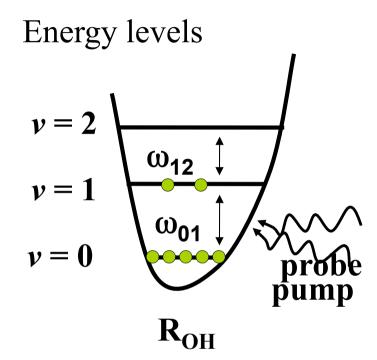
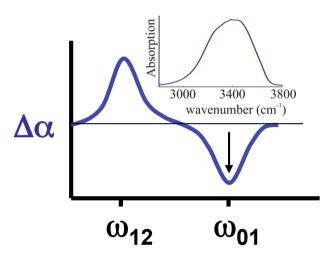


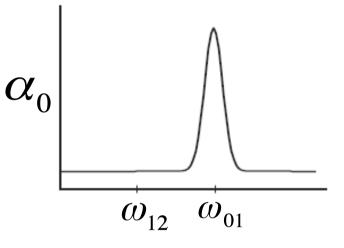
Pump-probe: principle



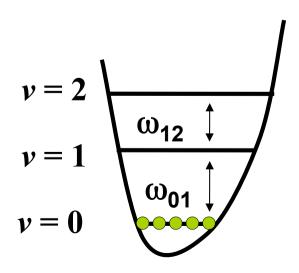
Transient spectrum

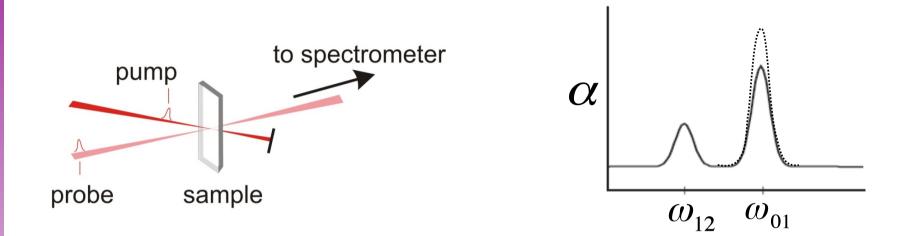






$$\alpha_0 = \sigma_{01}(\omega)n$$





$$\alpha = \sigma_{01}(\omega)(n - 2N_1) + \sigma_{12}(\omega)N_1$$
$$\alpha_0 = \sigma_{01}(\omega)n$$
$$v = 0$$

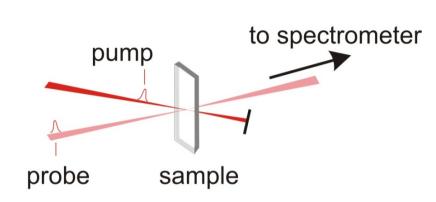
$$v = 2$$

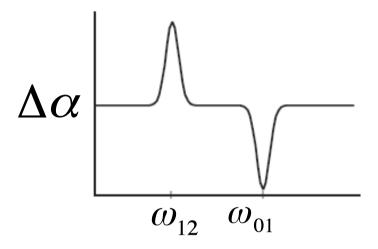
$$v = 1$$

$$w = 0$$

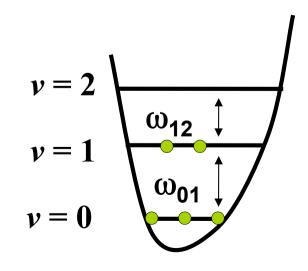
$$\omega_{12}$$

$$\omega_{01}$$





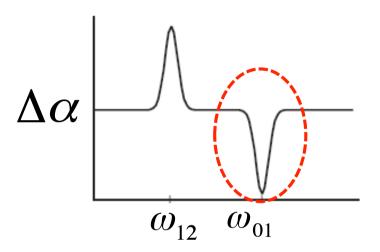
$$\Delta \alpha = -2N_1 \sigma_{01}(\omega) + \sigma_{12}(\omega)N_1$$

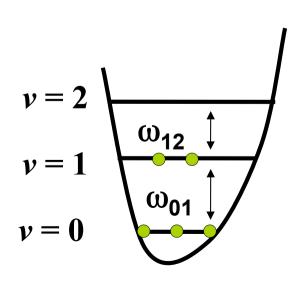


$$\Delta \alpha = -2N_1 \sigma_{01}(\omega) + \sigma_{12}(\omega)N_1$$

Bleach has two contributions

Ground state depletionStimulated emission

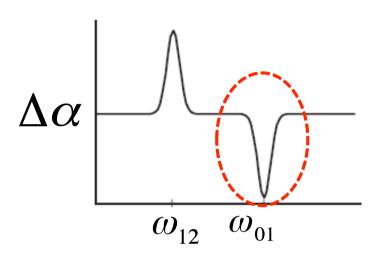


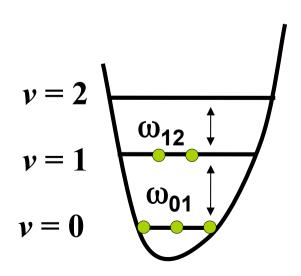


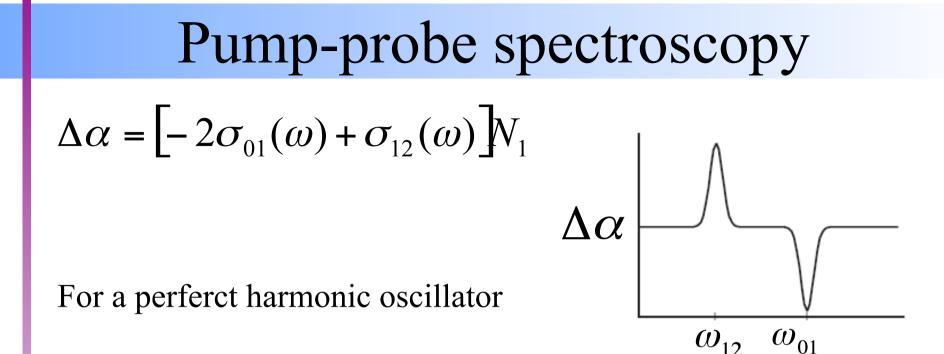
$$\Delta \alpha = \left[-2\sigma_{01}(\omega) + \sigma_{12}(\omega)\right] N_1$$

