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Common misunderstandings	


1)  The best orbitals are the HF orbitals	


or	


HF is the best one-electron model (because lowest one-det. 
energy)	


No: HF orbitals and density are too diffuse!	


 	


1a) In HF the one-el. properties are OK (el. density, kinetic 
energy), 	


the error is in W (el.-el. energy) due to neglect of correlation	


No: errors in one-el. terms T and V are larger!	


	





2) The KS orbitals have no physical meaning, they serve only 
to build the density.	



 No: the orbitals have a better shape and energy (see 3) than 
the HF orbitals. They are better suited for qualitative and 
quantitative MO theory.	


	


3) There is no Koopmans’ theorem in DFT. The occupied 
orbital energies (except the first) are meaningless.	


No: there is a better-than-Koopmans relation in DFT between 
orbital energies and IPs: deviation for valence of ca. 0.1 eV, 	


against HF deviation of ca. 1.1 eV.	


And theoretically justified! 	


	


	


  	





4) the  KS band gap (orbital energy gap between HOMO and 
LUMO in a molecule) is wrong (much too small) 	



No:  In molecules the KS gap (HOMO-LUMO orbital energy 
difference) is much smaller than I–A (called the fundamental 
gap) but it is physically expected to be  	


(and numerically found to be) 	


an excellent approximation for the first excitation energy 
(optical gap).	


	


In solids the fundamental gap (I–A) and optical gap (usually 
close to fundamental gap) are very different from the KS band 
gap for a reason (not because of the derivative discontinuity).	





5) Charge-transfer transitions (excitation out of the HOMO of 
one molecule to the LUMO of another molecule) are not OK 
in TDDFT “because of” the derivative discontinuity	



No: they are more problematic than local excitations because 
of the physical nature of the KS unoccupied orbitals	


	


6) Computational cost of KS is same as Hartree, much lower 
than HF.	


No: higher cost than HF  	


(unless tricks: density fitting to scale Coulomb  part down to 
N3 scaling)	


 	


	


  	





The Hohenberg-Kohn Theorems ���
for non-degenerate ground states	



HK theorems are a consequence of the variation 
theorem.	


Var. theorem:	


	


E[Ψ]: E is functional of Ψ: assigns to each Ψ (out of 
the domain on which E[Ψ] is defined) a real number E.	


Function f(x) maps real (or complex) variable x on real 
(or complex) f.	


Functional F[f] maps function f(x) on real 	


(or complex) F. 	



E[Ψ]=
Ψ Ĥ Ψ

Ψ Ψ
≥ E0



Inequality!	


Var. Theorem: 	


in particular for a non-degen. ground state Ψ0 :	


	


 if Ψ ≠ Ψ0 :, and Ψ is normalized, then	


	



	

 	

> E0	


	


Equality only if Ψ = Ψ0 !	


	


	


  	



Ψ Ĥ Ψ



Formulation of HK theorems-1	


HK-1: for non-degenerate  ground states Ψ0 and local 	


external potentials v(r) (usually el.-nucl. pot. vnuc(r)): 	


	


  	



⇒   one-to-one mapping
ρ0(r)↔ v(r)↔Ψ0

Only ground states Ψ0 and ground state densities ρ0!	


→ if you change v, then Ψ0 and ρ0 must change!	


- two different v’s cannot have the same ρ0 (or Ψ0)	


- different:  v2 –v1 ≠ C ( over a finite domain)	


→ map Ψ0 → ρ0 is invertible: Ψ0 ↔ ρ0	


	


  	





Formulation of HK theorems-2	


Conseq.: all gr. state properties are functionals of ρ0: 	


  	



e.g. 	

T[ρ0]  kinetic energy (not full 1RDM needed)	


	

E[ρ0]  total energy  (not full 2RDM needed)	



 	


 Note: in E[ρ0] the operator    depends on ρ0:  ρ0 
determines v, and therefore   	̂

H = T̂ + V̂ +Ŵ

Ĥ

T̂ = −
1
2
∇2(i)

i=1

N

∑      V̂ = v(ri )
i=1

N

∑     Ŵ =
1
riji< j

∑

A[ρ0 ]= Ψ0[ρ0 ] Â Ψ0[ρ0 ]



Formulation of HK theorems-3	



This energy has no obvious lower bound:	


We can always look for a ρ0 belonging to a system 
with a lower energy i.e. with a more attractive v(r).	


	


HK-2: a functional with lower bound exists: 	


  For a fixed potential v, the functional	


	


                          keep v(r) fixed	


assumes a minimum for the ρ0 that corresponds to v(r)	



E[ρ0 ]= Ψ0[ρ0 ] T̂ + V̂[ρ0 ]+Ŵ Ψ0[ρ0 ]

Ev[ρ0 ]= Ψ0[ρ0 ] T̂ + V̂ +Ŵ Ψ0[ρ0 ]



Corollary of HK: take v2  different from v1 	
  	
  
Ψ2 Ĥ1 Ψ2 > Ψ1 Ĥ1 Ψ1 = E1

T2 +W2 + ρ2v1 dr∫ > T1 +W1 + ρ1v1 dr∫
and

Ψ1 Ĥ2 Ψ1 > Ψ2 Ĥ2 Ψ2 = E2

T1 +W1 + ρ1v2 dr∫ > T2 +W2 + ρ2v2 dr∫
sum up

ρ2v1 dr∫ + ρ1v2 dr∫ > ρ1v1 dr∫ + ρ2v2 dr∫
or

(ρ2 − ρ1)(v2 − v1)dr∫ < 0,  i.e. ∆ ρ∆ vdr∫ < 0

There is an iterative way to find the unique v(r) belonging 	


to a given ρ0: change v(r) locally to increase or decrease ρ.	



because Ψ2 ≠ Ψ1 	



(HK: ρ2 = ρ1 leads to 	


	

          contrdiction) 	





If	
  in	
  a	
  small	
  region	
  the	
  poten1al	
  is	
  decreased,	
  ∆v	
  <	
  0,	
  
	
  then	
  ρ	
  must	
  change	
  (cf.	
  HK!),	
  	
  
and	
  ∆ρ	
  must	
  be	
  posi1ve	
  over	
  that	
  region,	
  	
  and	
  vice	
  versa.	
  
	
  
Apply	
  to	
  the	
  KS	
  poten1al	
  vs:	
  by	
  locally	
  adjus1ng	
  vs	
  the	
  density	
  can	
  be	
  	
  
made	
  to	
  approach	
  the	
  exact	
  (correlated)	
  density	
  from	
  e.g.	
  CI	
  arbitrarily	
  
	
  closely	
  →	
  	
  generates	
  the	
  exact	
  KS	
  poten1al	
  

(ρ2 − ρ1)(v2 − v1)dr∫ < 0,  i.e. ∆ ρ∆ vdr∫ < 0

Example:	
  
Calculate	
  H	
  atom	
  in	
  Gaussian	
  basis:	
  
small	
  devia1ons	
  from	
  exact	
  density.	
  
	
  
Generate	
  poten1al	
  that	
  produces	
  	
  
exactly	
  that	
  Gaussian	
  density:	
  small	
  
devia1ons	
  from	
  –1/r,	
  	
  
when	
  ∆ρ	
  posi1ve	
  ∆v	
  nega1ve,	
  
and	
  vice	
  versa.	
  
	
  
Schipper,	
  Gritsenko,	
  Baerends,	
  
Theor.	
  Chem.	
  Acc.	
  98	
  (1997)	
  16	
  	
  

=	
  ∆ρ	
  in	
  %	
  

∆v	
   H	
  atom	
  



1)  What about degenerate ground states?  There are many!	



2)  Only ground states! What about excitations?	



3)  Can (good approximations to) Ev[ρ] or FHK[ρ] ever be found?	





Degenerate Ground States	


Suppose set of acceptable potentials V contains potentials v(r) that 	


have a degenerate ground state:	


HΨi = Ε0 Ψi, i = 1, .. q   (nondegenerate case for q =1)	


	


v defines a space {Ψv} of ground state wave functions:	



  

€ 

{Ψv} = Ψ   Ψ = ciΨi
i=1

q
∑ ,   | ci |2=1

i=1

q
∑

$ 
% 
& 

' & 

( 
) 
& 

* & 

Group together ground state densities corresponding to v(r) in set Nv :

{Nv} = ρ(r)   ρ(r) = | Ψ(rσ,x2…xN ) |2 dσdx2…dxN ,∫  Ψ∈ {Ψv}{ }

Total sets of wavefunctions and of densities by union :  
{Ψ} = {Ψv}

v∈V
 {N} = {Nv}

v∈V




Mapping of potentials on wavefunctions on densities	



v1	


	


	


v2	


	


	


v3	



•	



  

€ 

{N} = {Nv}
v∈V


•	



•	


•	


•	


•	


•	



•	


•	


•	


•	


•	



•	


•	


•	


•	


•	


•	



•	


•	


•	


•	


•	



•	


•	


•	


•	


•	


•	


•	



•	


•	


•	



V	



map C	

 map D	



€ 

{Ψv1}

€ 

{Ψv3}
€ 

{Ψv2}

€ 

{Nv2}
€ 

{Nv1}

€ 

{Nv3}

  

€ 

{Ψ} = {Ψv}
v∈V




properties of maps:	


C is no longer a proper map: one potential  v is associated with more 	


Ψ’s. If v2 ≠ v1 + constant, then each element of {Ψv1} differs from each	


element of  {Ψv2} (same argument as before).	


