# Review: Quantum mechanics of the harmonic oscillator

# Molecular vibrations

Molecular vibrations: may involve complex motions of all atoms



Luckily the equations of motion can be made isomorphic with the equations of motions of a simple harmonic oscillator

# Harmonic oscillator •Normal modes (we will discuss this in detail later) Х X Χ k m $M = \infty$ $\omega_0 = \sqrt{\frac{k}{m}}$

# Harmonic oscillator

•Normal modes (we will discuss this in detail later)



# Harmonic oscillator

•Normal modes (we will discuss this in detail later)



•Classical description

$$\ddot{x} + \omega_0^2 x = 0$$
  $\omega_0 = \omega_0(k_1, k_2, m_A, m_B, m_C)$ 

# Quantum mechanical description



Schrödinger equation

$$\hat{H}_{0}|\varphi\rangle = E|\varphi\rangle$$

#### Hamiltonian

$$\hat{H}_0 = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega_0^2 \hat{x}^2$$

# Quantum mechanical description



Schrödinger equation

$$\hat{H}_{0}|\varphi\rangle = E|\varphi\rangle$$

Hamiltonian (explicit operators)

$$\hat{H}_0 = -\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + \frac{1}{2}m\omega_0^2 x^2$$



#### Eigenvalues

$$E_n = \hbar \omega_0 \left( n + \frac{1}{2} \right)$$



Eigenfunctions (explicit form):

$$|\varphi_n(x)\rangle = N_n e^{-\alpha^2 x^2/2} H_n(\alpha x)$$
  $\alpha = \sqrt{\frac{m\omega_0}{\hbar}}$ 

# Ladder operator formalism

•We will no longer deal with the explicit solutions

- •Instead we use
- $|arphi_n
  angle$
- •And we define

$$\hat{a} = \sqrt{\frac{m\omega_0}{2\hbar}} \left( \hat{x} + i \frac{\hat{p}}{m\omega_0} \right)$$

Annihilation (lowering) operator

$$\hat{a}^{\pm} = \sqrt{\frac{m\omega_0}{2\hbar}} \left( \hat{x} - i\frac{\hat{p}}{m\omega_0} \right)$$

Creation (raising) operator



# Ladder operator formalism

$$\hat{a} = \sqrt{\frac{m\omega_0}{2\hbar}} \left( \hat{x} + i\frac{\hat{p}}{m\omega_0} \right)$$

Annihilation (lowering) operator

$$\hat{a}^{\pm} = \sqrt{\frac{m\omega_0}{2\hbar}} \left( \hat{x} - i\frac{\hat{p}}{m\omega_0} \right)$$

Creation (raising) operator

•Work out the following on your own

$$\hat{H}_0 = \hbar \omega_0 \left( \hat{a}^{\pm} \hat{a} + \frac{1}{2} \right) \qquad \left[ \hat{a}^{\pm}, \hat{a} \right] = 1$$

(use  $[\hat{x}, \hat{p}] = i\hbar$ )

# Ladder operator formalism

•The following properties are useful

$$\hat{a}^{\pm} | \varphi_n \rangle = \sqrt{n+1} | \varphi_{n+1} \rangle$$
 (raising operation)

$$\hat{a}|\varphi_n\rangle = \sqrt{n}|\varphi_{n-1}\rangle$$
 (lowering operation)

You can show this by brute force by using the expressions for  $\varphi_n(x)$ 

E.g. see: Brandsen and Joachain, *Introduction to Quantum Mechanics* 



# Why are ladder operators useful?

•We are typically interested in expressions such as



# Suggested reading

•More elegant solution of the quantum harmonic oscillator (Dirac's method)

All properties of the quantum harmonic oscillator can be derived from:

$$\hat{H}_0 = \hbar \omega_0 \left( \hat{a}^{\pm} \hat{a} + \frac{1}{2} \right) \qquad \left[ \hat{a}^{\pm}, \hat{a} \right] = 1$$



