7@

£, &

£, &




convention for summation indices:

I, j, k, I, .... indices for occupied orbitals, <N
a, b, ¢, d, ...indices for unoccupied orbitals, > N

P, q,t, s, ... general indices



OCC.- OcC. pairs drop out

50(r) = i 3 G (@ilovle,) 70 ~(01]ov|e, )o, g )

i=1 pei Ep ~&i Ep ~&i

if 7 and p are both occupied orbitals, e.g. k and [, then:
™

tori=k.p=1: PO Vss , Vou PPk

& — & & — &

. CANCEL!

*V %k
~O1@r Vs ki - skPr¥1r  —~
Er — & Er — €&

fori=Il,p=k:

Only p-values with p unocc. survive



Definition of

H -_ . . ook L. . ]
Sp(r) = E E %(l')<<,‘0, |(5vs|%> ®,(r) . <cpl |5Vs|%>%(1')¢, (r)

Eq — & €, &

=1 a>H

farS S -0, (0g; (Mg, (M@, (r)  -¢; (F)e,()e,(r)g; (r)

Eq — & €, &

ov,(r')

I€o0cc a&unocc

= XS (rar,)

X ¢ comes straightforwardly from Ist order pert. theory;

only KS orbitals and orbital energies needed



Time-dependent case (linear response =1* order Pert. Th.)

op(r.1)= 3 1, (wl- (1, )W} (r,1) + W} (r,1) 0 (r,t))

Suppose perturbation ov, (r.t) with single frequency w:

Tt ek
oprm)=y " n,-wl.(r)zpa(r)(xi‘g+xiaw )e oy ce

] 5 ’ %k
o _ (0o (r.)rg(r) - X, X ar
& —€,+®
ov,(r,w) =0v,,(r.w)+ f dr' 6"(; (i ::‘)) + 0v .. [0p](r,w)
Vv

induced



op(r',w)
r-r]

oV (r,w) =0v,,;(r,w) + f dr’ + 0V ..[0p](r,w)

J/

v

Vinduced(r ,CU)

"uncoupled": v, , =0

Lop(r’,w
"coupled":  Coulomb part: OVey (T,0) = f dr "(;(_r,‘)
ov,.(r,m)
.oV (r,w)= | dr' 2" Spo(r',w
XC part: OV ¢ (X,0) f So(r' ) p(r',m)
/l\v /
S e @ .10)

usually adiabatic LDA (no w dependence)
for XC kernel f_(r.r',w)



Shortcut to matrix equations for excitation energies

Put 1in matrix form with basis sets:

op(r,w) — OP; (w) — OP(w) density perturb. occ.unocc supervector

IT(w) — response + coupling 0cc.Unocc X 0CC.Unocc supermatrix

ia,jb
ov; (W) ] — external perturb. potential occ.unocc supervector
OP(w) = II(w)oV(w) density response due to external perturb. field
I(w) ' 6P(w) = 6V(w)

H(a))_1 often has structure (K—-wl)

Then (K-wl)oP(w)= 0V(w) is solvable for oV(w)=0 (no perturb.)
when det{ K-w1}=0, or at eigenvalues of K: KoP; =w;dP;:

Excitation energies!

A system can have free oscillations oP; (“response”) without
perturbation at its eigenfrequencies { w;}



Leads to TDKS (cf. TDHF) equations, dimensionn_.n . x n

occ' virt

n

occ' *virt®

(€2 +26°KE:

- wz)S_E(X+ Y)

F

= OV ()

Cf. Y. 0p

Vi = (W;(0) Y gy (.01, (1))

S Kig p(X+Y) ) = (0,0 vinalvr, )

ib

Inhomogeneous equation (0V&(w) # 0):

oV

at each w: F(w) = 6p(r,w)— polarizability o) etc.



Excitation energies: 0V =0

(€2 +2EKE? - w?)F =6V () =0

Homogeneous linear equations (0V¢ = 0):
eigenfrequencies of system (excitation energies) are solutions of

1 1 1 1
(82 +2E2KE2 —a)z)F =0 or (82 + 282K€2)F = 0°F

Excitation energies!