	


C–1:{Ψv1} → v1 is a proper map (sets {Ψv1} and {Ψv2} etc. are disjoint)	


	


map D: two ground states Ψ1 and Ψ2 coming from different potentials	


v2 ≠ v1 +constant lead to different densities ρ2(r) ≠ ρ1(r) (same argument	


as before) → sets Nv1 and Nv2 are disjoint.	


	


However, Ψʹ′ and Ψ coming from the same v may yield the same density:	


D–1 is not a proper map, Ψ[ρ] is not a unique functional.	


	



Example: v(r) = -Z/r, set p states, p+ = (1/√2)(px+ipy) etc.	



|p+(r)|2 = |p–(r)|2 = (1/2)(|px(r)|2 + |py(r)|2 ) ≠ |p0(r)|2 = |pz(r)|2 	





Summary for degenerate states:	


1)  Ground state expectation values of an arbitrary operator A 	


is not a unique  functional of ρ, since 	


	


2) But energy is still unique functional of ρ, since Ψ and Ψʹ′ that give the 	


same ρ must belong to same v, characterized by the degenerate 	


ground state energy.	


Therefore FHK[ρ] may be defined as	


with	


	


Ev[ρ] is now defined for all densities ρ(r) corresponding to a 	


ground state (degenerate or not). It is variational:	


	



 Ev[ρ] = E0 (the ground state energy of v) if ρ ∈ Nv	


 Ev[ρ] > E0 if ρ ∉ Nv	


	



€ 

Ψ AΨ  may differ from Ψ#AΨ#

€ 

FHK [ρ] = Ψi [ρ]T +W Ψi[ρ]

€ 

Ψi[ρ]∈ {Ψv}, v = v[ρ]



Is minimization of Ev[ρ] with constraint ���
∫ρ(r)dr=N  viable? (orbital-free DFT)	



But the HK theorems offer no presciption for obtaining T[ρ] or W[ρ].	


Until now no success in finding sufficiently accurate T functional.	


	


Therefore: this route has not been successful!	


	



Ev[ρ]= Ψ0[ρ] T̂ + V̂ +Ŵ Ψ0[ρ]  is minimum at ρ0  of v
δ

δρ(r)
Ev[ρ]−µ ρ dr− N∫( )$
%&

'
()
= 0

δEv
δρ(r)

−µ = 0     → δ{T[ρ]+W[ρ]}
δρ(r) ρ0 of v

= −v(r)+µ  



The Kohn-Sham molecular orbital model of DFT 	


Kohn-Sham Ansatz: there is an independent particle system of non-
interacting electrons, all moving in the same local potential vs(r) such 
that the density is equal to the exact one (of the interacting electron 
system in given external potential vext(r):	


	


Kohn-Sham orbitals from:	


	



	

 	

 	

with	


	


	


The HK theorems also hold for non-interacting electrons (W=0) since 
proofs do not use form of W.	


So vs(r) is in one-one correspondence with gr. st. ρs(r) (and ρexact(r)).	


	


If vs(r) exists (no proof by KS; non-int. v-represent. problem) then it is 
unique: no other system, with different v and  ρ0, has same vs. 	


It determines KS orbitals and energies: these are system properties.	



−
1
2
∇2(1)+ vs(r1)

#

$
%

&

'
(ϕi(r1) = εi(r1)

ρs(r) = |ϕi(r) |
2= ρexact (r)

i=1

N

∑



Kohn-Sham model -1	


How to obtain approximations to vs(r)?  Later.	


	


Suppose we have vs(r),  obtain the true KS orbitals and ρs = ρexact = ρ.	


Write exact total energy:	


E = Ts +∫ ρvext dr + (1/2)∫ ρVCoul dr + Exc   	


	



	

 	

 	

  everything we don’t know if {ϕi} are known 	



Exc: called exchange-correlation energy of DFT;	


       is defined by above equation: that part of exact E we do not yet 	


know when {ϕi} and ρ have been obtained.	


	


Exc is functional of ρ since other terms are:	


Exc[ρ] = E[ρ]–Ts[ρ]– ∫ρvextdr –(1/2)∫ ρVCouldr	



= ϕi −
1
2
∇2

i=1

N

∑ ϕi



Kohn-Sham model -2	


How does Exc compare to exchange energy of HF, Ex

HF, and the 
correlation energy of HF, Ec

HF?	


Ex

HF is exchange energy of det. wavef.: –(1/2)∑ijKij	


Ec

HF = E – EHF	


	


What is the exchange energy and what is the correlation energy in DFT?	


	


Write exact energy in the traditional way:	


	


E = T  +∫ ρvext dr + (1/2)∫ ρVCoul dr + Wxc	


	


exact kinetic energy 	

exchange-correlation part of el.-el. interaction	


	


Wxc = W –  (1/2)∫ ρVCoul dr =  (1/2)∫ ρ(r1) vxc

hole(r1) dr	



Ψ0
1
riji< j

∑ Ψ0



Kohn-Sham model -3	



vxc
hole(r1) is the potential of the exact hole ρxc

hole(r1; r2) surrounding an	


electron at position r1:	


if a given electron is at r1, the probability to find any one of the other 
electrons at a point r2 is not the total density ρ(r2) (which gives the 
Coulomb potential), 	


but is diminished in the neighborhood of r1 due to the Coulomb 
repulsion between electrons 	





An electron traveling through a 
molecule	


does not see ρ(r2) with 
potential vCoul = ∫ ρ(r2)/r12dr2 	


but ρ(r2) + ρhole(r2; r1)	

r1             → r2	



ρ(r2)	



ρhole(r2;r1)	



W = Ŵ =
1

2

1

r12
∫ Γ(1, 2)d1d2

=
1

2

ρ(1)ρ(2)

r12

d1d2+∫
1

2

Γxc(1, 2)

r12
∫ d1d2

=
1

2
ρ(1)

ρ(2)

r12
∫ d2

V
Coul

(1)
  

d1+∫
1

2
ρ(1) ∫

Γxc(1, 2)

ρ(1)r12
d2

v
xc
hole

  

∫ d1

W  = 	

       WCoul      +                 Wxc	



statistical 	


physics	


definition	



ρcond(r2;r1)	


= ρ + ρhole	





Exchange-correlation energy Wxc	



E = Ψ H Ψ = T + ρ(r)v(r)dr∫ +
1
2

ρ(r1)ρ(r2 )
r12

dr1dr2∫ +Wxc

WXC =
1
2

dr1ρ(r1)
ρXC
hole(r2 | r1)
r12

dr2∫

vxc
hole(r1)

  

⌠

⌡

%
%
%
%
%
%

Γ(r1,r2 ) = ρ(r1)ρ(r2 )+Γxc(r1,r2 )⇒

ρcond (r2;r1) =
Γ(r1,r2 )
ρ(r1)

= ρ(r2 )+Γxc(r1,r2 ) / ρ(r1)
ρXC
hole (r2|r1)

  

r1             → r2	



ρ(r2)	



ρhole(r2;r1)	



ρcond(r2;r1)	


	





Definition of Ex, Ec, Exc	



Ec=Tc+Wc	



E in traditional 	


way	



E in Kohn-Sham way	



E = Ψ Ĥ Ψ = T + ρvdr∫ +
1
2

ρvCoul dr∫ +Wxc

E = Ts + ρvdr∫ +
1
2

ρvCoul dr∫ +Exc

⇒ Exc = T −Ts
Tc
 + Wxc ≡ Ec +Wx ⇒ Ec = Exc −Wx

Use KS orbitals to write exchange energy as Wx = −
1
2

Kij
ij

N

∑

Wxc −Wx ≡Wc  the correlation part of Wxc

Ec = Tc +Wc  the correlation energy of DFT



Compare Ec to Ec
HF 	



→ Tc
HF	



	


→ Vc

HF	


	


→ WCoul,c

HF	



	


→ Wc

HF	



Ec
HF = E −EHF

        = T −THF

       + ρvdr∫ − ρHFvdr =∫ ∆ ρvdr∫
       +WCoul −WCoul

HF

       +Wxc −Wx
HF

Ec
HF = Tc

HF +Vc
HF +WCoul,c

HF +Wc
HF

Ec =Tc +Wc is much simpler!	





Compare to HF	


In Hartree-Fock EHF = ΨHF Ĥ ΨHF

⇒ E −EHF ≡ Ec
HF

And DFT? Put KS orbitals in determinant:

EKS = Ψs Ĥ Ψs = Ts + ρvdr∫ +
1
2

ρvCoul dr∫ +Wx

Compare to exact E

E = Ts + ρvdr∫ +
1
2

ρvCoul dr∫ +Exc

⇒ E −EKS = Exc −Wx ≡ Ec Correl. energy of DFT is also 
energy of det. w.r.t. exact energy	





Definition of correlation energy	



E	

c	


HF	

E	

c	



DFT	


€ 

E
KS

= Ψs
ˆ H Ψs

€ 

E
HF

= Ψ
HF ˆ H Ψ

HF

Eexact	



Ψs is determinant of KS orbitals	


	


ΨHF is Hartree-Fock determinant	



|Ec
DFT|  > |Ec

HF| 	


but by how much?	