Bleach has two contributions

Ground state depletionStimulated emission

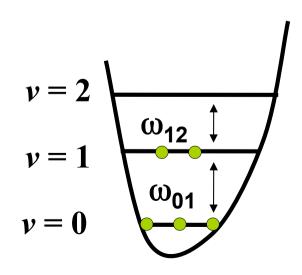






$$\sigma_{12}(\omega) = 2\sigma_{01}(\omega)$$

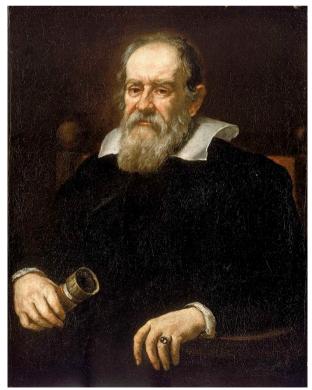
No pump-probe signal!

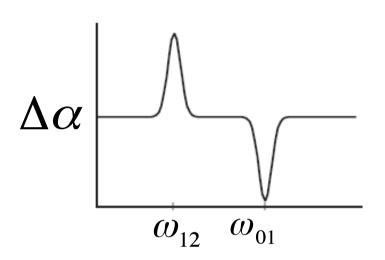


 ω_{12}

$$\Delta \alpha = -2N_1 \sigma_{01}(\omega) + \sigma_{12}(\omega)N_1$$

Galileo



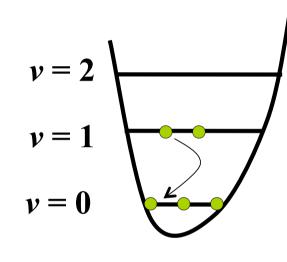


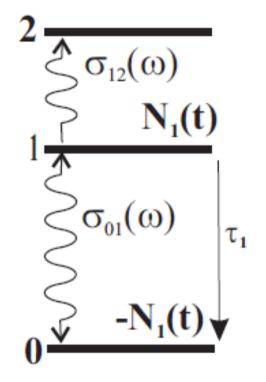
Anharmonicity is required for a pump-probe signal

Vibrational relaxation and its effects

Vibrational relaxation

Molecules relax to the ground state

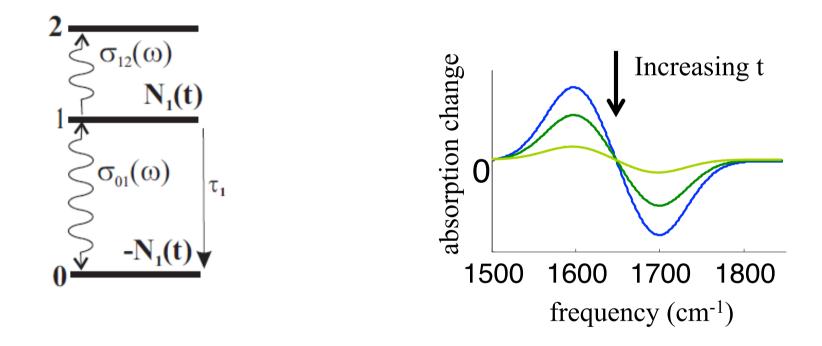




$$\Delta \alpha(\omega, t) = \left[-2\sigma_{01}(\omega) + \sigma_{12}(\omega)\right] N_1(t)$$

Vibrational relaxation

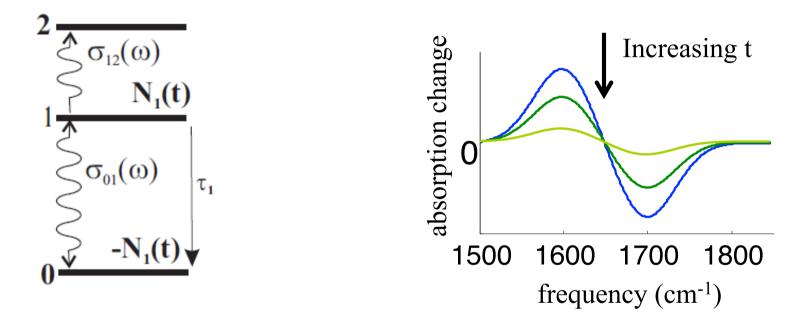
Molecules relax to the ground state



$$\Delta \alpha(\omega, t) = \left[-2\sigma_{01}(\omega) + \sigma_{12}(\omega)\right] N_1(t)$$

Vibrational relaxation

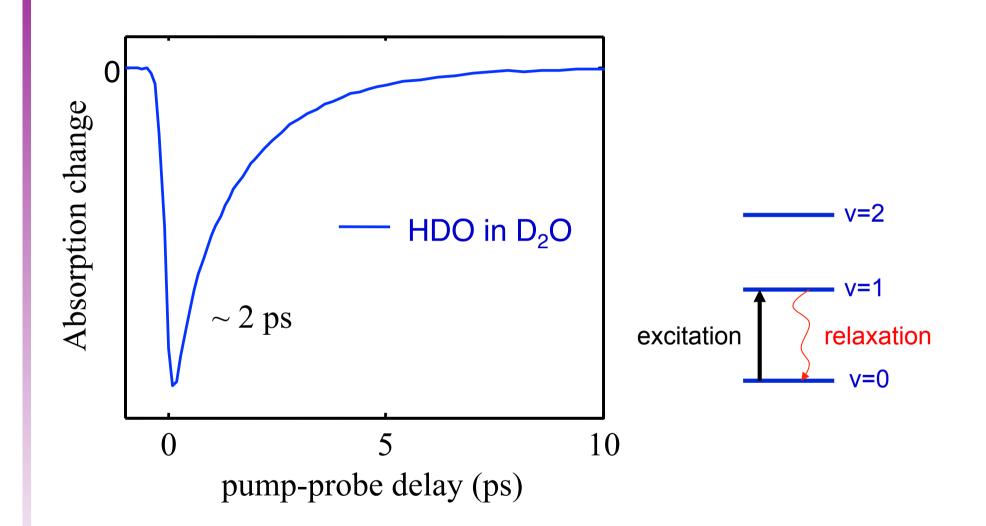
Molecules relax to the ground state



$$\Delta \alpha(\omega, t) = \left[-2\sigma_{01}(\omega) + \sigma_{12}(\omega)\right] N_1(0) e^{-t/\tau_1}$$

Simplest case: exponential relaxation

Delay time scan (shows vibrational relaxation)



Exponential relaxation

When do we get exponential relaxation (or decay)? What does it mean microscopically?