Ingredients: orbital energies ¢, €

1’ “a

orbital shapes v, v,
xc kernel f,..



So we need good orbital shapes and
good orbital energies.
But: what 1s the meaning of KS orbital

energies’?

Prevailing view, see e.g.

R. G. Parr, W. Yang,
DFT of Atoms and molecules, 1989

"...one should expect no simple physical meaning
for the KS orbital energies. There is none”



Orbital energies of occupied orbitals:

Exact Kohn-Sham:

- HOMO orbital energy exactly —/, (ionization en. to 1on ground st.)
because of asymptotic density behavior

- upper valence orbitals: very close to 1onization energies (~ 0.1 eV)

- core orbitals: still good, too high lying by 10 — 20 eV

LDA, GGA:

- all orbital energies are shifted up by a molecule-dependent constant
ofca.4-6¢V

Gritsenko, Baerends: JCP 116 (2002) 1760 (with Chong);
JCP 117 (2003) 9154; JCP 119 (2003) 1937 (with Braida);
JCP 120 (2004) 8364; JCP



v _lole and the interpretation of orbital energies

1°. Long range (asymptotic, r— OO) behavior

- 5
—1V2=—l 82 28+ ! (sm@ 5 12 82
2 2_8r ror r%sing 90 89 r-sin“ 6 dg
[ .2
21 9r ror| 2 2

Consider limit r — o of KS equation (—%V2 +V, (1'))%' = &Y,

0 1/& AL AR

ar r or

1
2 DH"/JI 2 quwi + v (D)Y; = &1

I"

At each point r this must be an identity.

At Irl — oo all terms are negligible compared to:

181,/}1
28r

+V( )wz_ng

So asymptotic solution is y; ~ e_\/_z(gi V() 1

All potentials in v, go to 0: y; ~ o N2 T



Long range behavior

So asymptotic solution is ; ~ e_\/_z(gi ~vs(®) 7

All potentials in v, go to 0: v () =0, ;~ e-\,_zgl. r

Each orbital has its own exponential decay, so density decays as

slowest orbital density decay, 1.e. HOMO: p(r)~ e N2 T

Katriel-Davidson (1980): density decays like e"z\/ﬁ’”

Conclusion: e =-1

Now take anion: LUMO now occup., slowest decay
(M )=-1I(M")=-AM)

IM)=Ey"' -E)  AM)=E) -E)™

IM)=E}) -EY* = A(M)



KS and HF orbital energies and VIPs for H ,O

H,0O |MO |HF |KS |Expt. |I,+& ey -

—& —& I

15, 13776 112.63 |12.62 |-0.01

]
3a, 15777 11478 |14.74 |-0.04
15, 1929 1846 |18.55 (0.09

Average 097 [0.05
Dev.

2a, 3648 [30.89 |32.2 1.31 |4.27

la, 559.37 |516.96 |539.90 [22.94 |22.46

Average 11.88 |12.13 | Chong, Gritsenko, Baerends,
Deyv. JCP 116 (2002) 1760




CO : KS and HF orbital energies and VIPs

CO MO |HF KS Expt. |I,—(—¢) ey -
—&; —&, I
So 15.10 |[14.01 [14.01 |0.00
1z 1743 16,777 1691 |0.14
4o 2190 11933 [19.72 [0.39
Average 1.26 |0.18
Dev.
30 4141 |34.69 |38.3 3.61 4.54
20 309.13 [278.83 1296.21 |17.38 16.277
lo 562.32 [519.71 [542.55 |22.84 22.49
Average 11.93 |14.61

Dev.