The one-particle model of DFT: Kohn-Sham	


Minimization of    	



€ 

E = ψi −
1

2
∇2ψi

i=1

N

∑ + ρvnucdr +
1

2

ρ(r1)ρ(r2)

r12

dr1dr2 + Exc∫∫

= Ts +V +WCoul + Exc

leads to one-el. equations for optimal (KS) orbitals:	



What about potentials, orbitals and density in the KS model?	


Common statements: “KS orbitals have no physical meaning”	


      “The only use for the KS orbitals is to build the density”	


We will prove these statements to be totally wrong!	



€ 

−
1

2
∇2(1) + vnuc (r1) + vCoul (r1) + vxc (r1)

 

 
 

 

 
 ψi (x1) = εiψi (x1)

€ 

ρ(r2)

r12
∫ dr2

€ 

δExc[ρ]

δρ(r1)



Energy density for Exc	



Exc = ∫ ρ(x)εxc(x)dx	


	


Approximations:  LDA, GEA, GGA,.....:	


   εxc(x) ≈ f(ρ(x), ρʹ′(x), ρʹ′ʹ′(x),....)	


	


Exact εxc(x) from	


	


Exc = Wxc + T – Ts 	


	


        = (1/2) ∫ ρ(x)vxc

hole(x)dx + ∫ρ(x)(vkin(x)–vs,kin(x))dx	


	



                                  Γxc                    γ(1,1ʹ′)   γs(1,1ʹ′)	


	



	

 	

 	

CI 	

 	

 	

     CI           KS	





El. correlation is described by Φ(2…N|1)	


so no wonder that vs can be derived from Φ(2…N|1):	



vs = vext + vCoul + vxc
hole

v
cond

   ↑
from Φ

  
+ (vkin − vs,kin )

     vc,kin

γ    and    γs

  
+ v

resp

from Φ


No information from this expression:	


Shape?   	


Physics?	


Even Exc[ρ] is unknown	


  	



vxc(r) =
δExc[ρ]

δρ(r)



Composition of vxc	



→ vxc
hole(r)	



	


	


→ vc,kin(r)	


	


	


→ vresp(r)	



vxc(r) =
δExc
δρ(r)

        Not very transparent!  Therefore use:

Exc = T −Ts +Wxc = ρ(r)vc,kin(r)dr+ 1
2

ρ(r)vxc
hole(r)dr∫∫

δExc
δρ(r)

=
1
2

δρ( #r )
δρ(r)
δ(r− #r )


vxc
hole( #r )d #r∫

+
δρ( #r )
δρ(r)

vc,kin( #r )d #r∫

+ ρ( #r )∫ δ
δρ(r)

1
2
vxc
hole( #r )+ vc,kin( #r )

$

%&
'

()
d #r



Fermi hole +  Coulomb hole =   total hole

RH-H = 5.0 bohr

e
× × ×

× × ×

RH-H = 1.4 bohr

e e e

eee

 Holes in H2	



NB. vxc = vc,kin + vxc
hole + vresp 	



€ 

–
1

2
e

€ 

–
1

2
e

€ 

−1e



In H2 Fermi hole ρX
hole(r2|r1) for el. at r1 is only self-

interaction correction term –|σg(r2) |2	



So independent of r1!	


	


When R(H-H) is large and  r1 is close to nucleus b, hole is,	


with σg(r2) ≈ (1/√2) [1sa(r2) + 1sb(r2)],  	


–|σg(r2) |2 ≈ – (1/2) [|1sa(r2)|2 + |1sb(r2)|2 + 2.1sa(r2).1sb(r2)]	



	

 	

 	

 	

 	

 	

       ≈ 0	


	


Since total ρ is |1sa(r2)|2 + |1sb(r2)|2 , the field that the HF electron at r1	


feels is due to ρ(r2)+ρX

hole(r2|r1) = (1/2) [|1sa(r2)|2 + |1sb(r2)|2 ]	


	


Wrong! The other el. should be around nucleus a!	


The erroneous charge of  (1/2)|1sb(r2)|2 that el. around b feels screens 	


nucleus b: the HF orbital becomes too diffuse.	





Hartree-Fock densities are often 
poor due to bad HF potential: H2	



H2 (R=Re)	

 –1.1 eV	

 +1.3	

 –0.5	

 –1.9	



H2 (R=5.0 bohr)	

 –3.9	

 +8.9	

 –8.5	

 –4.4	



H2 (R=10.0 bohr)	

 –6.3	

 +7.9	

 –8.6	

 –5.6	



€ 

Etotal
corr

€ 

Vel−nuc
corr

€ 

Wel−el
corr

€ 

Tkin
corr



Hartree-Fock densities are often poor 
due to bad potential: He, H2O, Ne, N2	



He	

 –1.1	


   	



+1.1	

 –0.1	

 –2.1	



H2O	

 –7.0	

 +6.5	

 +1.0	

 –14.5	



Ne	

 –8.9	

 +8.3	

 +1.4	

 –18.5	



N2	

 –11.0	

 +13.7	

 –13.8	

 –11.0	



€ 

Etotal
corr

€ 

Wel−el
corr

€ 

Vel−nuc
corr

€ 

Tkin
corr



Hartree-Fock densities are often poor 
due to bad potential: TM complexes	



MnO4
–	

 –14.4	



   	


+35.7	

 –115.5	

 +65.4	



Ni(CO)4	

 –3.4	

 –35.0	

 +147.8	

 +116.3	



Cr(CO)6	

 –4.5	

 –4.5	

 +30.8	

 –18.5	



€ 

Etotal
corr

€ 

Wel−el
corr

€ 

Vel−nuc
corr

€ 

Tkin
corr



Hartree-Fock errors for bond energies (kcal/mol), 
because of lack of left-right correl. in bond orbitals	



HF	

 Obs.	


Error	



(% of Obs.)	


N2	

 115.2	

 228.6	

 – 49.6%	



F2	

 –37.1	

 38.5	

 – 196.4%	



H2O	

 155.5	

 232.2	

 – 33.0%	



O2	

 33.1	

 120.5	

 – 72.5%	



H2	

 83.8	

 109.5	

 –23.4 %	





Fermi hole +  Coulomb hole =   total hole

RH-H = 5.0 bohr

e
× × ×

× × ×

RH-H = 1.4 bohr

e e e

eee

 Holes in H2	



NB. vxc = vc,kin + vxc
hole + vresp 	



€ 

–
1

2
e

€ 

–
1

2
e

€ 

−1e

Localized hole in DFT	


Slater: uniform	


           depth –ρ(r1)/2	





E versus R curves (restricted HF/KS) ���
for dissociating H2	



Error	


45 	


Kcal/mol	



Grüning, Gritsenko, Baerends, JCP 118 (2003) 7183	



HF	



-1.1

-1.0

-0.9

-0.8

T
o
ta

l 
e
n
e
rg

y
 (

a
.u

.)

108642

Bond length (a.u.)

LDA

HF

BP

FullCI

Correl.	



HF	



Correl.	



HF=EXX	



F2 case	





The anomalous F2 case: ���
RHF energy above two F atoms!	



E
n
e
rg
y

R(F-F)

Energy of 	


2 F atoms	





The functional Cloud	



Courtesy of Peter Elliott, Hunter College, New York	





"exact" KS and HF energies of N2     De=0.37 a.u.	


R (bohr)	

 2.074	

 3.0	

 3.5	


Ts	

 109.070	

 108.095	

 108.223	


Ts–THF=	

 0.296	

 0.692	

 0.903	


T–Ts =	

 0.329	

 0.328	

 0.313	


T–THF =	

 0.625	

 1.020	

 1.216	



Vel-nuc(exact=KS)	

 –303.628	

 –288.260	

 –283.780	


–0.558	

 –1.330	

 –1.759	



WCoul(exact)	

 75.068	

 67.858	

 65.666	


0.274	

 0.716	

 0.980	



€ 

Tkin
corr

(KS)

€ 

Tkin
corr

(HF)

€ 

Vel−nuc
corr

(HF)

€ 

WCoul
corr

(HF)

Gritsenko, Schipper, Baerends, J. Chem. Phys. 107 (1997) 5007	





KS and HF energies of N2       De=0.37 a.u.	


R (bohr)	

 2.074 	

 3.0	

 3.5	


WX (KS orbitals)	

 –13.114  	

–12.621	

 –12.490	


WX – WX

HF=	

 0.006	

 –0.040	

 –0.067	


–0.804	

 –0.969	

 –1.063	



–0.810	

 –1.009	

 –1.124	



Ec	

 –0.475	

 –0.641	

 –0.750	


Ec(HF)	

 –0.469	

 –0.603	

 –0.687	


Ec – Ec(HF)	

 –0.006	

 –0.0038	

 –0.063	



Gritsenko, Schipper, Baerends, J. Chem. Phys. 107 (1997) 5007	



€ 

Wc (HF) =WXC −WX
HF

€ 

Wc =WXC −WX



Hartree-Fock:  good for atoms, ���
                         not for molecules (bonds)	



In an electron pair bond:	


a)  HF orbitals will be too diffuse (density too diffuse)	


→ kinetic energy too low	


→ electron-nuclear energy too high (not negative enough)	


	


b) this is worse in case of multiple bonds	


	


c) common statement	


“one-particle properties (also the electron density!) are good in the 	


Hartree-Fock model, it is the el.-el. interaction that is wrong,	


because of lack of electron correlation	


(electrons do not avoid each other sufficiently, cf. the presence of ionic	


configurations in the H2 wavefunction)”	


	


IS WRONG	





	


- ΨHF better total energy (marginally)	



Ec ≤ Ec
HF	



	



Ψs better for:	


	

Vel-nuc	


	

WCoul	


	

Ts : (much) smaller correl. error	



	


HF "distorts" density (more diffuse) if:	


gain by lowering THF is larger 	



	

(even if barely) than	


loss by less stable V 	



no correlation error	



Conclusion HF versus KS det.	





