Spectroscopy and Microscopy of Single Molecules and Single Nanoparticles

A. Carattino, L. Hou, N. Verhart, P. Navarro, M. Yorulmaz, S. Khatua, M. Muller, S. Faez, <u>M. Orrit</u>

Molecular Nano-Optics and Spins Leiden University (Netherlands)

Han sur Lesse, 13 December 2013

Part III Fluorescence, scattering and absorption spectroscopy of gold nanoparticles

Outline (Part III)

- Pump-probe spectroscopy
- Gold nanorods
- Trapping
- Sensing

Plasmons in gold nanoparticles

Harmonic oscillator, spring constant depends on shape and field orientation

Pump-probe spectroscopy of single gold nanoparticles

Third Harmonic, 100 nm; M. Lippitz et al., NanoLett 5 (2005) 799

Dr. Meindert van Dijk

Pump-probe Interferometric Microscope

Single gold nanoparticles

Spectral shift of plasmon resonance

Ensemble vs. individual nanoparticles

Taken from L. Saviot http://www2.u-bourgogne.fr/REACTIVITE/manapi/saviot/index.en.html

Other vibrational modes Higher radial harmonics

Ellipsoidal deformation mode

Correlation with shape

Dumbbells

Acoustic spectra of dumbbells

FEM calculations of vibrations

Gold Nanorods collab. P. Zijlstra, J. Chon, M. Gu Swinburne U. (Melbourne, Australia)

- SEM and TEM images
- Plasmons and scattering
- Acoustic modes

Figure 2: High resolution TEM images of two gold nanorods imaged at low (a) and (d), medium (b) and (e), and high (c) and (f) magnification (both (c) and (f) are imaged at 1.05 million times magnification). The fat arrows in (c) and (f) indicate the long particle axis. The measured lattice plane spacings averaged over 30-50 planes are indicated in (c) and (f).

SEM images

Optical scattering and SEM images

local index probe

Vibrational transient with FT and angular dependence

Breathing and extensional frequencies dependence on aspect ratio

Trapping individual gold nanorods

Gold nanoparticle in an optical trap

- Advantages: no perturbation by the substrate; manipulations possible

Trapping single gold nanorods

Orientation of gold nanorod along trap polarization

Fluctuations of orientation by autocorrelation

Local temperature and viscosity

Single 60x25 nm² nanorod in the optical trap

Polarization of scattered light, rotational time, translational time as functions of trapping power

Maximum temperature change about 80 K

Ruijgrok et al., PRL **107** (2011) 037401

Vibrational damping in a liquid environment

Ruijgrok et al., Nanolett. 11 (2011) 1063

Nanospheres

Nanorods

Plasmonic sensing with single gold nanorods

P. Zijlstra et al., Nat. Nanotechn. 7 (2012) 379

Principle of the sensing

Optical setup (photothermal and scattering)

Preferential conjugation at the tips

Ensemble binding experiments

Binding of Streptavidin-phycoerythrin

Binding traces of different molecules

anti-biotin norm. photothermal signal 100 nM anti-biotin stepfinder fit PBS ∆SP (nm) 1.1 0 100 200 300 400 500 600 time (s)

photon energy (eV)

750

700

before

1.8

- after

wavelength (nm)

850 800

(-7 meV)

1.6

photon energy (eV)

Photothermal: Heating laser = 25 µW Detection laser = 700 µW Integration time = 100 ms

experimental parameters:

Heating laser = 16 uW

White light scattering:

Integration time = 15 s

Detection laser = 400 µW

integration time = 100 ms

Photothermal:

White light scattering: integration time = 15 s

Photothermal: Heating laser = 98 µW Detection laser = 450 µW integration time = 100 ms

White light scattering: integration time = 15 s

Fluorescence enhancement by a single gold nanorod

HF Yuan et al., Angew. Chem. (online 2012)

enhancement ~ 1000-fold

Influence of spectral overlap

Surface plasmon resonance

Excitation wavelength

Fluorescence lifetime during bursts

Conclusions

Heterogeneity of supercooled glycerol

Temperature cycles

 Imaging absorption by photothermal contrast

Gold nanoparticles for probing and manipulation

Sensors and actuators for soft matter studies