Spontaneous emission rate (Einstein theory, Wigner-Weisskopf)

$$1/\tau_{1} = \frac{\omega_{01}^{3} |\mu_{01}|^{2}}{3\pi\varepsilon_{0}\hbar c^{3}}$$

Electronic transitions \rightarrow ~nanosecond Vibrational transitions \rightarrow microsecond-millisecond

Exponential relaxation

When do we get exponential relaxation (or decay)? What does it mean microscopically?

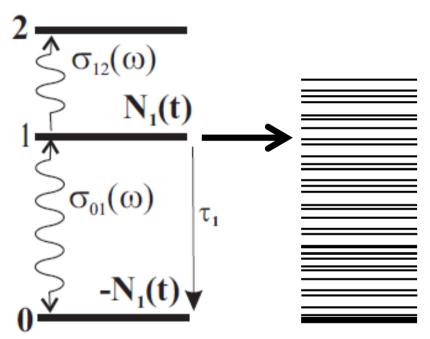
<u>Radiative decay</u> Vibrational transitions \rightarrow microsecond-millisecond

<u>Non-radiative decay rate</u> Vibrational transitions \rightarrow picosecond

In the condensed phase vibrational excitations decay non-radiatively on a picosecond timescale.

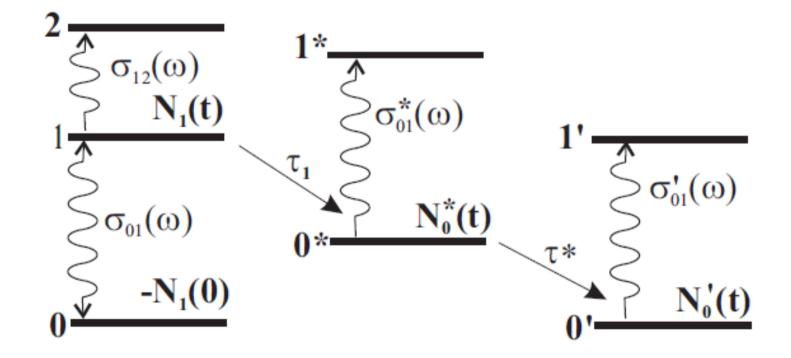
Exponential relaxation

Many closely lying states that are nearly resonant

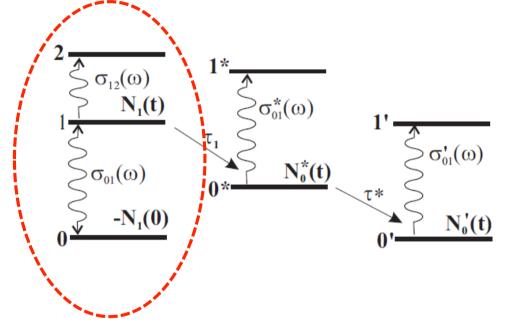


low-frequency vibrations, intermolecular modes, etc.

E.g. relaxation of OD stretching vibration of HDO in H2O

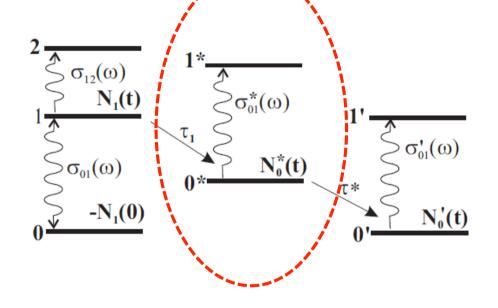


E.g. relaxation of OD stretching vibration of HDO in H2O



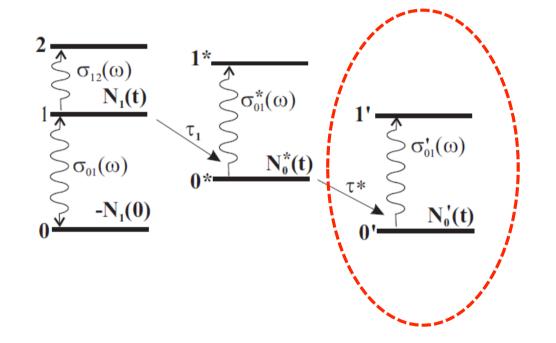
Vibrational anharmonicity

E.g. relaxation of OD stretching vibration of HDO in H2O



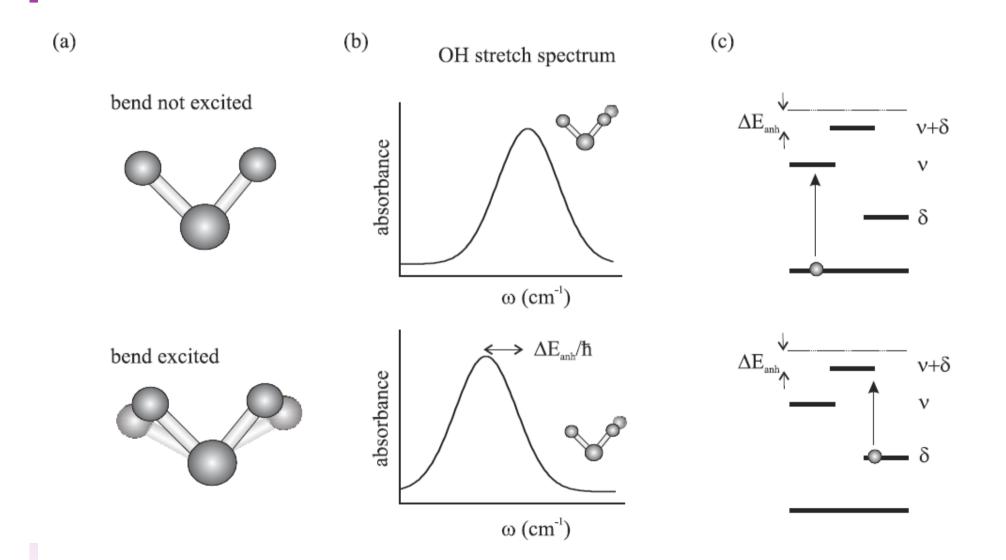
Low-frequency mode excited (anharmonic shift)