Energy components for CO at Re=2.132 bohr	


LDA	

 BLYP	

 EXX	

 HF	

 KS	

 CI	



Ts	


∆KS	



111.951	


  +0.930	



113.181	


  –0.300	



112.395	


  +0.790	



112.641	


  +0.544	



112.881	


  +0.304	



113.185	


    (T)	



Ven	


∆KS	



–310.170	


   –1.086	



–311.520	


   +0.264	



–310.651	


   –0.605	



–310.879	


   –0.377	



–311.256	


      0.00	



–311.256	



WH	


∆KS	



  76.204	


  +0.195	



  76.391	


  +0.008	



  76.251	


  +0.148	



  76.262	


  +0.137	



 76.399	


    0.00	



 76.399	



WX
fn
	



∆KS	


–12.064	


  –1.255	



–13.475	


  +0.156	



–13.296	


  –0.023	



–13.331	


  +0.012	



–13.319	


  	



–14.089	


 (WXC)	



Sum	


∆CI	



–134.079	

 –135.423	

 –135.301	


–0.460	



–135.307	


–0.454	



–135.295	


–0.466	



–135.761	



Ec
fn	

 –0.950	

 –0.486	

 (–0.460)	

 (–0.454)	

 (–0.466)	



Etot	


ΔCI	



–135.029	


    –0.732	



–135.909	


   +0.148	



Baerends, Gritsenko 	


JCP  123 (2005) 062202	



–135.761	





Energy components for CO at R=2.8 bohr	


LDA	

 BLYP	

 EXX	

 HF	

 KS	

 CI	



Ts	


∆KS	



111.023	


 + 0.950	



112.257 
– 0.280	



111.437	


  +0.833	



111.662	


  +0.608	



111.977	


  +0.293	



112.270	



Ven	


∆KS	



–298.862	


  – 0.915	



–300.239	


  +0.462	



–299.216	


  – 0.561	



–299.430	


  – 0.347	



–299.777	


      0.00	



–299.777	



WH	


∆KS	



71.038	


+ 0.035	



71.241	


–0.168	



71.071	


+ 0.002	



71.045	


+ 0.028	



71.073	


    0.00	



71.073	



WX
fn
	



∆KS	


–11.752	


  –1.228	



–13.168	


  +0.188	



–12.973	


 – 0.007	



–13.027	


 +0.047	



–12.980	


  	



–13.822	


(WXC)	



Sum	


∆CI	



–128.553	


    	



–129.909	


   	



–129.738	


  – 0.518	



–129.750	


  – 0.506	



–129.707	


 – 0.549	



–130.256	



Ec
fn	

   –0.935	

   –0.472	

 (– 0.518)	

  (– 0.506)	

 (– 0.549)	



Etot	


ΔCI	



–129.489	


  – 0.767	



–130.381	


 + 0.125	



Baerends, Gritsenko 	


JCP  123 (2005) 062202	



–130.256	





Time-dependent DFT	



Runge-Gross: HK theorem holds for time-dependent case	



€ 

v(r, t)⇔ρ(r, t)⇔Ψ
0
(t)

Kohn-Sham (orbital model) in time-dependent case :	



  

€ 

−
1

2
∇2 + vs(r,t)

 

 
 

 

 
 ψi

s
(r,t) = i

∂

∂t
ψi
s
(r, t)

ρs(r, t) = ψi
s
(r,t)

2

i=1

N

∑ = ρexact (r,t)



LINEAR RESPONSE (1st order Pert. Theory) 	



€ 

δρ(r,ω) = χ(r, & r ,ω)δv( & r ,ω)dr&∫
χ(r, & r ,ω) : first order response function; difficult 

       (requires sum over all excited states)

Kohn - Sham :δρ(r,ω) = δρs(r,ω)

    = χs(r,r&,ω)δvs(r&,ω)dr&∫
          ↑
response function of 
noninteracting system:  simple!

δvs(r&,ω) :  how related to δv(r&,ω)?     (difficult?)



Linear response: δvs	



  

€ 

δvs(r#,ω) =δv(r#,ω) + δvcoul(r#,ω) +δvxc(r#,ω) ≡ δv(r#,ω) + δvinduced(r#,ω)
↓ ↓

δρ( # # r ,ω)
| r# − # # r |

d # # r ∫ δvxc (r#,ω)
δρ( # # r ,ω)
fxc (r#, # # r ,ω)
     
∫ δρ( # # r ,ω)d # # r 

  the xc kernel

vxc (r,ω) =
δExc
δρ(r,ω)

f xc (r,r#,ω) =
δExc

δρ(r,ω)δρ(r#,ω)

LDA - Xonly : Exc  = K ρ4/3dr∫ ;  vxc (r,ω) =
4K
3
ρ1/3(r,ω);  

f xc (r,r#,ω) in local, adiabatic appr. (ALDA) =
4K
9
ρ−2 /3(r)δ(r − r#)



χs(r,rʹ′) from first order perturbation theory:	



Perturbation δvs(r) induces changes in the orbitals:	



δϕi(r) =
− ϕi δvs ϕ p

εp −εi
ϕ p(r)

p≠i
∑

ρ(r) = niϕi(r)ϕi
∗(r)

i=1

H

∑

δρ(r) = ni ϕi(r)δϕi
∗(r)+δϕi(r)ϕi

∗(r)( )
i=1

H

∑

=
−ϕi(r) ϕi δvs ϕ p

∗
ϕ p
∗ (r)

εp −εi
+
− ϕi δvs ϕ p ϕ p(r)ϕi

∗(r)
εp −εi

%

&

'
'

(

)

*
*

p≠i
∑

i=1

H

∑



convention for summation indices:	



i, j, k, l, .... indices for occupied orbitals,  ≤ N	


	


a, b, c, d, ....indices for unoccupied orbitals, > N	


	


p, q, r, s, ....   general indices	





occ.- occ. pairs drop out	



CANCEL!	



Only p-values with p unocc. survive	



δρ(r) =
−ϕi(r) ϕi δvs ϕ p

∗
ϕ p
∗ (r)

εp −εi
+
− ϕi δvs ϕ p ϕ p(r)ϕi

∗(r)
εp −εi

#

$

%
%

&

'

(
(

p≠i
∑

i=1

H

∑

if i and p are both occupied orbitals, e.g. k  and l, then:

for i = k, p = l :
−ϕkϕl

∗Vs,lk
εl −εk

+
−Vs,klϕlϕk

∗

εl −εk

for i = l, p = k :
−ϕlϕk

∗Vs,kl
εk −εl

+
−Vs,lkϕkϕl

∗

εk −εl



Definition of χs	



χs comes straightforwardly from 1st order pert. theory;	



only KS orbitals and orbital energies needed 	



δρ(r) =
−ϕi(r) ϕi δvs ϕa

∗
ϕa
∗(r)

εa −εi
+
− ϕi δvs ϕa ϕa(r)ϕi

∗(r)
εa −εi

#

$

%
%

&

'

(
(

a>H
∑

i=1

H

∑

= dr*
a∈unocc
∑

i∈occ
∑∫ −ϕi(r)ϕi (r*)ϕa

∗(r*)ϕa
∗(r)

εa −εi
+
−ϕi

∗(r*)ϕa(r*)ϕa(r)ϕi
∗(r)

εa −εi

#

$
%

&

'
(δvs(r*)

      ≡χs(r,r*)



Suppose perturbation δvext(r,t) with single frequency ω:	



€ 

δρ(r,ω) =
i

occ

∑
a

virt

∑ niψi(r)ψa(r) Xia
ω + Xia

−ω*( )e−iωt + c.c.

Xia
ω =

ψ
i
(r) δvs(r,ω)ψa(r)

εi −εa +ω
≡ Xia Xia

−ω* ≡Y
ia

€ 

δρ(r, t) = ni ψi (r, t)δψi*(r, t) +ψi*(r, t)δψi (r,t)( )
i

∑

  

€ 

δvs(r,ω) = δvext (r,ω) + dr′
δρ(r′,ω)

r − r′
∫ + δvxc[δρ](r,ω)

             

vinduced	



Time-dependent case (linear response =1st order Pert. Th.)���
	





  

€ 

δvs(r,ω) = δvext (r,ω) + dr′
δρ(r′,ω)

r − r′
∫ + δvxc[δρ](r,ω)

             

vinduced(r,ω)	



"uncoupled":  vind = 0	


	


"coupled": 	

Coulomb part:	


	


	



	

 	

XC part:           	


€ 

δvCoul (r,ω) = dr′
δρ(r′,ω)

r − r′
∫

usually adiabatic LDA (no ω dependence)	



for XC kernel fxc(r,rʹ′,ω)	



  

€ 

δvxc (r,ω) = dr′
δvxc (r,ω)

δρ(r′,ω)

↑
f xc (r,r′,ω)

     

∫ δρ(r′,ω)



Shortcut to matrix equations for excitation energies	


Put in matrix form with basis sets:	



 δρ(r,ω) → δPia(ω)  →  δP(ω)  density perturb.   occ.unocc supervector	



  Π(ω)ia,jb →  response +  coupling  occ.unocc × occ.unocc supermatrix	



  δvia(ω)     →   external perturb. potential    occ.unocc supervector	



  δP(ω) =  Π(ω)δV(ω) density response due to external perturb. field	



  Π(ω)–1δP(ω) =  δV(ω)	



  Π(ω)–1 often has structure (K-ω1)	



  Then  (K-ω1)δP(ω) =  δV(ω) is solvable for δV(ω)=0 (no perturb.)	



  when det{K-ω1}=0, or at eigenvalues of K:  KδPi =ωiδPi:	



  Excitation energies!	