CO : KS, GGA-BP and HF orbital energies and VIPs

CO

AAD
(val)

AAD
(1nner)

MO

50

I
4o

30
20
lo

HF
— gl’

15.12

17.42
21.94
1.28

4147
309.17
562.36
11.98

GGA-BP
— gl'

9.18 (4.83)
11.95 (16.78)
14.27 (19.10)
508  (0.25)

2947 (34.29)

272.50 (277.33)
513.53 (518.37)
2052 (15.69)

KS
— gl'

14.01
16.80
19.37
0.15

34.70
27927
519.92
14.39

Expt.
I
14.01

1691
19.72

38.3
296.21
542.55



HCIl: KS, BP and HF orbital energies and VIPs

HC] M |HF GGA-BP KS Expt.
O —¢& —¢& —¢& I
27 [12.97 8.13 4.64) |12.77 [12.77
50 [17.04 1190 (16.53) [16.53 |16.6
40 (3041 2122 (25.86) |25.82 |25.8
AAD(val) 1.75 4.68 (0.04) 10.03
Iz |218.77 |190.98 (195.62) |199.59
30 (21884 [191.27 (195.91) [199.79
20 [287.75 1250.44 (255.08) [259.80




S10: HF, GGA-BP and KS orbital energies, expt. Ips
BP: HOMO 4.02 eV higher than —IP; second column: all &% —4.02

S10 MO HF GGA-BP KS Expt.
—; —&; —E; I
7o 11.93 7.59 (4.02) 11.61 11.61
27 12.90 8.22 (12.24) 12.29 12.19
60 16.63 10.83 (14.84) 14.80 14.80
AAD (val) 0.95 405 (0.03) 0.03
S50 3441 23.59 (27.61) 28.01
¥4 116.22 95.82 (99.84) 101.62
40 116.20 95.61 (99.63) 101.96
30 167.88 13895  (142.97) 14551
20 558.69 51048  (514.50) 518.75

lo 1872.70 1783.13 (1787.15) 1802.16



N,: KS, BP and HF orbital energies and VIPs

N> MO HF KS Expt. I, +¢,
—&, —&, I,
30'g 17.27 15.57 1558 |0.01
lr, 16.72 16.68 16.93 0.25
20, 21.21 18.77 1875 |-0.02
Average dev. 1.45 0.09
2(7g 40.04 33.69 37.3 3.61
lo, 426.67  |389.72 409.98 |20.26
1ag 426.76  |389.76 40998 ]20.22
Average dev. 12.07 14.70




Virtual orbital energies

What are virtuals like in DFT? And in Hartree-Fock?

Big difference between HF and KS virtuals:

necessary to understand the difference to understand

- why TDDFT works so well (in general for molecules);
- why there 1s a problem with charge-transfer transitions
- the “bandgap problem” 1n solids

Difference between KS and HF virtuals are consequence of

hole -

v.. —1n KS potential, and absence in HF exchange operator

hole 1eads to good shapes and energy of KS virtuals
(as 1t did for KS occupied orbitals)

VXC



Meaning of unoccupied orbital energies €, €, ....

HF': unocc. orbital represents added electron
— ¢ 1 is affinity level; ,"— ¢/ is NOT excitation energy

KS': unocc. orbital represents excited electron
— ¢ K- ¢ X5 IS good appr. to excitation energy

NO = KS o* density
H,
HF virtual orbitals are at
(much) higher energy
and (way) more diffuse
T than KS virtual orbitals

HF o* density



HF, DFA and exact KS HOMO orbital energies

Ly
H,0
HF
Np
CO
HCN
FCN
HCI

HF
—16.18
—13.88
—17.69
—16.71
—15.1
—13.50
—13.65
—12.98

LDA
—10.26
—7.40
—9.82
—11.89
—9.11
—9.23
—8.97
—8.15

KS HOMO i1s equal to — I;
HF HOMO is appr. equal to — [, (frozen orbital approx.)
LDA, GGA orbital energies are upshifted by ca. 4.5 eV

(uniformly: occup. and unoccup valence orbitals)

BLYP
—10.39
—7.21
—9.64
—11.49
—9.00
—8.87
—8.62
—791

KS =1,
~16.44
~12.62
~16.19
~16.68
~14.01
~13.61
~13.67
~12.77



HF, DFA and exact KS LUMO orbital energies

HF LDA BLYP KS
H, +1.42 +0.31 +0.12 -3.93
H,0 +0.80 -0.92 ~1.06 -5.11
HF +0.81 -0.93 ~1.13 -5.71
N, +3.91 221 ~1.91 -6.77
CO +1.88 —2.24 ~1.94 ~6.56
HCN +1.93 133 -1.07 -5.53
FCN +1.16 ~1.66 ~1.59 ~6.01
HCI +0.79 ~1.11 ~1.15 -5.36

KS LUMO is at negative energy: a bound one-electron state in the KS
potential.