E.g. relaxation of OD stretching vibration of HDO in H2O



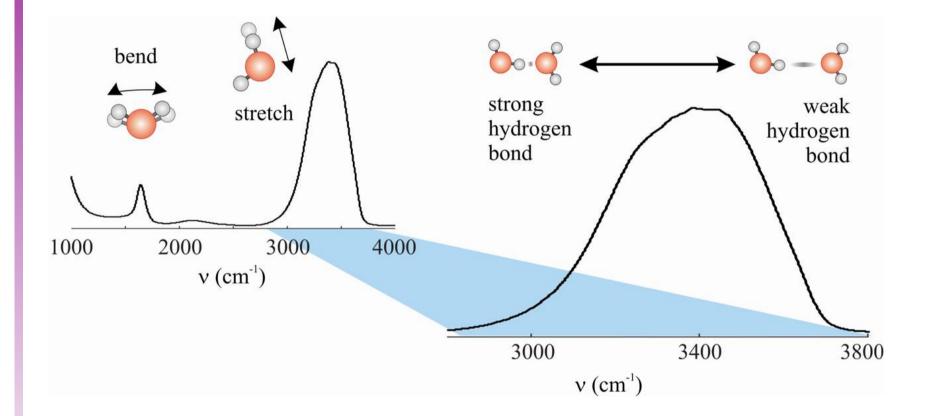
Sample heating

Anharmonic vibrational couplings

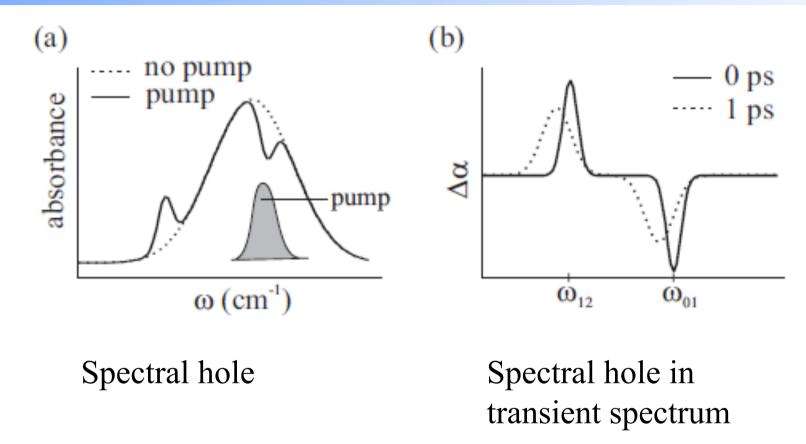


Inhomogeneous broadening and spectral diffusion

Inhomogeneous broadening



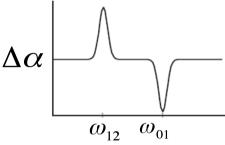
Probing spectral diffusion



Spectral hole broadens due to spectral diffusion

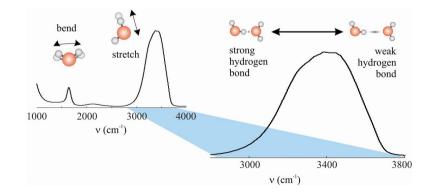
Summary 'Pump-probe spectroscopy'

•Origin of the vibrational pump-probe signal \rightarrow anharmonicity

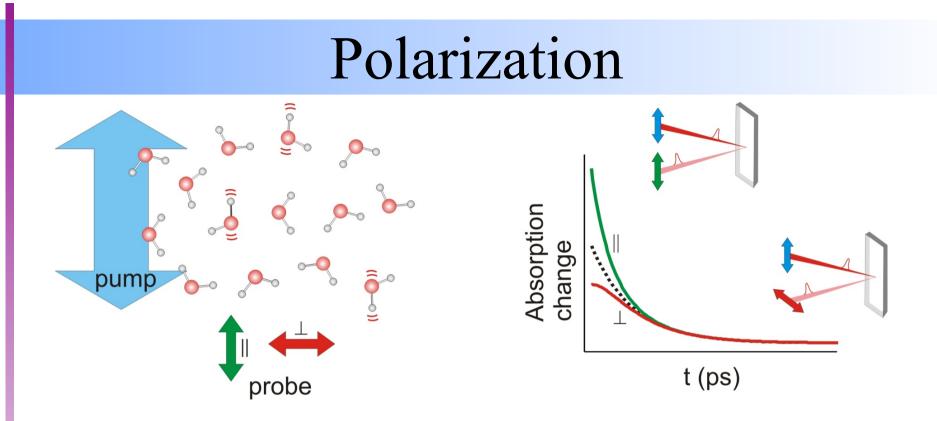


•Vibrational relaxation

•Spectral diffusion

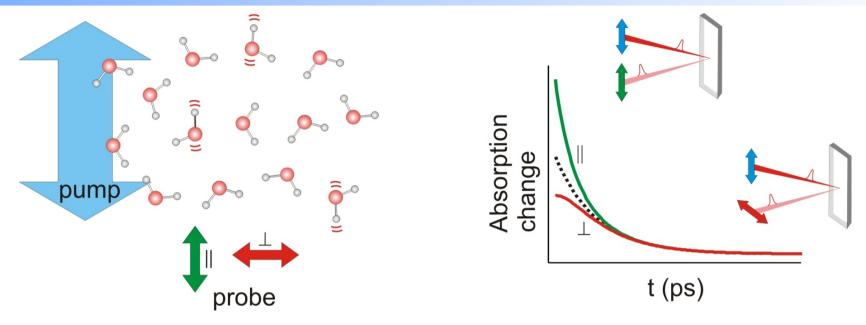


Polarization properties of the pump-probe signal

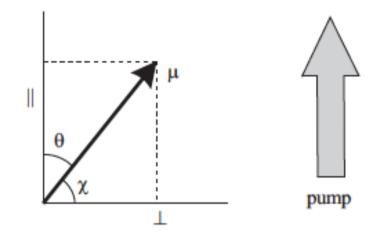


To study vibrational relaxation we need the isotropic signal:

which depends only on the concentration of excited moleculeswhich is not affected by orientational motion