  A system can have free oscillations δPi  (“response”) without 
perturbation at its eigenfrequencies {ωi}	





 	



Inhomogeneous equation (δVext(ω) ≠ 0): 	


 at each ω: F(ω) → δρ(r,ω)→ polarizability α(ω) etc.	



Leads to TDKS (cf. TDHF) equations, dimension noccnvirt × noccnvirt:���
	



€ 

δVia
ext = ψi(r) vext (r,ω)ψa(r)

ε2( )
ia, jb

= δijδab(εa −εi )
2

Kia, jb X+ Y( ) jb
jb

∑ = ψi(r) vind ψa(r)

  

€ 

(ε 2 + 2ε
1

2Kε
1

2 −ω 2)ε−
1

2 X+ Y( )
F

     
= δVext

(ω)

Cf.         χ–1      .     δρ         =  δv	





 	



  Excitation energies!	



Homogeneous linear equations (δVext = 0): 	


eigenfrequencies of system (excitation energies) are solutions of	



€ 

ε2
+ 2ε

1

2Kε
1

2 −ω2
 

 
 

 

 
 F = 0 or  ε2

+ 2ε
1

2Kε
1

2

 

 
 

 

 
 F =ω2

F

Excitation energies: δVext =0���
	



€ 

⇑

Ingredients:  orbital energies εi, εa	


	

         orbital shapes ψi, ψa	


	

              xc kernel fxc	



(ε2 + 2ε 1
2Kε

1
2 −ω2)F = δVext (ω) = 0



So we need good orbital shapes and 
good orbital energies.���
But: what is the meaning of KS orbital 
energies?	



Prevailing view, see e.g.	


	


R. G. Parr, W. Yang, 	


DFT of Atoms and molecules, 1989	


	


"…one should expect no simple physical meaning	


 for the KS orbital energies. There is none”	


	





Orbital energies of occupied orbitals:	


Exact Kohn-Sham:	


- HOMO orbital energy exactly –I0 (ionization en. to ion ground st.)	


   because of asymptotic density behavior 	


- upper valence orbitals: very close to ionization energies (~ 0.1 eV)	


- core orbitals: still good, too high lying by 10 – 20 eV	


	


	


LDA, GGA:	


- all orbital energies are shifted up by a molecule-dependent constant	


of ca. 4 – 6 eV	


	


	


Gritsenko, Baerends:  JCP 116 (2002) 1760 (with Chong); 	



	

JCP 117 (2003) 9154; JCP 119 (2003) 1937 (with Braïda);  	


	

JCP 120 (2004) 8364; JCP	



	


	

	





	

vxc
hole and the interpretation of orbital energies ���

1º. Long range (asymptotic, r → ∞) behavior	



−
1

2
∇2 = −

1

2

∂2

∂r2
+
2

r

∂

∂r
+

1

r
2
sinθ

∂

∂θ
(sinθ

∂

∂θ
)+

1

r
2
sin

2θ

∂2

∂ϕ2













= −
1

2

∂2

∂r2
+
2

r

∂

∂r












+
1

r
2
Dθ +

1

r
2
Dϕ

Consider limit r→∞ of KS equation  −
1

2
∇2

+ vs(r)








ψi = εiψi

−
1

2

∂2ψi

∂r2
+

2

r

∂ψi
∂r












+

1

r
2
Dθψi +

1

r
2
Dϕψi + vs(r)ψi = εiψi

At each point r this must be an identity.

At |r|→∞ all terms are negligible compared to:

−
1

2

∂2ψi

∂r2
+ vs(∞)ψi = εiψi

So asymptotic solution is ψi ~ e
− −2 εi−vs (∞)( ) r

All potentials in vs  go to 0: ψi ~ e
− −2εi r



Long range behavior	



So asymptotic solution is ψi ~ e
− −2 εi−vs (∞)( ) r

All potentials in vs  go to 0: vs(∞) = 0, ψi ~ e
− −2εi r

Each orbital has its own exponential decay, so density decays as 

slowest orbital density decay, i.e. HOMO:  ρ(r)~ e
−2 −2εH r

Katriel-Davidson (1980): density decays like e−2 2I r

Conclusion: εH = −I

Now take anion: LUMO now occup., slowest decay

  εL (M−) = −I(M−) = −A(M )

I(M ) = E0
N−1

−E0
N

A(M ) = E0
N
−E0

N+1

I(M−) = E0
N
−E0

N+1
= A(M )



KS and HF orbital energies and VIPs for H 2O	


H2O	

 MO	

 HF	



–εk	


KS	


–εk	



Expt. 	


Ik	



Ik +εk	



1b1	

 13.76	

 12.63	

 12.62	

 –0.01	


3a1	

 15.77	

 14.78	

 14.74	

 –0.04	


1b2	

 19.29	

 18.46	

 18.55	

 0.09	



Average	


Dev.	



0.97	

 0.05	



2a1	

 36.48	

 30.89	

 32.2	

 1.31	

 4.27	


1a1	

 559.37	

 516.96	

 539.90	

 22.94	

 22.46	



Average 
Dev.	



11.88	

 12.13	



€ 

εN −εk

Chong, Gritsenko, Baerends, 
JCP 116 (2002) 1760	





CO : KS and HF orbital energies and VIPs	



CO	

 MO	

 HF	


–εk	



KS	


–εk	



Expt. 	


Ik	



Ik – (–εk)	



5σ	

 15.10	

 14.01	

 14.01	

 0.00	


1π	

 17.43	

 16.77	

 16.91	

 0.14	


4σ	

 21.90	

 19.33	

 19.72	

 0.39	



Average	


Dev.	



1.26	

 0.18	



3σ	

 41.41	

 34.69	

 38.3	

 3.61	

 4.54	


2σ	

 309.13	

 278.83	

 296.21	

 17.38	

 16.27	


1σ	

 562.32	

 519.71	

 542.55	

 22.84	

 22.49	



Average 
Dev.	



11.93	

 14.61	



€ 

εN −εk



CO : KS, GGA-BP and HF orbital energies and VIPs	



CO MO  
HF 
–εi 

GGA-BP 
–εi 

KS 
–εi 

Expt. 
Ii 

 5σ 15.12 9.18    (4.83) 14.01 14.01 
 1π 17.42 11.95  (16.78) 16.80 16.91 
 4σ 21.94 14.27  (19.10) 19.37 19.72 
AAD 
(val) 

 1.28 5.08      (0.25) 0.15  

 3σ 41.47 29.47   (34.29) 34.70 38.3 
 2σ 309.17 272.50 (277.33) 279.27 296.21 
 1σ 562.36 513.53 (518.37) 519.92 542.55 
AAD 
(inner) 

 11.98 20.52    (15.69) 14.39  

 



HCl: KS, BP and HF orbital energies and VIPs	



HCl	

 M
O 	



HF	


–εi	



GGA-BP	


–εi	



KS	


–εi	



Expt.	


Ii	



2π	

 12.97	

 8.13       (4.64)	

 12.77	

 12.77	


5σ	

 17.04	

 11.90     (16.53)	

 16.53	

 16.6	


4σ	

 30.41	

 21.22     (25.86)	

 25.82	

 25.8	



AAD(val)	

 1.75	

 4.68        (0.04)	

 0.03	



1π	

 218.77	

 190.98 (195.62)	

 199.59	



3σ	

 218.84	

 191.27 (195.91)	

 199.79	



2σ	

 287.75	

 250.44 (255.08)	

 259.80	





SiO: HF, GGA-BP and KS orbital energies, expt. Ips ���
BP: HOMO 4.02 eV higher than –IP; second column: all εi

BB – 4.02	



SiO 	

  	


MO	



   	


    HF	


  –εi 	


	



      GGA-BP	


         –εi 	



   	


     KS	


    –εi 	



  	


Expt.	



Ii	


7σ	

 11.93	

 7.59            (4.02)	

 11.61	

 11.61	



2π	

 12.90	

 8.22           (12.24)	

 12.29	

 12.19	



6σ	

 16.63	

 10.83         (14.84)	

 14.80	

 14.80	



AAD (val)	

  	

 0.95	

 4.05            (0.03)	

 0.03	



5σ	

 34.41	

 23.59         (27.61)	

 28.01	



1π	

 116.22	

 95.82         (99.84)	

 101.62	



4σ	

 116.20	

 95.61         (99.63)	

 101.96	



3σ	

 167.88	

 138.95      (142.97)	

 145.51	



2σ	

 558.69	

 510.48      (514.50)	

 518.75	



1σ	

 1872.70	

 1783.13  (1787.15)	

 1802.16	





N2: KS, BP and HF orbital energies and VIPs	


N2	


	



MO	

 HF	



–εk	



KS	


–εk	


	



Expt. 	