HF LUMO is most of the time unbound (positive orbital energy)

LDA ,GGA LUMO: still negative -> therefore bound state



KS HOMO-LUMO gaps A are excellent
approx. to excitation energies

AHF ALDA ABLYP  AKS Expt. excit. energy
singlet  triplet
H, 17.6 10.6 10.5 12.5 12.7 11.7
H,O 14.7 6.5 6.2 7.5 7.65 ES
HF 18.5 8.9 8.5 10.5 10.3 99
N, 19.9 9.7 9.6 99 9.3-10.3 7.8-8.9
CO 17.0 6.9 7.1 7.5 8.5 6.3
HCN 154 7.9 7.8 8.0 8.8 6.2
FCN 14.8 7.3 7.0 7.6 84 7.8
HCI 13.8 7.0 6.8 74 7.8 74

1) The LDA, GGA gaps are similar (slightly smaller) than KS gaps
-> the upshift is similar for HOMO and (a bit smaller for) LUMO

2) HF gaps are much larger: they are Koopmans’ approx. IP - EA



0.0

Energy

............................ 4
—A 3 ! €,(M7)
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exact KS



What 1s the meaning of a (HF) LUMO
with positive orbital energy?

resonances
at specific E

e AAVAVAVATAVAVAVAVIV.VAVAVAV R




What 1s the meaning of HF LUMO with positive
energy’

Note: positive one-electron states in a potential (zero at infinity):

- there 1s a continuum of positive states;

- most have plane-wave behavior with only a few orthogonality wiggles
over the molecular region;

- at specific energy (small energy ranges) the one-electron states have
large amplitude 1n the molecular region (small plane-wave like outside)
-> “‘scattering resonances” with resonance energies corresponding to
potential electron capture to form a temporary negative ion, which will
decay after some time to molecule + free electron.

Since energy at scattering resonance 1s positive,
i.e. higher than free molecule and electron: negative electron affinity!

If there are no negative energy unoccupied orbitals (bound states) for the
HF operator (frequently!), what 1s the meaning of the pos. energy orbitals?



Orbital energies (eV) of the positive energy
HF LUMO of H, as tunction of the basis
(STOs)

SZ DZ DZP TZP TZ2P Qz4P ETQZ3P
2D

lo 18.12 552 5.11 3.39 3.45 2.67 1.18
u

lo. -15838 -1626 -1620 -1621 -1620 -16.18 -16.138
g
gap 3400 21.77 2131 1959 1966 1885 17.36



Orbital energies (eV) of the positive energy
HF LUMO of H, as tunction of the basis

(Gaussians)

cc- cc- cc- aug-cc-  aug-cc-  aug-cc-  aug-cc-
pVDZ pVQZ pVSZ pVDZ pVTZ pVQZ pVSZ

lo 5372 391 3.14 1.67 1.42 1.28 1.14

u

1g. 1611 -16.18 -16.18 —-16.12 -16.18 —-16.18 —16.18
g

gap 2148 2066 1933 1780 1760 1746 1732

Orbital energies of LUMO are arbitrary; completely determined by the
basis set.

Go to zero for complete basis.

What about shape? Should go to infinitely extended.



Shape of the 10, LUMO density of H,
as a function of basis set:

e SAOP QZ3P2D
e HF TZP

s HF QZAP

HF QZ3P2D

-5 4 -3 2 -1 0 1 2 3 4 5
Distance from bond midpoint (a.u.)