 $\Delta \alpha_{iso} \neq \frac{\Delta \alpha_{\parallel} + \Delta \alpha_{\perp}}{2}$

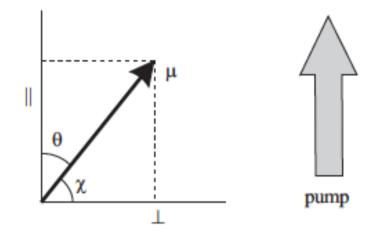


Contribution of an excited vibration to the parallel and perpendicular signal:

$$\Delta lpha_{||} \propto \cos^2 heta_{||}$$

 $\Delta lpha_{\perp} \propto \cos^2 \chi$

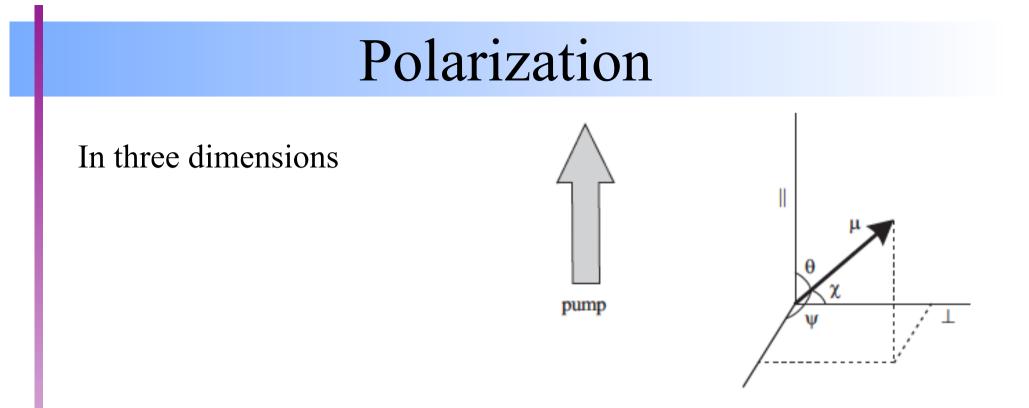




The following quantity is independent of orientation

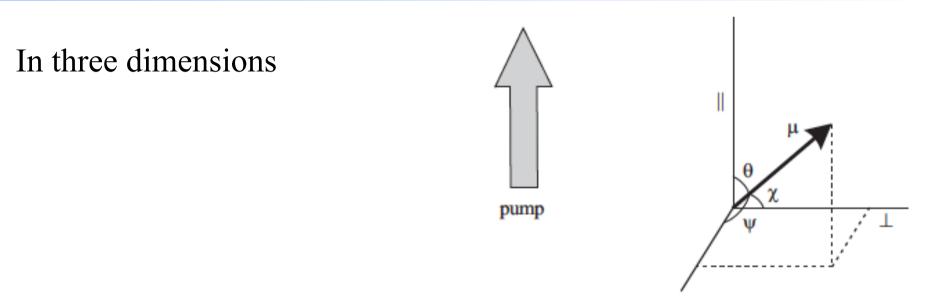
$$\Delta \alpha_{\rm H} + \Delta \alpha_{\rm L} \propto \cos^2 \theta + \cos^2 \chi$$

In two dimensions this would be the isotropic signal



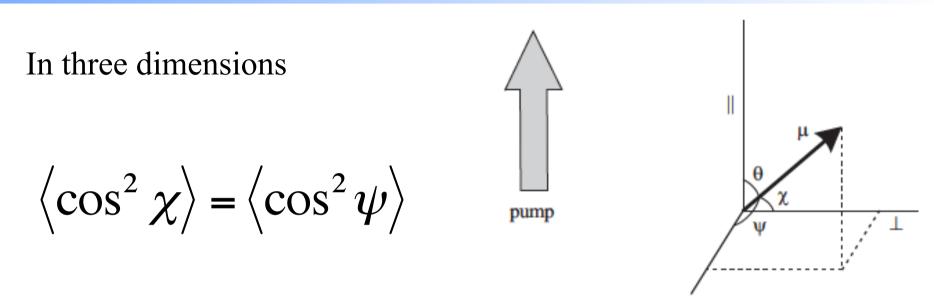
Independent of the orientation of an excited dipole

$$\cos^2\theta + \cos^2\chi + \cos^2\psi$$



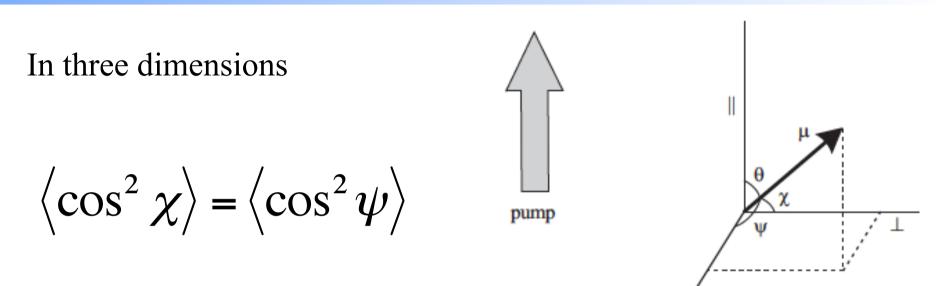
However in a macroscopic measurement one probes the average over all molecules

$$\langle \cos^2 \theta \rangle + \langle \cos^2 \chi \rangle + \langle \cos^2 \psi \rangle$$



However in a macroscopic measurement one probes the average over all molecules

$$\langle \cos^2 \theta \rangle + \langle \cos^2 \chi \rangle + \langle \cos^2 \psi \rangle$$