Ik	



Ik +εk	



 	

 3σg 	

 17.27	

 15.57	

 15.58	

 0.01	



 	

 1πu	

 16.72	

 16.68	

 16.93	

 0.25	



 	

 2σu	

 21.21	

 18.77	

 18.75	

 –0.02	



Average dev.	

  	

 1.45	

 0.09	

  	

  	



 	

  	

  	

  	

  	

  	


 	

 2σg	

 40.04	

 33.69	

 37.3	

 3.61	


 	

 1σu	

 426.67 	

 389.72	

 409.98	

 20.26	


 	

 1σg	

 426.76 	

 389.76	

 409.98	

 20.22	


Average dev.	

  	

 12.07	

 14.70	

  	

  	





Virtual orbital energies	


What are virtuals like in DFT?  And in Hartree-Fock?	


	


Big difference between HF and KS virtuals: 	


necessary to understand the difference to understand	


-  why TDDFT works so well (in general for molecules);	


-  why there is a problem with charge-transfer transitions	


-  the “bandgap problem” in solids	



Difference between KS and HF virtuals are consequence of 
vxc

hole in  KS potential, and absence in HF exchange operator	


	


	


vxc

hole leads to good shapes and energy of KS virtuals	


	

(as it did for KS occupied orbitals)   	



-    	





H2	



 

0.0 2.2 4.4 6.6

NO ≈ KS σ* density	



HF σ* density	



HF virtual orbitals are at 	


(much) higher energy	


and (way) more diffuse	


 than KS virtual orbitals	


	



Meaning of unoccupied orbital energies εa, εb, ….	


HF: unocc. orbital represents added electron	


       → εa

HF is affinity level; εa
HF– εi

HF
  is NOT excitation energy	



	


KS: unocc. orbital represents excited electron	


           → εa

KS– εi
KS IS good appr. to excitation energy 	





HF, DFA and exact KS HOMO  orbital energies	


HF	

 LDA	

 BLYP	

 KS = –I0	



H2	

 –16.18	

 –10.26	

 –10.39	

 –16.44	


H2O	

 –13.88	

 –7.40	

 –7.21	

 –12.62	


HF	

 –17.69	

 –9.82	

 –9.64	

 –16.19	


N2	

 –16.71	

 –11.89	

 –11.49	

 –16.68	


CO	

 –15.1	

 –9.11	

 –9.00	

 –14.01	


HCN	

 –13.50	

 –9.23	

 –8.87	

 –13.61	


FCN	

 –13.65	

 –8.97	

 –8.62	

 –13.67	


HCl	

 –12.98	

 –8.15	

 –7.91	

 –12.77	



KS HOMO is equal to – I0;	


HF HOMO is appr. equal to – I0 (frozen orbital approx.)	


LDA, GGA orbital energies are upshifted by ca. 4.5 eV	


(uniformly: occup. and unoccup valence orbitals) 	





HF, DFA and exact KS LUMO  orbital energies	



HF	

 LDA	

 BLYP	

 KS	


H2	

 +1.42	

 +0.31	

 +0.12	

 –3.93	


H2O	

 +0.80	

 –0.92	

 –1.06	

 –5.11	


HF	

 +0.81	

 –0.93	

 –1.13	

 –5.71	


N2	

 +3.91	

 –2.21	

 –1.91	

 –6.77	


CO	

 +1.88	

 –2.24	

 –1.94	

 –6.56	


HCN	

 +1.93	

 –1.33	

 –1.07	

 –5.53	


FCN	

 +1.16	

 –1.66	

 –1.59	

 –6.01	


HCl	

 +0.79	

 –1.11	

 –1.15	

 –5.36	



KS LUMO is at negative energy: a bound one-electron state in the KS 	


potential.	


HF LUMO is most of the time unbound (positive orbital energy)	


LDA,GGA LUMO: still negative -> therefore bound state	





KS HOMO-LUMO  gaps ∆ are excellent ���
approx. to excitation energies	



∆HF	

 ∆LDA	

 ∆BLYP	

 ∆KS	

 Expt.  excit.  energy	


  singlet       triplet	



H2	

 17.6	

 10.6	

 10.5	

 12.5	

 12.7	

 11.7	


H2O	

 14.7	

 6.5	

 6.2	

 7.5	

 7.65	

      7.5	


HF	

 18.5	

 8.9	

 8.5	

 10.5	

 10.3	

 9.9	


N2	

 19.9	

 9.7	

 9.6	

 9.9	

 9.3-10.3	

 7.8-8.9	


CO	

 17.0	

 6.9	

 7.1	

 7.5	

 8.5	

 6.3	


HCN	

 15.4	

 7.9	

 7.8	

 8.0	

 8.8	

 6.2	


FCN	

 14.8	

 7.3	

 7.0	

 7.6	

 8.4	

 7.8	


HCl	

 13.8	

 7.0	

 6.8	

 7.4	

 7.8	

 7.4	



1)  The LDA, GGA gaps are similar (slightly smaller) than KS gaps	


-> the upshift is similar for HOMO and (a bit smaller for) LUMO	


2) HF gaps are much larger: they are Koopmans’ approx.   IP – EA	





Orbital 
energies in 
exact KS	



E
n

e
rg

y

– I

– A

ε
H
(M)

M M 
–

ε
L
(M) ε

H 
(M 

–
)

ε
L
(M 

–
)

∆
L

≈ ∆
opt

∆
fund 

 = DD
 

0.0



What is the meaning of a (HF) LUMO 
with positive orbital energy?	



resonances 
at specific E



What is the meaning of HF LUMO with positive 
energy?	



Note: positive one-electron states in a potential (zero at infinity):	


-  there is a continuum of positive states;	


-  most have plane-wave behavior with only a few orthogonality wiggles 	


 over the molecular region;	


-  at specific energy (small energy ranges) the one-electron states have 	


 large amplitude in the molecular region (small plane-wave like outside)	


->  “scattering resonances” with resonance energies corresponding to 	


potential electron capture to form a temporary negative ion, which will	


decay after some time to molecule + free electron. 	


	


Since energy at scattering resonance is positive, 	


i.e. higher than free molecule and electron:  negative electron affinity!	


	


If there are no negative energy unoccupied orbitals (bound states) for the 	


HF operator (frequently!), what is the meaning of the pos. energy orbitals?   	





Orbital energies (eV) of the positive energy 
HF LUMO of H2 as function of the basis ���

(STOs)	



SZ	

 DZ	

 DZP	

 TZP	

 TZ2P	

 QZ4P	

 ETQZ3P
2D	



1σu	

 18.12	

 5.52	

 5.11	

 3.39	

 3.45	

 2.67	

 1.18	



1σg	

 –15.88	

 –16.26	

 –16.20	

 –16.21	

 –16.20	

 –16.18	

 –16.18	



gap	

 34.00	

 21.77	

 21.31	

 19.59	

 19.66	

 18.85	

 17.36	





Orbital energies (eV) of the positive energy 
HF LUMO of H2 as function of the basis ���

(Gaussians)	


cc-	



pVDZ	


cc-	



pVQZ	


cc-	



pV5Z	


aug-cc-	


pVDZ	



aug-cc-
pVTZ	



aug-cc-	


pVQZ	



aug-cc-	


pV5Z	



1σu	

 5.372	

 3.91	

 3.14	

 1.67	

 1.42	

 1.28	

 1.14	



1σg	

 –16.11	

 –16.18	

 –16.18	

 –16.12	

 –16.18	

 –16.18	

 –16.18	



gap	

 21.48	

 20.66	

 19.33	

 17.80	

 17.60	

 17.46	

 17.32	



Orbital energies of LUMO are arbitrary; completely determined by the 	


basis set.	


Go to zero for complete basis. 	


What about shape? Should go to infinitely extended. 	





Shape of the  1σu  LUMO density of H2 ���
as a function of basis set:	





4	


3	


2	


1	


0	


-1	


-2	


-3	


-4	


-5	


-6	


-7	



HF	


M06-2X	


LC-BOP	



BOP	


BLYP	



Lcgau-BOP	



Electron affinity (in eV)	


7     6      5      4      3      2     1     0    –1   – 2   –3    – 4	



Calculated LUMO 
energies vs  EA for 	


113 molecules. 	


EA from CCSD(T),	


basis: ���
6-311++G(3df,3dp)���
	


(Kar, Song, Hirao, 	


JCC 2013)	


Almost all HF	


εLUMO  positive!	


	



ε L
U

M
O

 (e
V

) 	



Positive HF εLUMO!	



CCSD(T)  negative EAs:	


basis: 6-311++G(3df,3dp)	





Practical ways to get scattering resonances 
(negative EAs) with basis set calculations	



Stabilization method (H. S. Taylor et al.), also called SKT (stabilization 
Koopmans’ method):	


Systematically scan through the spectrum of positive energies by scaling 	


the coefficients of all diffuse basis functions to very low value (diffuse).	


Then orbital energies go down in energy as function of scaling parameter 
α.	


Detect resonance energies by inspecting the orbitals; when getting high 
amplitude in molecular region, you are at resonance energy.	


	


Or by looking at curves of orbital energy as function of α: resonance 	


energies show up as “avoided crossing”.	