E.g. see: Sakurai, Modern Quantum Mechanics

Oscillating electric field induces transitions

•Only single-quantum transitions are allowed ( $\Delta n = \pm 1$ )

$$i\hbar\frac{\partial}{\partial t}|\phi\rangle = \hat{H}|\phi\rangle$$

$$\hat{H} = \hat{H}_0 + \hat{V}_{\text{int}}$$

$$\hat{V}_{\rm int} = -\hat{\mu} \cdot E_0 \cos(\omega t)$$





Oscillating electric field induces transitions

•Only single-quantum transitions are allowed ( $\Delta n = \pm 1$ )

$$i\hbar\frac{\partial}{\partial t}|\phi\rangle = \hat{H}|\phi\rangle$$

$$\hat{H} = \hat{H}_0 + \hat{V}_{\text{int}}(t)$$

$$\hat{V}_{\rm int}(t) = -\hat{\mu} \cdot E_0 \cos(\omega t)$$

Electric-dipole Hamiltonian



Oscillating electric field induces transitions

•Only single-quantum transitions are allowed ( $\Delta n = \pm 1$ )

$$\hat{V}_{\rm int}(t) = -\hat{\mu} \cdot \vec{E}_0 \cos(\omega t)$$

$$= -\frac{1}{2}\hat{\mu}\cdot\vec{E}_0(e^{i\omega t} + e^{-i\omega t})$$



$$= \hat{V}(e^{i\omega t} + e^{-i\omega t})$$

Oscillating electric field induces transitions

•Only single-quantum transitions are allowed ( $\Delta n = \pm 1$ )

$$\hat{V}_{\text{int}}(t) = -\hat{\mu} \cdot \vec{E}_0 \cos(\omega t)$$

$$= \hat{V}(e^{i\omega t} + e^{-i\omega t})$$

operator

time dependence

Y

$$\hat{V} = -\frac{1}{2}\hat{\mu}\cdot\vec{E}_0$$



# For those interested

$$\hat{V}_{\text{int}} = -\hat{\mu} \cdot \vec{E}_0 \cos(\omega t)$$



350 page derivation of the Light-matter Hamiltonian

Cohen-Tannoudji, Dupont-Roc & Grynberg

# Effect of perturbation

Solve time-dependent Schrödinger equation

$$i\hbar\frac{\partial}{\partial t}|\phi\rangle = \hat{H}|\phi\rangle$$



First order perturbation theory: Fermi's golden rule

$$W_{kl} = \frac{2\pi}{\hbar^2} |\langle k | \hat{V} | l \rangle|^2 [\delta(\omega_{kl} - \omega) + \delta(\omega_{kl} + \omega)] >$$

Bohr condition:  $\Delta E = \hbar \omega$ 

# Effect of perturbation

Solve time-dependent Schrödinger equation

$$i\hbar\frac{\partial}{\partial t}|\phi\rangle = \hat{H}|\phi\rangle$$



First order perturbation theory: Fermi's golden rule

$$W_{kl} = \frac{2\pi}{\hbar^2} |\langle k | \hat{V} | l \rangle|^2 \qquad \text{(on resonance)}$$

$$\int_{\mathbf{V}} \text{Transition probability per second}$$

# Effect of perturbation

$$W_{kl} = \frac{2\pi}{\hbar^2} |\langle k | \hat{V} | l \rangle|^2$$

Absorption probability = stimulated emission probability

$$W_{kl} = W_{lk}$$

Net energy absorption

$$(N_k - N_l)W_{lk}$$

$$W_{kl} = \frac{2\pi}{\hbar^2} |\langle k | \hat{V} | l \rangle|^2$$

$$\hat{V} = -\frac{1}{2}\hat{\mu}\cdot\vec{E}_0$$



Classically  $\vec{\mu} = \vec{\mu}(x) \approx \vec{\mu}_0 + x \frac{\partial \vec{\mu}}{\partial x}$ 

$$W_{kl} = \frac{2\pi}{\hbar^2} |\langle k | \hat{V} | l \rangle|^2$$

$$\hat{V} = -\frac{1}{2}\hat{\mu}\cdot\vec{E}_0$$



Quantum  

$$\vec{\hat{\mu}} = \vec{\mu}(\hat{x}) \approx \vec{\mu}_0 + \hat{x} \frac{\partial \vec{\mu}}{\partial x}$$

