Review:
Quantum mechanics of the
harmonic oscillator



Molecular vibrations

Molecular vibrations: may involve complex motions of all atoms

E.g. vibrations of HFCO
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Luckily the equations of motion can be made 1somorphic with the
equations of motions of a simple harmonic oscillator



Harmonic oscillator

*Normal modes (we will discuss this in detail later)
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Harmonic oscillator

*Normal modes (we will discuss this in detail later)
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Harmonic oscillator

*Normal modes (we will discuss this in detail later)
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*Classical description
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Quantum mechanical description

Schrodinger equation

YI v 9 [_Alo ¢>=E‘§D>

Hamiltonian

)
A 1
H, = L= maw, x°
2m 2



Quantum mechanical description

Schrodinger equation
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Hamiltonian (explicit operators)
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Solutions
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Eigenvalues
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Solutions
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Eigenfunctions (explicit form):
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Ladder operator formalism

*We will no longer deal with the explicit solutions [*p

*Instead we use ‘ 2 >

* And we define

a= |20 54 i L at = |2 i L
2h mao, 2n ma,
Annihilation (lowering) Creation (raising)

operator operator



Ladder operator formalism
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2h ma, 2h ma,
Annihilation (lowering) Creation (raising)
operator operator

*Work out the following on your own
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Ladder operator formalism

*The following properties are useful

a q0n> =1+ 1‘¢n+1> (raising operation)
a q0n> = \/; ‘ q&n_1> (lowering operation)

You can show this by brute force by
using the expressions for ¢, (X)

E.g. see: Brandsen and Joachain,
Introduction to Quantum Mechanics



Why are ladder operators usetul?

*We are typically interested in expressions such as
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Suggested reading

*More elegant solution of the quantum harmonic oscillator
(Dirac’s method)

All properties of the quantum harmonic oscillator can be

derived from:
ROGAK
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E.g. see: Sakurai, Modern Quantum Mechanics



Transitions induced by light

Oscillating electric field induces transitions

*Only single-quantum transitions are
allowed (An = =*1) \ I
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I/A;nt = - E,cos(wt) Electric dipole Hamiltonian



Transitions induced by light

Oscillating electric field induces transitions

*Only single-quantum transitions are
allowed (An = =*1) \ I
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I}im (1) = —[L - E, cos(wr) Electric-dipole Hamiltonian



Transitions induced by light

Oscillating electric field induces transitions

*Only single-quantum transitions are
allowed (An = =*1) \
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Transitions induced by light

Oscillating electric field induces transitions

*Only single-quantum transitions are
allowed (An = =*1) \
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For those interested

—

I}int = _/1 'Eo COS(wt)

Wiey Proressiona ParssaCe Sexs 350 page derivation of the

1’(_1 ( )”I“( ) N 5 Light-matter Hamiltonian
O ATOMS

Ouantum Electrodynamics

Cohen-Tannoud;ji, Dupont-Roc & Grynberg



Effect of perturbation

Solve time-dependent Schrodinger equation
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First order perturbation theory: Fermi’s golden rule
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Bohr condition: AE =hw



Effect of perturbation

Solve time-dependent Schrodinger equation
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First order perturbation theory: Fermi’s golden rule
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Wi = ?\ (kIV|)]7 (on resonance)
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Transition probability per second



Effect of perturbation

) E, Lo0
Wt = S5 1 (V1) NN
E, olo0 e

Absorption probability = stimulated emission probability
Wa =Wy

Net energy absorption
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Selection rules
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Selection rules
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Operator character switches to X



Selection rules
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Selection rules
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Transition dipole moment




Selection rules
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Transition dipole should be parallel to
the electric field



Selection rules
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o Wi x (‘j—‘) Dipole moment should change with
vibration

E.g. symmetric stretch of CO, is not infrared active



Selection rules

7)) 0 NIV
W, 2 cos” i]dad (k|| )
20 ox [Me__l 20 ‘
o Wiy o [(k|z|l)|? Only single-quantum transitions are
1 allowed (k-1 ==x1)
1
. h .. .
remember X = a” + a)

2mo,



Selection rules

Only single-quantum transitions are
allowed (k —] = +1)
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If this were true water would not be blue!

Comparison of absorption of H20 and D20
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Selection rules

Only single-quantum transitions are

allowed (k —l — il)
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4-quantum vibrational transition

Comparison of abgorption of H20 and D20
10 -gl Normal
3 water
Z H20
£ 1
v =
o 3
_'_3 - Heavy
a 0.1 water
(=) é D20
0.01 I | | I I I | I 1 1 | [ 1
500 1000 1500
Wavelength (nm)




Multiquantum transitions
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1) Anharmonic potential (mechanical anharmonicity)
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Multiquantum transitions
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2) Nonlinear dependence of dipole moment (electrical
anharmonicity)




Summary ‘Quantum Harmonic Oscillator’
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*Transitions induced by light

*Selection rules



[Lambert-Beer law



[Lambert-Beer law

Connects the microscopic to the macroscopic world

————

2

L

W, =—2%cos’ 0 ‘<k X l>‘2 -]
2h | 0x | -_T-' N —
v : |
| :

Molecular quantity



[Lambert-Beer law

Connects the microscopic to the macroscopic world




[Lambert-Beer law

Connects the microscopic to the macroscopic world
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[Lambert-Beer law

Connects the microscopic to the macroscopic world
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[Lambert-Beer law

Connects the microscopic to the macroscopic world
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Average over unit sphere



[Lambert-Beer law

Connects the microscopic to the macroscopic world
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[Lambert-Beer law

Connects the microscopic to the macroscopic world
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[Lambert-Beer law

Connects the microscopic to the macroscopic world
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Power absorbed per second by a single molecule



[Lambert-Beer law

Connects the microscopic to the macroscopic world
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[Lambert-Beer law

Connects the microscopic to the macroscopic world
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[Lambert-Beer law

Connects the microscopic to the macroscopic world
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[Lambert-Beer law

Connects the microscopic to the macroscopic world
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[ambert-Beer law
B, =0,1,

Relate energy dissipation in the slab to the in- and outgoing
intensities
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[Lambert-Beer law

dx



[Lambert-Beer law

- 0lCl ;
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N = concentration per unit area



[Lambert-Beer law

dx

Absorbance 1s linear with concentration



[Lambert-Beer law

Why do we call o the cross section?

ﬂ = -0 Cdx
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[Lambert-Beer law

Why do we call o the cross section?
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[Lambert-Beer law

Why do we call o the cross section?
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Fraction of light blocked in slab of thickness dx



[Lambert-Beer law

Why do we call o the cross section?

ﬂ = -0 Cdx

1

If we represent a molecule by an opaque disk,

it should have a surface area O @



[Lambert-Beer law

Example

*Dye solution (1 uM, 1 cm pathlength) )

*(G1ves absorbance of 0.1
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Transmission
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~10% of light blocked



[Lambert-Beer law

Example

*Dye solution (1 uM, 1 cm pathlength) —

*(G1ves absorbance of 0.1
- i J—
— O, O 1
1

e
/

~10% of light blocked

*Number of molecules per cm? =10 x 6.02-10%3 x 103 =6-10'4

*These molecules apparently cover ~0.1 cm?
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O =1.6-10" cm?



Summary ‘Lambert Beer’

Lambert-Beer law: connection between molecular quantity (u=
transition dipole) and macroscopic observable (o=cross section)

*Absorbance 1s linear with concentration (per unit area)

a=0N

*Absorption cross section can be interpreted as the physical cross
section of the molecule to light