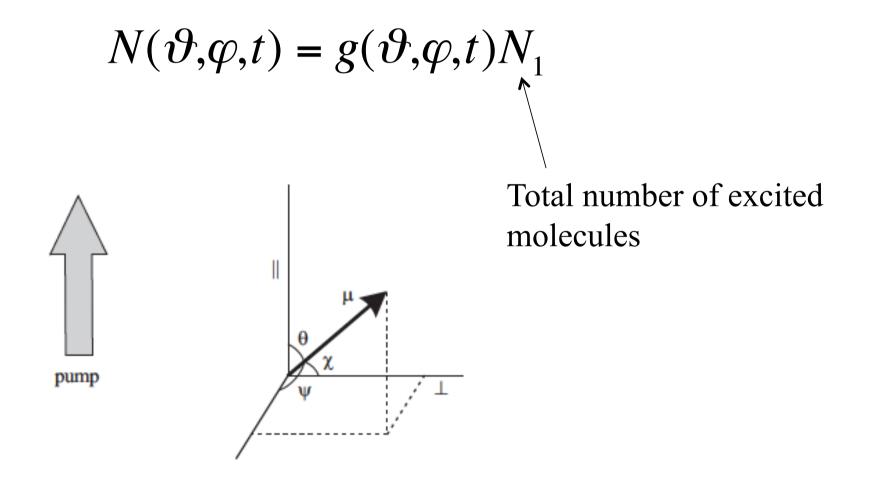


The quantity independent of orientation is

$$\Delta \alpha_{iso} = \frac{\Delta \alpha_{\parallel} + 2\Delta \alpha_{\perp}}{3} = \left\langle \cos^2 \theta \right\rangle + 2\left\langle \cos^2 \chi \right\rangle$$

Using a distribution function

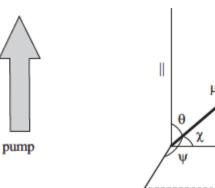
Distribution of excited molecules



Properties

•Normalization

$$\int g(\theta, \phi, t) \, d\Omega = 1$$

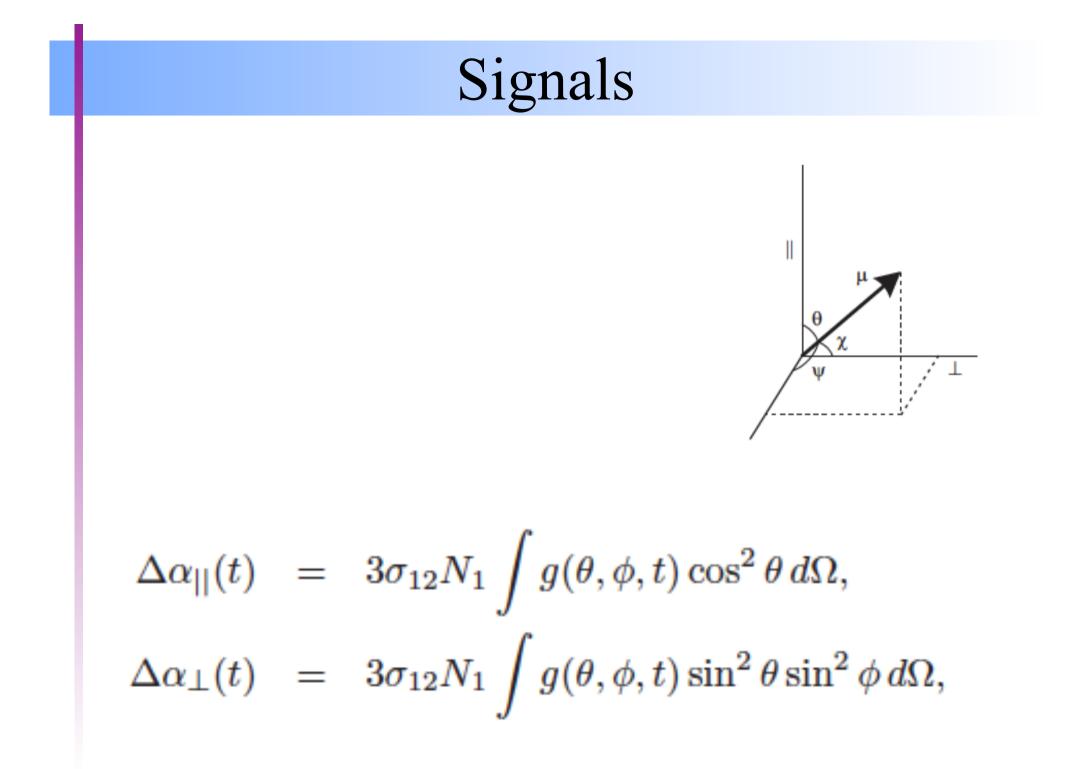


•At zero delay

$$g(\theta, \phi, 0) = \frac{3}{4\pi} \cos^2 \theta.$$

•Tends to an isotropic distribution for long delays

$$\lim_{t \to \infty} g(\theta, \phi, t) = \frac{1}{4\pi}$$



Signals

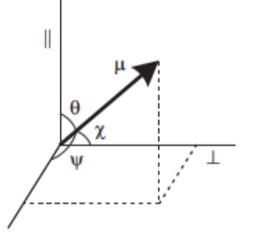
$$\cos^{2} \chi = (\vec{\mu}(\theta, \phi) \cdot \hat{y})^{2}$$

$$= \sin^{2} \theta \sin^{2} \phi$$

$$\Delta \alpha_{||}(t) = 3\sigma_{12}N_{1} \int g(\theta, \phi, t) \cos^{2} \theta \, d\Omega,$$

 $\Delta \alpha_{\perp}(t) = 3\sigma_{12}N_1 \int g(\theta, \phi, t) \sin^2 \theta \sin^2 \phi \, d\Omega,$