Electron affinity (in eV)

7

4

6 5 4 3 2 1 0 -1 -2 -3
. 3
o P an s o 2
Positive HF & yvqo! . Je Py ée'? 1
T 00%0 s i
O 5" '{x;:"x 0
/.(‘" ;3 [ .’: '. —1
— 2:&:.‘"’1;'.' i
CCSD(T) negative EAs: | 22
basis: 6-311++G(3df 3dp) |[«* ** 3 L
Tt k3 HF | %
s MO06-2X . | -4 =
LC-BOP « | & w
BOP -
BLYP - || -0
Legau-BOP * || _7

Calculated LUMO
energies vs EA for
113 molecules.

EA from CCSD(T),
basis:
6-311++G(3df,3dp)

(Kar, Song, Hirao,
JCC 2013)
Almost all HF

& umo Positive!



Practical ways to get scattering resonances
(negative EAs) with basis set calculations

Stabilization method (H. S. Taylor et al.), also called SKT (stabilization
Koopmans’ method):

Systematically scan through the spectrum of positive energies by scaling
the coeftficients of all diffuse basis functions to very low value (diffuse).
Then orbital energies go down in energy as function of scaling parameter
Q.

Detect resonance energies by inspecting the orbitals; when getting high
amplitude in molecular region, you are at resonance energy.

Or by looking at curves of orbital energy as function of ¢: resonance
energies show up as “avoided crossing”.

See K. Jordan et al. (JPC-A 104 (2000) 9605) and Cheng et al. (JPC-A
116 (2012) 12364)



Orbital energies and excitation energy calculations (TDDFT)
TDDFT: (€7 +2JEKVE|F, = w}F,

(gz)ia,]b = %% (€4 -&)’

K 1s "coupling matrix", see later

Suppose i — a does not couple to other j — b

(single pole approximation, SPA),g=i—a
(e, =) +2(8, = &) [ 9O, (O f, . (0.0),(X)p, ()drdr’ |F, = °F,

= = (€a —5i)+éq0i¢a |fxc |¢i¢a2
sn;;zll

(¢, — &) = excitation energy (in molecules!)




Acetone: orbital energy differences and excitation energies (eV)

Funct.

SAOP
(= KS)

BP86

State

1A,
1B,
2A,
2A,
2B,
3A,
3B,
1B,
1A,
1B,
2A,
2A,
2B,
3A,
3B,
1B,

Weight

1.00
1.00
0.84
0.97
0.97
0.97
0.97
0.95
1.00
1.00
1.00
1.00
1.00
0.98
1.00
1.00

€

—10.25
—10.25
—10.25
—10.25
—10.25
—10.25
—10.25
—10.25
—5.71
=5.71
=5.71
=5.71
=5.71
-5.71
=5.71
=5.71

€a

-5.92
—4.18
—2.72
-3.09
—2.63
—2.04
—2.51
-5.92
—-1.70
—0.61
—0.11
—0.13
—0.07
+0.36
+0.05
+0.31

AE;,

4.33
6.07
7.53
7.16
7.62
8.21
7.74
7.92
4.01
5.10
5.60
5.58
5.64
6.07
5.76
6.02

W O-Ag,
459 026
609 0.2
752 0.0
721 005
764 002
820  0.00
774 0.00
817 024
427 026
510 0.0
559 0.0
558 0.00
564  -001
606  -001
575 000
601  -0.01

W-E,y,

0.16
-0.27
0.16
-0.20
0.15
0.40
-0.35
0.00
-0.16
-1.26
-1.77
-1.83
-1.85
-1.74
-2.34
-2.16



""" Orbital

__________ energies

LR 8 N ]
‘. . .
‘o EEN EEN EEE N -

, -

aa

.
xR B N

Rydbergs ¥ — i @ === = ===
valence / R __l___ o ____.
virtuals >—L
—H— —H—
—H—' I —H—' I
| | |
| | |
occupied | | |
orbitals ! ! !
' LDA/GGA potntl:
3 strongly upshifted
exact KS valence orbs LDA/GGA LDA/GGA
potential (occup. and virt.); small basis large basis

weakly upshifted
fewer Rydbergs



Level diagram of excited states in N,

1>
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1
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Acetone: orbital energy differences and excitation energies (eV)

Funct.