	


See K. Jordan et al. (JPC-A 104 (2000) 9605)  and Cheng et al. (JPC-A 
116 (2012) 12364) 	





Orbital energies and excitation energy calculations (TDDFT)	



TDDFT: ε2
+ 2 εK ε( )Fq =ωq

2
Fq

ε2( )
ia, jb

= δijδab(ε
a
−εi )

2

K  is "coupling matrix", see later

Suppose i→ a does not couple to other j→ b

(single pole approximation, SPA), q ≅ i→ a

(ε
a
−ε

i
)2
+ 2(ε

a
−ε

i
) ϕ

i
(r)ϕ

a
(r) fxc(r,r′)ϕi(r′)ϕa(r′)∫ drdr′



Fq =ω

2
Fq

⇒ω = (ε
a
−ε

i
)+ ϕ

i
ϕa fxc ϕiϕa

small

  

(ε
a
−ε

i
) ≈  excitation energy (in molecules!)



Funct.	

 State	

 Weight	

 εi	

 εa	

 ∆εia	

 ω	

 ω – ∆εia	

 ω – Eexp	



SAOP	

 1A2	

 1.00	

 –10.25	

 –5.92	

 4.33	

 4.59	

 0.26	

 0.16	


(≈ KS)	

 1B2	

 1.00	

 –10.25	

 –4.18	

 6.07	

 6.09	

 0.02	

 -0.27	



2A2	

 0.84	

 –10.25	

 –2.72	

 7.53	

 7.52	

 0.00	

 0.16	


2A1	

 0.97	

 –10.25	

 –3.09	

 7.16	

 7.21	

 0.05	

 -0.20	


2B2	

 0.97	

 –10.25	

 –2.63	

 7.62	

 7.64	

 0.02	

 0.15	


3A1	

 0.97	

 –10.25	

 –2.04	

 8.21	

 8.20	

 0.00	

 0.40	


3B2	

 0.97	

 –10.25	

 –2.51	

 7.74	

 7.74	

 0.00	

 -0.35	


1B1	

 0.95	

 –10.25	

 –5.92	

 7.92	

 8.17	

 0.24	

 0.00	



BP86	

 1A2	

 1.00	

 –5.71	

 –1.70	

 4.01	

 4.27	

 0.26	

 -0.16	


1B2	

 1.00	

 –5.71	

 –0.61	

 5.10	

 5.10	

 0.00	

 -1.26	


2A2	

 1.00	

 –5.71	

 –0.11	

 5.60	

 5.59	

 0.00	

 -1.77	


2A1	

 1.00	

 –5.71	

 –0.13	

 5.58	

 5.58	

 0.00	

 -1.83	


2B2	

 1.00	

 –5.71	

 –0.07	

 5.64	

 5.64	

 - 0.01	

 -1.85	


3A1	

 0.98	

 –5.71	

 +0.36	

 6.07	

 6.06	

 - 0.01	

 -1.74	


3B2	

 1.00	

 –5.71	

 +0.05	

 5.76	

 5.75	

 0.00	

 -2.34	


1B1	

 1.00	

 –5.71	

 +0.31	

 6.02	

 6.01	

 -0.01	

 -2.16	



Acetone: orbital energy differences and excitation energies (eV)	





valence
virtuals

Rydbergs

occupied
orbitals

LDA/GGA potntl:
strongly upshifted 
valence orbs 
(occup. and virt.);
weakly upshifted 
fewer Rydbergs

LDA/GGA
small basis

LDA/GGA
large basis

–I

exact KS
potential

V

R R

V

Orbital���
 energies 	





Level diagram of excited states in N2 	



2σu	


1πu	



3σg	



2πu	



1πg	


4σg	



Ry	

3σu	



val	



c1∏u	



o1∏u	



cʹ′1Σu	



bʹ′1Σu	



b1∏u	



14.20	



13.60	



13.30	


12.90	



12.80	



1πu→1πg	

 1πu→1πg	


1πu→1πg	



1πu→1πg	



2σu→1πg	

 2σu→1πg	



2σu→1πg	


2σu→1πg	



3σg→2πu	


3σg→2πu	



3σg→2πu	

 3σg→2πu	



3σg→3σu	


3σg→3σu	



3σg→3σu	

 3σg→3σu	



1πu→4σg	



1πu→4σg	


1πu→4σg	



14.08	



13.19	


13.58	



12.95	


12.93	



14.15	



13.49	


13.35	


13.07	



13.01	



14.27	



13.11	


12.99	



11.75	



10.51	


10.46	



13.36	



11.49	



10.36	


10.35	



14.27	



EXP	

 SAOP	

 BP-GRAC	

 LDA	

 BP	



(–15.3)	


(–6.9)	



(–2.3)	



(–16.5)	


(–18.6)	



(–3.3)	





Acetone: orbital energy differences and excitation energies (eV)	


Funct.	

 State	

 Weight	

 εi	

 εa	

 ∆εia	

 ω	

 ω – ∆εia	

 ω – Eexp	



HF	

 1A2	

 0.47	

 –11.23	

 +3.96	

 15.18	

 5.03	

 -10.15	

 0.60	


1B2	

 0.36	

 –11.23	

 +0.62	

 11.85	

 8.24	

 -3.61	

 1.88	


2A2	

 0.43	

 –11.23	

 +1.02	

 12.25	

 9.02	

 -3.23	

 1.66	


2A1	

 0.20	

 –11.23	

 +0.96	

 12.19	

 9.07	

 -3.12	

 1.66	


2B2	

 0.31	

 –11.23	

 +1.20	

 12.43	

 9.13	

 -3.30	

 1.64	


3A1	

 0.21	

 –11.23	

 +3.96	

 17.15	

 9.41	

 -7.74	

 1.61	


3B2	

 0.23	

 –11.23	

 +1.74	

 12.96	

 9.59	

 -3.37	

 1.50	


1B1	

 0.84	

 –11.23	

 +1.12	

 12.35	

 9.89	

 -2.46	

 1.72	



M06-2X	

 1A2	

 0.52	

 –8.85	

 +0.78	

 9.63	

 4.03	

 -5.60	

 -0.40	


1B2	

 0.73	

 –8.85	

 –0.34	

 8.51	

 6.54	

 -1.97	

 0.18	


2A2	

 0.62	

 –8.85	

 +0.04	

 8.88	

 7.33	

 -1.55	

 -0.03	


2A1	

 0.62	

 –8.85	

 +0.03	

 8.87	

 7.38	

 -1.49	

 -0.03	


2B2	

 0.45	

 –8.85	

 +0.15	

 9.00	

 7.40	

 - 1.60	

 -0.09	


3A1	

 0.79	

 –8.85	

 +0.74	

 9.58	

 8.03	

 - 1.55	

 0.23	


3B2	

 0.42	

 –8.85	

 +0.64	

 9.49	

 7.80	

 -1.69	

 -0.29	


1B1	

 0.92	

 –8.85	

 +0.73	

 9.58	

 8.12	

 -1.45	

 -0.05	





Funct.	

 State	

 Weight	

 εi	

 εa	

 ∆εia	

 ω	

 ω – ∆εia	

 ω – Eexp	



SAOP	

 1B1	

 1.00	

 –10.30	

 –6.52	

 3.78	

 3.97	

 0.19	

 0.12	


(≈ KS)	

 1A2	

 0.98	

 –10.30	

 –6.12	

 4.19	

 4.27	

 0.09	

 –0.35	



1B2	

 0.74	

 –11.45	

 –6.52	

 4.93	

 5.57	

 0.64	

 0.45	


2A2	

 0.98	

 –11.54	

 –6.52	

 5.02	

 5.27	

 0.24	

 –0.25	


2B1	

 0.99	

 –11.54	

 –6.12	

 5.43	

 5.57	

 0.15	

 –0.33	


1A1	

 0.76	

 –11.45	

 –6.12	

 5.33	

 6.44	

 1.12	

 –0.26	



BP86	

 1B1	

 0.99	

 –6.03	

 –2.42	

 3.61	

 3.80	

 0.19	

 –0.05	


1A2	

 0.99	

 –6.03	

 –2.07	

 3.96	

 4.04	

 0.08	

 –0.58	


1B2	

 0.72	

 –7.41	

 –2.42	

 4.98	

 5.58	

 0.60	

 0.46	


2A2	

 0.98	

 –7.28	

 –2.42	

 4.86	

 5.11	

 0.26	

 –0.41	


2B1	

 0.99	

 –7.28	

 –2.07	

 5.21	

 5.35	

  0.15	

 –0.55	


1A1	

 0.71	

 –7.41	

 –2.07	

 5.33	

 6.44	

 1.11	

 –0.26	



Pyrimidine: valence excitations (eV)	





Funct.	