Cross section is defined as isotropic average = 1/3 of maximum value



$$\begin{aligned} \Delta \alpha_{||}(t) &= \left(3\sigma_{12}N_1 \int g(\theta,\phi,t) \cos^2\theta \, d\Omega, \\ \Delta \alpha_{\perp}(t) &= \left(3\sigma_{12}N_1 \int g(\theta,\phi,t) \sin^2\theta \sin^2\phi \, d\Omega, \right) \end{aligned}$$

$$\begin{aligned} \Delta \alpha_{||}(t) &= 3\sigma_{12}N_1 \int g(\theta,\phi,t)\cos^2\theta \,d\Omega, \\ \Delta \alpha_{\perp}(t) &= 3\sigma_{12}N_1 \int g(\theta,\phi,t)\sin^2\theta \sin^2\phi \,d\Omega, \end{aligned}$$

$$\Delta \alpha_{iso} = \frac{1}{3} (\Delta \alpha_{\parallel} + 2\Delta \alpha_{\perp})$$

$$\Delta \alpha_{iso} = \sigma_{12} N_1 \int g(\theta, \varphi, t) \left[\cos^2 \theta + 2 \sin^2 \theta \sin^2 \varphi \right] d\Omega$$

$$\Delta \alpha_{iso} = \sigma_{12} N_1 \int g(\theta, \varphi, t) \left[\cos^2 \theta + 2 \sin^2 \theta \sin^2 \varphi \right] d\Omega$$

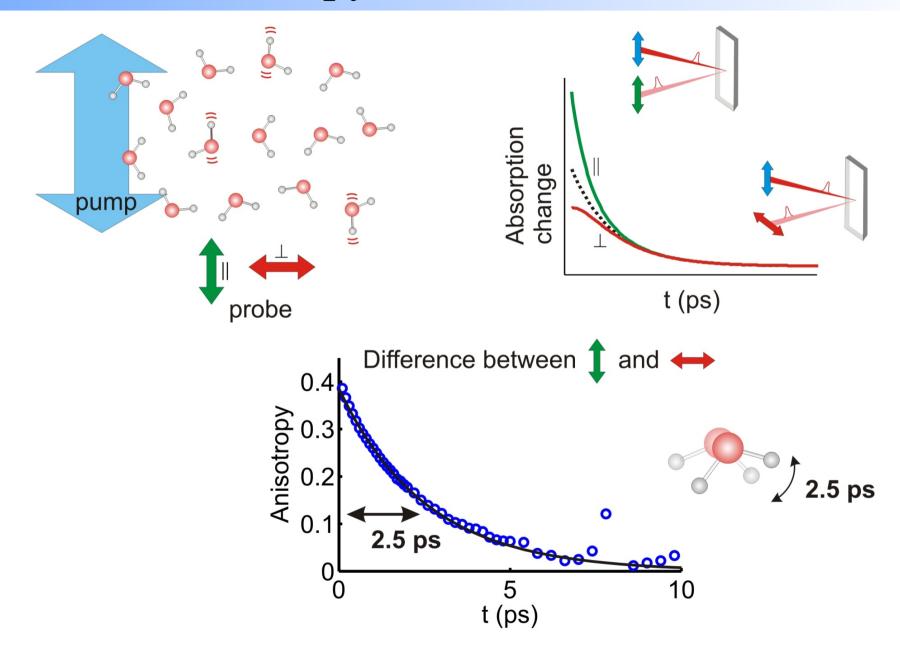
Isotropic sample

$$g(\vartheta, \varphi, t) = g(\vartheta, t)$$

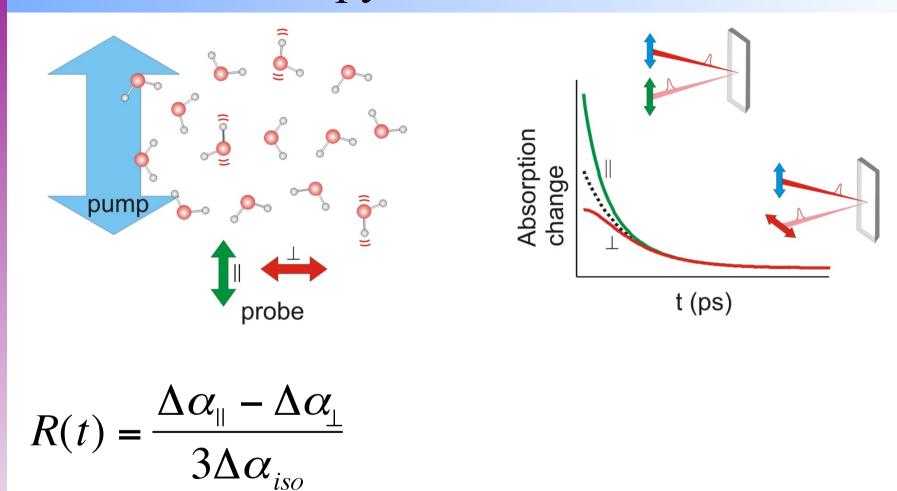
$$\Delta \alpha_{iso} = \sigma_{12} N_1$$

Indeed the isotropic signal depends only on the total number of excited molecules!

Anisotropy: molecular motion



Anisotropy: molecular motion



What microscopic quantity does the anisotropy represent?

$$\begin{aligned} \Delta \alpha_{||}(t) &= 3\sigma_{12}N_1 \int g(\theta,\phi,t)\cos^2\theta \,d\Omega, \\ \Delta \alpha_{\perp}(t) &= 3\sigma_{12}N_1 \int g(\theta,\phi,t)\sin^2\theta \sin^2\phi \,d\Omega, \end{aligned}$$

$$R(t) = \frac{\Delta \alpha_{\parallel} - \Delta \alpha_{\perp}}{3\Delta \alpha_{iso}} \qquad \Delta \alpha_{iso} = \sigma_{12} N_{1}$$

$$R(t) = \int g(\theta, \varphi, t) \left[\cos^2 \theta - \sin^2 \theta \sin^2 \varphi \right] d\Omega$$

$$\begin{aligned} \Delta \alpha_{||}(t) &= 3\sigma_{12}N_1 \int g(\theta,\phi,t)\cos^2\theta \,d\Omega, \\ \Delta \alpha_{\perp}(t) &= 3\sigma_{12}N_1 \int g(\theta,\phi,t)\sin^2\theta \sin^2\phi \,d\Omega, \end{aligned}$$

Indeed:

The anisotropy reflects the time-dependent distribution of excited molecules!