HF

MO06-2X

State

1A,
1B,
2A,
2A,
2B,
3A,
3B,
1B,
1A,
1B,
2A,
2A,
2B,
3A,
3B,
1B,

Weight

0.47
0.36
0.43
0.20
0.31
0.21
0.23
0.84
0.52
0.73
0.62
0.62
0.45
0.79
0.42
0.92

&
1123
1123
1123
~11.23
~11.23
~11.23
~11.23
~1123

~8.85
~8.85
8.85
_8.85
~8.85
~8.85
~8.85
~8.85

€a

+3.96
+0.62
+1.02
+0.96
+1.20
+3.96
+1.74
+1.12
+0.78
—0.34
+0.04
+0.03
+0.15
+0.74
+0.64
+0.73

AE;,

15.18
11.85
12.25
12.19
12.43
17.15
12.96
12.35
9.63
8.51
8.88
8.87
9.00
9.58
9.49
9.58

W -Ag,
503 -10.15
824  -3.61
902  -3.23
907  -3.12
913  -3.30
941 774
959  -337
9.89  -2.46
403 -5.60
654  -197
733 -1.55
738 -149
740 - 1.60
803  -1.55
780  -1.69
812 -145

W-E,y,

0.60
1.88
1.66
1.66
1.64
1.61
1.50
1.72
-0.40
0.18
-0.03
-0.03
-0.09
0.23
-0.29
-0.05



Funct.

SAOP
(= KS)

BP86

State

1B,
1A,
1B,
2A,
2B,
1A,

1B,
1A,
1B,
2A,
2B,
1A,

Pyrimidine: valence excitations (eV)

Weight

1.00
0.98
0.74
0.98
0.99
0.76

0.99
0.99
0.72
0.98
0.99
0.71

€

—10.30
—10.30
—11.45
—11.54
—11.54
—11.45

—6.03
—6.03
—7.41
—7.28
—7.28
—7.41

€a

—6.52
—6.12
—6.52
—6.52
—6.12
—6.12

—2.42
—2.07
—2.42
—2.42
—2.07
—2.07

AE;,

3.78
4.19
4.93
5.02
543
5.33

3.61
3.96
4.98
4.86
5.21
5.33

W O-Ag,
397 0.19
427 0.09
557 0.64
527 024
557 0.5
6.44  1.12
380  0.19
404 008
558  0.60
501 026
535 0.5
644 1.1

W-E,y,

0.12
—0.35
0.45
—0.25
—0.33
—0.26

—0.05
—0.58
0.46
—0.41
—0.55
—0.26



Funct.

TDHF

MO06-2X

State

1B,
1A,
1B,
2A,
2B,
1A,

1B,
1A,
1B,
2A,
2B,
1A,

Pyrimidine: valence excitations (eV)
Weight

0.73
0.29
0.69
0.63
0.49
0.52

0.95
0.93
0.76
091
0.94
0.69

€

—11.31
—11.31
—10.21
—12.87
—10.21
—10.21

—8.92
-8.92
—9.43
—10.31
—10.31
—9.43

€a

2.20
2.61
2.20
2.20
0.68
0.63

—0.49
—0.15
—0.49
—0.49
—0.15
—0.15

AE;,

13.51
13.92
12.41
15.07
10.89
10.84

8.42
8.77
8.94
9.82
10.16
9.28

W O-Ag,
570 7.8l
638  —7.54
6.12  -629
730 -7.77
732 357
819  —2.65
426 4.7
475 401
572 322
573 —4.09
621  —3.96
637 291

W-E,y,

1.85
1.76
1.00
1.78
1.42
1.49

041
0.13
0.60
0.21
0.31
—0.33



Difference orbital energies in Hartree-Fock and DFT (1)

Molecular

excitation  Why is KS virtual-occup. orbital energy difference
a good approx. to excitation energy?

The xc hole plays a crucial role here: it 1s a local
hole, exerting a strong attraction at each

position r. This attraction mimicks the attraction

el _ Wavef_ that in reality would occur by the “depletion hole”
in orbital i where the electron came from.