Operator character switches to  $\hat{x}$ 

$$W_{kl} = \frac{2\pi}{\hbar^2} |\langle k | \hat{V} | l \rangle|^2 \qquad \qquad \hat{V} = -\frac{1}{2} \hat{\mu} \cdot \vec{E}_0$$



 $W_{kl} = \frac{\pi E_0^2}{2\hbar^2} \cos^2 \theta \left| \frac{\partial \vec{\mu}}{\partial x} \right|^2 \left| \langle k | \hat{x} | l \rangle \right|^2$ 

$$W_{kl} = \frac{2\pi}{\hbar^2} |\langle k | \hat{V} | l \rangle|^2 \qquad \qquad \hat{V} = -\frac{1}{2} \hat{\mu} \cdot \vec{E}_0$$





Transition dipole moment

$$W_{kl} = -\frac{\pi E_0}{2\hbar^2} \cos^2 \theta \left| \frac{\partial \vec{\mu}}{\partial x} \right|^2 \left| \left\langle k \left| \hat{x} \right| l \right\rangle \right|^2$$

• 
$$W_{kl} \propto \cos^2(\theta)$$

Transition dipole should be parallel to the electric field



•  $W_{kl} \propto (\frac{\partial \vec{\mu}}{\partial x})^2$ 

Dipole moment should change with vibration

E.g. symmetric stretch of CO<sub>2</sub> is not infrared active



$$W_{kl} = -\frac{\pi E_0}{2\hbar^2} \cos^2 \theta \left| \frac{\partial \vec{\mu}}{\partial x} \right|^2 \left| \langle k | \hat{x} | l \rangle \right|^2$$

•  $W_{kl} \propto |\langle k|\hat{x}|l\rangle|^2$  Only single-quantum transitions are allowed  $(k - l = \pm 1)$ remember  $\hat{x} = \sqrt{\frac{h}{2m\omega_0}} (\hat{a}^{\pm} + \hat{a})$ 

•  $W_{kl} \propto |\langle k | \hat{x} | l \rangle|^2$ 

Only single-quantum transitions are allowed  $(k - l = \pm 1)$ 

> Normal water  $H_2O$

1000

Heavy

water  $D_2O$ 

1500

If this were true water would not be blue!



•  $W_{kl} \propto |\langle k | \hat{x} | l \rangle|^2$ 

Only single-quantum transitions are allowed  $(k - l = \pm 1)$ 

4-quantum vibrational transition





# Multiquantum transitions

•  $W_{kl} \propto |\langle k | \hat{x} | l \rangle|^2$ 

1) Anharmonic potential (mechanical anharmonicity)



# Multiquantum transitions

•  $W_{kl} \propto |\langle k | \hat{x} | l \rangle|^2$ 

2) Nonlinear dependence of dipole moment (electrical anharmonicity)

$$\vec{\hat{\mu}} = \vec{\mu}(\hat{x}) \approx \vec{\mu}_0 + \hat{x}\frac{\partial\vec{\mu}}{\partial x} + \frac{1}{2}\hat{x}^2\frac{\partial^2\vec{\mu}}{\partial x^2} + \dots$$

# Summary 'Quantum Harmonic Oscillator'

•Harmonic oscillator Hamiltonian



$$\hat{H}_0 = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega_0^2 \hat{x}^2$$

- •Properties of the solutions
- •Ladder operator formalism

- •Transitions induced by light
- •Selection rules

$$\hat{a}^{\pm} |\varphi_{n}\rangle = \sqrt{n+1} |\varphi_{n+1}\rangle$$
$$\hat{a} |\varphi_{n}\rangle = \sqrt{n} |\varphi_{n-1}\rangle$$

$$W_{kl} = \frac{\pi E_0^2}{2\hbar^2} \cos^2 \theta \left| \frac{\partial \vec{\mu}}{\partial x} \right|^2 \left| \left\langle k \left| \hat{x} \right| l \right\rangle \right|^2$$