 State	

 Weight	

 εi	

 εa	

 ∆εia	

 ω	

 ω – ∆εia	

 ω – Eexp	



TDHF	

 1B1	

 0.73	

 –11.31	

 2.20	

 13.51	

 5.70	

 –7.81	

 1.85	


1A2	

 0.29	

 –11.31	

 2.61	

 13.92	

 6.38	

 –7.54	

 1.76	


1B2	

 0.69	

 –10.21	

 2.20	

 12.41	

 6.12	

 –6.29	

 1.00	


2A2	

 0.63	

 –12.87	

 2.20	

 15.07	

 7.30	

 –7.77	

 1.78	


2B1	

 0.49	

 –10.21	

 0.68	

 10.89	

 7.32	

 –3.57	

 1.42	


1A1	

 0.52	

 –10.21	

 0.63	

 10.84	

 8.19	

 –2.65	

 1.49	



M06-2X	

 1B1	

 0.95	

 –8.92	

 –0.49	

 8.42	

 4.26	

 –4.17	

 0.41	


1A2	

 0.93	

 –8.92	

 –0.15	

 8.77	

 4.75	

 –4.01	

 0.13	


1B2	

 0.76	

 –9.43	

 –0.49	

 8.94	

 5.72	

 –3.22	

 0.60	


2A2	

 0.91	

 –10.31	

 –0.49	

 9.82	

 5.73	

 –4.09	

 0.21	


2B1	

 0.94	

 –10.31	

 –0.15	

 10.16	

 6.21	

  –3.96	

 0.31	


1A1	

 0.69	

 –9.43	

 –0.15	

 9.28	

 6.37	

 –2.91	

 –0.33	



Pyrimidine: valence excitations (eV)	





Difference orbital energies in Hartree-Fock and DFT (1)	



el. wavef.

hole

wavef.

≈

xc 

hole

Molecular 

excitation Why is KS virtual-occup. orbital energy difference	


a good approx. to excitation energy?	


The xc hole plays a crucial role here: it is a local	


hole, exerting a strong attraction at each 	


position r. This attraction mimicks the attraction	


 that in reality would occur by the “depletion hole”	


in orbital i where the electron came from.	


	


The virtual orbital in KS theory is a one-electron	


state for an electron that feels a hole potential,	


i.e. is like the electron in the electron-hole pair	


that is created in an excitation. 	





Difference orbital energies in Hartree-Fock and DFT (2)	



High HF εa
HF (due to lack in Fock operator for 

virtual ψa) is “pulled down” by 	


depletion hole  (Jia).	


εa

KS need not be pulled down, it is already low 
lying due to pull by xc hole.	


NB. shape of ψa

HF and ψa
KS is very different!	



       ψa
HF not realistic!	



el. wavef.

hole

wavef.

Molecular 

excitation

no hole 

attraction in 

HF virtual orb. 

energy

ε
i

ε
a

Hartree-Fock det.  Φ0 = |ψ1ψ2…ψN |

Koopmans' appr. to excitation (frozen orb.): 

i→ a   Φi
a =|ψ1ψ2…ψiψa…ψN |

E[Φi
a ]−E[Φ0 ]= εa

HF −εi
HF − Jia

electron-hole attraction
Jia= i(1)a(2) i(1)a(2)

 + Kia
small




Compare to how TD-DFT works in EXX variant ���
(see Gonze-Scheffler, PRL 1999	



EXX: local potential vx(r) appr. to KS pot. with only Wx
KS as xc 

functional (also called OPM).     vx(r) has X hole, ψa is “pulled down”.	


	


TD-EXX gives kernel correction to (εa – εi ) for excitation energy:	


	


	


	


	


-  2d term shifts εa up from (appr.) KS level εa

KS to (appr.) HF level εa
HF               

	

(because ψa  is unoccupied!) 	


-  3d term has little correction on εi (εi

KS ≈ εi
HF ≈ –IPi) anyway	



-  4th term (–Jia) provides electron-hole attraction to correct εa after   
	

upshift from 2d term back to ≈ εa

KS.	


-  5th term small. 	


 TD-EXX benefits from good shape of ψa

KS-EXX compared to ψa
HF !	



ω = (εa −εi )+ ϕiϕa fxc
EXX ϕiϕa

= (εa −εi )+ ϕa K̂
HF
− vx ϕa − ϕi K̂

HF
− vx ϕi − Jia +Kia



Charge transfer excitations between two remote molecules are    
much too low in TDDFT. Why?	



CT transition should be: ID – AA – Jda (≈ –1/R)	


Exact KS: εd = – ID,  εa = –AA –∆A

	



TDDFT gives appr. (εa – εd) +<ψaψd|fxc|ψaψd>	


 	

 	

    ID – AA – ∆A                 ≈0 over all space if R large 	



	

 	

  wrong by ∆A! 	

  → zero contrib. from kernel term	



∆A	





Charge transfer excitations between two remote molecules	



TDDFT gives appr. (εa – εd) +<ψaψd|fxc|ψaψd> ≈ ID – AA – ∆A 	


	


	


Now KS orbital energy difference is NOT good!  Why?	


Because xc hole and actual depletion hole are too different.	


	


vxc

hole : potential due to hole of –1 electron (is +1 charge) around each 
reference point  →  strongly attractive	


	


depletion hole –|ψd|2 is far from  points r on A where potential is 
evaluated, so little stabilization should be experienced by electron	


from far away hole;	


electron is like an added electron to A.	


Now HF  εa

HF ≈ –AA (Koopmans) would be better:	


	



	

 	

 	

 	

 	

 	

(            no hole for virtual orb.!)
	

 	

 	

       	



εa
HF

= ψa −
1

2
∇
2
+ vnuc + vCoul + K̂

HF ψa K̂
HF



Charge transfer excitations between two remote molecules are 
much too low in TDDFT. Why?	



transferred el. 

wavef.

≠

el. wavef.

hole

wavef.

≈

xc 
hole

hole

wavef.

KS LUMO

stabilized 

Charge transfer excitation 

Donor Acceptor

Molecular 
excitation

    by

 xc hole 



Comment on bandgap in solids (1)	



deloc. hole wavef.

delocalized electron  wavef.

valence band

conduction band

of excited electrons

KS conduction band, strongly 

stabilized by local xc hole

xc hole

exciton

weak

stabiliz.

no

stabiliz.

Fermi level

Do not expect bottom of conduction band states in DFT to be affinity level 	





Comment on bandgap in solids (2)	


LDA/GGA bandgap often only 30 – 50% of the fundamental gap (I – A)	


Surprise?	


Maybe true KS gap will be close to (I – A)?	


No: Godby, Schlüter, Sham 1986; Grüning, Marini, Rubio (2006): 	


LDA/GGA gap ≈ KS gap (as we saw for molecules!)	


	


To be expected:	


Actual hole-electron interaction is different from electron - KS xc hole 
interaction:	


- KS xc hole is small (~ atomic size,  one unit cell in Si) -> strong pull	


- fully delocalized electron and hole states: no pull	


- excitons: Wannier-Mott: still diffuse electron wavefunction,	


e.g. Si: Bohr radius of exciton ca. 4.3 nm ≈ 100 bohr	


→ very little electron-hole stabilization	


[Frenkel excitons in e.g. molecular solid may be more like molecules]	


	


NB. explanation for solids very much like for the CT problem    	
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Failures of time-dependent DFT	


	


a) Wrong Potential Energy Surface (PES) for 	


	

 	

 	

 bonding → antibond. excitation	



	


b) Failure to treat doubly excited configurations	


	


c) 	

Too low charge transfer excitation energy	


	


a) and c) are cases where  leading term (εa – εi) is 

wrong and usual kernel (ALDA) fails to correct 	
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a) Bonding-antibond. excitation problem in TDDFT	



exact 	



BP86	



B3LYP	



H2	


cc-pVTZ basis	



Re	



11Σu
+	



31Σu
+	



21Σu
+	



1Σu
+ states in H2: lowest is  (σg)2 → (σg)1(σu)1	



Gritsenko, v. Gisb.	


Görling, Baerends,	


 JCP 113 (2000)	





N2 1Σu
+ PECs: exact Gr. St. + TDDFT 	
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“Exact” ground state plus	


 TDDFT excit. energies	
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N2 1Σu
+ PECs: DFT Gr. St. + TDDFT 	
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b)Double excitation problem in TDDFT:  1Σg
+ states of H2 	



exact 	



BP86	



B3LYP	


21Σg

+	



41Σg
+	



31Σg
+	



•	



•	


•	



•	



•	


•	



•	

 •	

 •	

 •	

 •	

 •	



•	



•	



•	



H2	



cc-pVTZ basis	



Re	


•  • • • •  double excit. character	


                         (σg)2 → (σu)2	





Benchmark diabatic potential energy curves from 
MRCI and fit to expt. (Spelsberg&Meyer, 2001)	



double excit.	


3σg,1πu→(1πg)2

	



valence	


2σu→1πg	

 c	



b	


o	



Ry 3σg→2πu	



Ry 1πu→4σg	





Benchmark diabatic potential energy curves from 
MRCI and fit to expt. (Spelsberg&Meyer, 2001)	



TDDFT b1Πu (valence 2σu→1πg) above the Rydb states because of	


lack of doubles: always a problem at long distance!	


 	



double excit.	


3σg,1πu→(1πg)2

	


valence	


2σu→1πg	

 c	



b	


o	



TDDFT (exact KS pot) 	


calculated b1Πu:	


lacks double!	





0

0.3

0.6

0.9

1.2

1.5

0 1 2 3 4 5 6 7 8 9 10

bohr

e
x
c
it
a
ti
o
n
 e

n
e
rg

y
 (

a
.u

.)

c) Charge transfer problem of TDDFT: 1Σ+ excited st. in HeH+	



41Σ+	



31Σ+	



21Σ+	



exact 	



BP86	



B3LYP	



aug-cc-pVQZ basis	


HeH+	





TDHF solves CT problem, see	



TDHF	



TDDFT	



Dreuw +	


Head-Gordon	


	


Cf. hybrid 	


methods	





TDHF does not solve (σg)2 → (σg)1(σu)1 problem	



TDHF	



TDDFT	



1Σu
+	