The virtual orbital in KS theory 1s a one-electron
state for an electron that feels a hole potential,
1.e. 1s like the electron in the electron-hole pair
that 1s created 1n an excitation.




Difference orbital energies in Hartree-Fock and DFT (2)
Molecular Hartree-Fock det. g =|yy,... 9y |

Koopmans' appr. to excitation (frozen orb.):

excitation
i—=a O <[y Yy, yy |
el. wavef.

“pef-E@ = g 4K,
no hole electron-h:gattraction s;,a_lJl
attraction in Ji,=(i(Da(2)|i(ha(2))

HF virtual orb. . .
energy High HF € aHF (due to lack in Fock operator for
virtual ¢) 1s “pulled down™ by
depletion hole (/).
hole € X5 need not be pulled down, it is already low
I —— o lying due to pull by xc hole.
wavef. NB. shape of v " and 1 % is very different!

y ' not realistic!




Compare to how TD-DFT works in EXX variant
(see Gonze-Scheffler, PRL 1999

EXX: local potential v (r) appr. to KS pot. with only W %5 as xc
functional (also called OPM). v (r) has X hole, v 1s “pulled down”.

TD-EXX gives Kernel correction to (¢, — ¢; ) for excitation energy:
W = (861 - gi) +<¢i¢a ‘fxngX ‘¢i¢a>
= (ga _gi)+<(pa ‘IgHF —Vx ‘(pa>_<(pi ‘I%HF —Vx ‘(pi>_ ]ia + Kia

24 term shifts €, up from (appr.) KS level € *° to (appr.) HF level € "
(because v, 1s unoccupied!)

34 term has little correction on &; (&% = MM = -IP;) anyway

4% term (—J ;o) provides electron-hole attraction to correct ¢, after
upshift from 2d term back to = £_*°.

- 5t term small.

TD-EXX benefits from good shape of waKS'EXX compared to waHF !



Charge transter excitations between two remote molecules are
much too low in TDDFT. Why?

A=p -
AD _AA———— """"""""" /+ AA A~
IAA 0 Ea=A=A

Ed+1 | /

—I D—H— £4 - +€;—1

D A A

CT transition should be: I? — A4 — J, (= -1/R)
Exact KS: E1=— P, £, = _AA M

TDDEFT gives appr. (&, — ;) +<yy, Y f .| W, ¥ >
P - A N ~0 over all space if R large
wrong by A — zero contrib. from kernel term



Charge transfer excitations between two remote molecules

TDDFT gives appr. (¢, — £,) +<yp Y lf . Jw, > = 1P — A% - A

Now KS orbital energy difference i1s NOT good! Why?
Because xc hole and actual depletion hole are too different.

hole .

Ve : potential due to hole of —1 electron (is +1 charge) around each

reference point — strongly attractive

depletion hole —| |* is far from points r on A where potential is
evaluated, so little stabilization should be experienced by electron
from far away hole;
electron 1s like an added electron to A.
Now HF ¢, HE . _pa (Koopmans) would be better:

7 <wa

1 5 HF

_EV +Viue +Veoul + K

> (K" nohole for virtual orb.!)



Charge transfer excitations between two remote molecules are
much too low in TDDFT. Why?

Molecular Charge transfer excitation
exciltation
transferred el.
wavet.
el. wavetf.
— _____KSLUMO
| stabilized
hole f by
wavel. xc hole

Donor Acceptor



Comment on bandgap 1n solids (1)
conduction band

delocalized electron wavef. of excited electrons
| — —_— |
—_—— —>
exciton
}nO
weak 1} stabiliz.
stabiliz. \ KS conduction band, strongly

‘ stabilized by local xc hole

|
|
A

_ﬂ Fermi level

y deloc. hole wavef.

valence band

Do not expect bottom of conduction band states in DFT to be affinity level



Comment on bandgap 1n solids (2)

LDA/GGA bandgap often only 30 — 50% of the fundamental gap (/ — A)
Surprise?

Maybe true KS gap will be close to (1 — A)?