$$R(t) = \int g(\theta, \varphi, t) \left[\cos^2 \theta - \sin^2 \theta \sin^2 \varphi \right] d\Omega$$

Expression is difficult to interpretLet's rewrite in terms of properties of the individual molecules

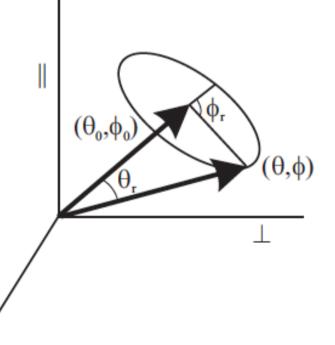
$$R(t) = \int g(\theta, \varphi, t) \left[\cos^2 \theta - \sin^2 \theta \sin^2 \varphi \right] d\Omega$$

$$g(\theta, \varphi, t) = \int p(\theta, \varphi, t \mid \theta_0, \varphi_0, 0) g(\theta_0, \varphi_0, 0) d\Omega_0$$

$p(\theta,\!\varphi,\!t\,|\,\theta_{_0},\!\varphi_{_0},\!0)\,d\Omega =$

•Probability that a molecule with orientation (θ_0, ϕ_0) at t=0 has diffused to (θ, ϕ) at t=0

•Green's function for the rotational diffusion equation

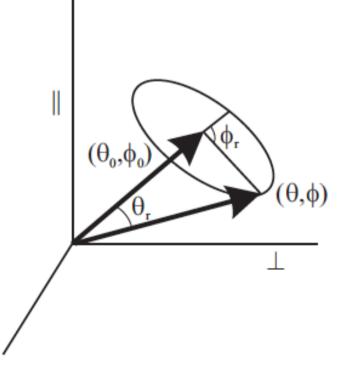


$$g(\theta, \varphi, t) = \int p(\theta, \varphi, t \mid \theta_0, \varphi_0, 0) g(\theta_0, \varphi_0, 0) d\Omega_0$$

$$g(\theta,\varphi,t) = \int p(\theta,\varphi,t \mid \theta_0,\varphi_0,0) \frac{3}{4\pi} \cos^2 \theta_0 d\Omega_0$$

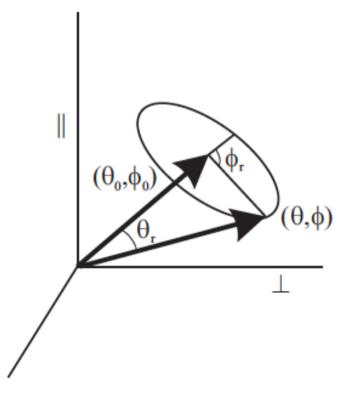
$$R(t) = \int g(\theta, \varphi, t) \left[\cos^2 \theta - \sin^2 \theta \sin^2 \varphi \right] d\Omega$$

$$R(t) = \int \int p(\theta, \varphi, t \mid \theta_0, \varphi_0, 0) \frac{3\cos^2 \theta_0}{4\pi} [\cos^2 \theta - \sin^2 \theta \sin^2 \varphi] d\Omega d\Omega_0$$



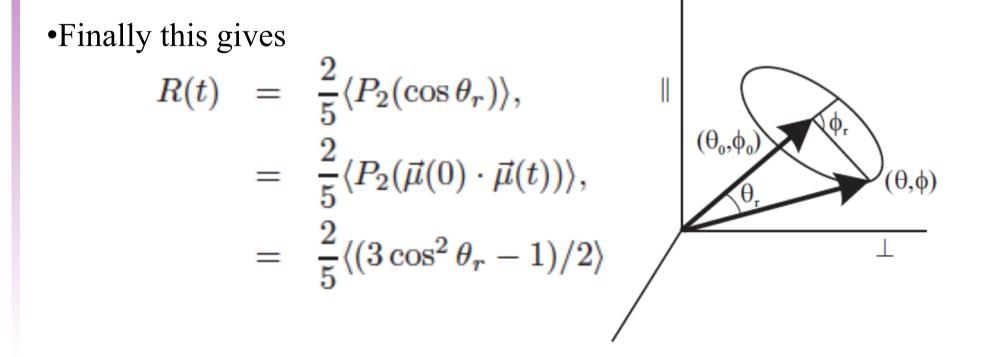
$$R(t) = \int \int p(\theta, \varphi, t \mid \theta_0, \varphi_0, 0) \frac{3\cos^2 \theta_0}{4\pi} [\cos^2 \theta - \sin^2 \theta \sin^2 \varphi] d\Omega d\Omega_0$$

Change integration variables to (θ_0, ϕ_0) and (θ_r, ϕ_r)



$$R(t) = \int \int p(\theta, \varphi, t \mid \theta_0, \varphi_0, 0) \frac{3\cos^2 \theta_0}{4\pi} [\cos^2 \theta - \sin^2 \theta \sin^2 \varphi] d\Omega d\Omega_0$$

•Change integration variables to (θ_0, ϕ_0) and (θ_r, ϕ_r) •Do a lot of algebra



$$R(t) = \frac{2}{5} \langle P_2(\cos \theta_r) \rangle,$$

$$= \frac{2}{5} \langle P_2(\vec{\mu}(0) \cdot \vec{\mu}(t)) \rangle,$$

$$= \frac{2}{5} \langle (3\cos^2 \theta_r - 1)/2 \rangle$$

Jump/diffusion angle θ_r

The anisotropy is the average over all molecules of the following function of θ_r

$$\frac{2}{5} \cdot \frac{3\cos^2\theta_r - 1}{2}$$

Simple applications

•Isotropic diffusion (check)

•Delocalization in a plane

•Energy transfer over an angle θ_t

$$R(t) = \frac{2}{5} \left\langle \frac{3\cos^2\theta_r(t) - 1}{2} \right\rangle$$

Summary 'Polarization properties'

•Moving from the lab frame to a molecular frame

•Isotropic signal

$$\Delta \alpha_{iso} = \frac{1}{3} (\Delta \alpha_{||} + 2\Delta \alpha_{\perp})$$

•Anisotropy

$$R(t) = \frac{2}{5} \left\langle \frac{3\cos^2\theta_r(t) - 1}{2} \right\rangle$$