Connects the microscopic to the macroscopic world

$$W_{kl} = \frac{\pi E_0^2}{2\hbar^2} \cos^2 \theta \left| \frac{\partial \vec{\mu}}{\partial x} \right|^2 \left| \langle k | \hat{x} | l \rangle \right|^2$$
$$|\vec{\mu}_{kl}|^2$$



Molecular quantity

$$W_{kl} = \frac{\pi E_0^2}{2\hbar^2} \cos^2 \theta \left| \mu_{kl} \right|^2$$



$$I_0 = \frac{1}{2} c \varepsilon_0 E_0^2$$

$$W_{kl} = \frac{\pi I_0}{\hbar^2 c \varepsilon_0} \cos^2 \theta |\mu_{kl}|^2$$

$$I_0 = \frac{\pi I_0}{I_0} c, \alpha$$

# Lambert-Beer law Connects the microscopic to the macroscopic world $W_{kl} = \frac{\pi I_0}{\hbar^2 c \varepsilon_0} \cos^2 \theta |\mu_{kl}|^2$ $c, \alpha$ $I_0$ $\frac{1}{4\pi} \iint \cos^2\theta \, d\Omega = \frac{1}{3}$ Average over unit sphere

Connects the microscopic to the macroscopic world

$$W_{kl} = \frac{\pi I_0}{3\hbar^2 c\varepsilon_0} |\mu_{kl}|^2$$



Transition probability per second

Connects the microscopic to the macroscopic world

$$W_{kl} = \frac{\pi I_0}{3\hbar^2 c\varepsilon_0} |\mu_{kl}|^2$$



Transition probability per second

Connects the microscopic to the macroscopic world

$$W_{kl} = \frac{\pi I_0}{3\hbar^2 c\varepsilon_0} \left| \mu_{kl} \right|^2$$

$$P_{kl} = \hbar \omega_{kl} W_{kl}$$



$$P_{kl} = \frac{\omega_{kl}\pi I_0}{3\hbar c\varepsilon_0} |\mu_{kl}|^2$$

Power absorbed per second by a single molecule









$$P_{kl} = \sigma_{kl} I_0$$

Relate energy dissipation in the slab to the in- and outgoing intensities





 $\alpha = \sigma N$ 



 $\alpha = \sigma N$ 



 $\alpha = \sigma N$ 

#### Absorbance is linear with concentration

Why do we call  $\sigma$  the cross section?

$$\frac{dI}{I} = -\sigma \, C dx$$



Why do we call  $\sigma$  the cross section?





Number of molecules per surface area (m<sup>2</sup>)

Why do we call  $\sigma$  the cross section?



Fraction of light blocked in slab of thickness dx

Why do we call  $\sigma$  the cross section?

$$\frac{dI}{I} = -\sigma \, C dx$$



If we represent a molecule by an opaque disk, it should have a surface area  $\sigma$ 



Example

•Dye solution (1  $\mu$ M, 1 cm pathlength) •Gives absorbance of 0.1

Transmission

$$\frac{I}{I_0} = e^{-\alpha} \approx 1 - 0.1 = 0.9$$



 $\sim 10\%$  of light blocked

Example

Dye solution (1 μM, 1 cm pathlength)
Gives absorbance of 0.1

 $\sim 10\%$  of light blocked



•Number of molecules per cm<sup>2</sup> =  $10^{-6} \times 6.02 \cdot 10^{23} \times 10^{-3} = 6 \cdot 10^{14}$ 

•These molecules apparently cover  $\sim 0.1 \text{ cm}^2$ 

$$\sigma \approx \frac{0.1}{6 \cdot 10^{14}} = 1.6 \cdot 10^{-16} \, cm^2$$

# Summary 'Lambert Beer'

•Lambert-Beer law: connection between molecular quantity ( $\mu$ = transition dipole) and macroscopic observable ( $\sigma$ =cross section)

•Absorbance is linear with concentration (per unit area)

 $\alpha = \sigma N$ 

•Absorption cross section can be interpreted as the physical cross section of the molecule to light