No: Godby, Schliiter, Sham 1986; Griining, Marini, Rubio (2006):
LDA/GGA gap = KS gap (as we saw for molecules!)

To be expected:

Actual hole-electron interaction 1s different from electron - KS xc hole
interaction:

- KS xc hole is small (~ atomic size, one unit cell in S1) -> strong pull
- fully delocalized electron and hole states: no pull

- excitons: Wannier-Mott: still diffuse electron wavefunction,

e.g. S1: Bohr radius of exciton ca. 4.3 nm = 100 bohr

— very little electron-hole stabilization

[Frenkel excitons in e.g. molecular solid may be more like molecules]

NB. explanation for solids very much like for the CT problem
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Failures of time-dependent DFT

a) Wrong Potential Energy Surface (PES) for
bonding — antibond. excitation

b) Failure to treat doubly excited configurations
¢) Too low charge transfer excitation energy

a) and c) are cases where leading term (¢, — ¢;) is
wrong and usual kernel (ALDA) fails to correct



a) Bonding-antibond. excitation problem in TDDFT

I3 * states in H,: lowest is (og)2 — (og)l(au)1

1

cc-pVTZ basis

H,

exact

— BPS86

excit. energy (a.u.)

B3LYP

0 ‘ ‘ ‘ ‘ ‘ w w w Gritsenko, v. Gisb.
1 2 3 4 5 6 7 8 ° 1011 Gorling, Baerends,

R R(H-H) bohr JCP 113 (2000)




N, ! * PECs: exact Gr. St. + TDDFT

“Exact” ground state plus
7’1TDDFT excit. energies

N

= MRCI excited states

A .| __—»and ground state

\/(ground state ( )

K. J. H. Giesbertz,

~108.4
~108.6 —

5

3 -108.8-

> -

o

S -109.0

q) —
~109.2 -
~109.4

RN-N [a.u.]

E. J. Baerends
10 CPL 461 (2008) 338



N, 'S * PECs: DFT Gr. St. + TDDFT

2 TDDFT excitation en.
added to

> DFT Gr. St. energy

ground state (125)

~108.4
~108.6 —

=

3 -108.8-

>, -

o

S _-109.0

GJ —
~109.2 -
~109.4

|
2

L L
4 6 8

Rn-N [@.U.]

10



b)Double excitation problem in TDDFT: 12g+ states of H,

1
cc-pVTZ basis
0.8
= exact
L
>
gos
s — BPS86
’5;
3 0.4
' B3LYP
0.2 ‘ ‘ ‘ ‘ ‘ ® & & & & (ouble excit. character
1.0 20 30 40 50 6.0 2 2
e o0.)— (O
R(H-H) bohr (0g)" = ()




Benchmark diabatic potential energy curves from
MRCI and fit to expt. (Spelsberg&Meyer, 2001)
16 - I - ] ' I 4 I ' I ' I :

/

double excit.
30g,1nu%(1ﬂ:g)2

3.2



Benchmark diabatic potential energy curves from
MRCI and fit to expt. (Spelsberg&Meyer, 2001)
16 ' | ' | ' | , ' | ' | !

TDDFT (exact KS pot)
calculated b1Hu:

lacks double!

double excit.

30,1, —(1m,)*

b'TI
u
1 l 1 l 1 l 1 l 1 l 1 l 1
12°51.8 2 Re 2.2 24 2.6 2.8 3 3.2
q
R/a.u.

TDDFT b1Hu (valence 20,—1m,) above the Rydb states because of
lack of doubles: always a problem at long distance!




¢) Charge transfer problem of TDDFT: X+ excited st. in HeH*

excitation energy (a.u.)

1.5

[
N

o
©

©
o

o
w

\ A3

HeH*

10

aug-cc-pVQZ basis

exact

— BPS86

B3LYP



TDHF solves CT problem, see

HeH* Dreuw +
Head-Gordon

Cf. hybrid
methods

w [a.u.]

.
.
..
-------------------

—
— — —




TDHF does not solve (ag)2 — (og)l(ou)1 problem




