## Spectroscopy and Microscopy of Single Molecules and Single Nanoparticles

N. Verhart, L. Hou, A. Carattino, P. Navarro, M. Yorulmaz, M. Müller, S. Khatua, S. Faez <u>M. Orrit</u>

#### **Molecular Nano-Optics and Spins**

Leiden University (Netherlands)

Han sur Lesse, 11 December 2013

## **Outline (Part I)**

- Introduction on fluorescence microscopy
- Blinking
- Low-temperature spectroscopy

## 1. Introduction

- Optical detection of single molecules by fluorescence
- High signal/background ratio thanks to resonance
- Made possible by advances in sources, detectors, optics

## **Molecular Photophysics**

- Electronic levels are split in a series of harmonic oscillator levels
- Transitions between levels are related to overlaps between oscillator wavefunctions



## **Mirror Image**

Absorption and fluorescence spectra are related by a mirror symmetry around the 0-0 transition



## Absorption & Emission of Cy3



## **Transition dipole moment**



## Kasha's Rule

- Radiative and non-radiative relaxation
  between electronic levels
- Fluorescence can only arise from the lowest excited singlet state S<sub>1</sub>;
- higher excited states relax to S<sub>1</sub> faster than they can emit;
- triplet states emit weak phosphorescence.

## Fluorescence quantum yield



 $\tau_{fluo} = \frac{1}{k_r + k_r}$ 

 $\eta_{fluo} = \frac{r}{k + k}$ **≤** 1

## Jablonski diagram: relaxation between electronic states



## **Typical fluorophores**



#### green-fluorescent protein (GFP) K. Brejc et.al., PNAS 94 (1997) 2306

1 nm

# **Optical microscope** $V_{illum} \approx 1 \mu m^3$

#### about 10<sup>9</sup> molecules in focal spot





#### FREQUENCY

M. Orrit and J. Bernard, PRL 65 (1990) 2716

#### **Room Temperature**

$$\frac{\sigma_{abs}(Room T.)}{\sigma_{abs}(Low T.)} \approx 10^{-6}$$







10 µm

Fluorescence and fluorescence excitation spectroscopy at cryogenic temperatures



## Fluorescence blinking

- power-laws for many different systems
- broad time dynamics (up to 9 decades)
- temperature dependence absent or weak
- effects of environment and disorder

#### Blinking of CdSe nanocrystals





Verberk et al., PRB 66 (2002) 233202



FIG. 2. (Color online) TCSPC and blinking data histograms on common logarithmic axes for 14 different single nanocrystals. The increments on both axes of the figure correspond to factors of 10. (Inset) Three level system used to simulate the tails of the TRPL data. Level 0 represents the nanocrystal ground state; level 1 the quantum confined exciton; and level 2 the charged fluorescence off state.  $\tau_{rad}$  is the radiative lifetime that corresponds to the slower decay in the original biexponential fit. The two additional fitting parameters are the lifetimes for escape from the exciton state to the fluorescence off state, labeled as  $\tau_{esc}$ , and the power law coefficient  $\mu$ .

#### **Reaction coordinate**

#### Marcus theory





- tunneling from excited emitter to trap
- self-trapping
- recovery to ground state of emitter
- continuous distribution of distances

#### **Power Laws**

- distribution of off-times follows

$$p(t) = A \times t^{-\mu}, \quad \mu = 1 + \frac{\alpha}{\beta}$$

- exponent  $\mu$  verifies

$$1 < \mu < 2$$

## **Open questions**

- trap model explains exponents, robustness, broad dynamic range

- nature of long-lived charged state (self-trapped?)
- mechanism for long on-times, disorder



#### Low-temperature Fluorescence Excitation Spectroscopy





Optical Spectroscopy at Cryogenic Temperatures

- Zero-Phonon Line: transition without creation or destruction of phonons
- Phonon Wing: at T = 0 K, creation of one or more phonons



#### Intensity and Width of ZPL

• Intensity decreases steeply with T (DBT in Ac)



• Width limited by excited-state lifetime and dephasing

#### Spectral selection of single molecules

Decrease the number of molecules in the focal spot, until single molecules are resolved from each other.

Advantages: more molecules in the focal spot, possibility of spectral probing.



## **Field-Effect Transistor Geometry**





7.8,15.16-dibenzoterrylene, DBT

Anthracene, Ac

#### **DBT in Anthracene : Photophysics**



#### **Molecular mechanics simulations** P. Bordat and R. Brown, Pau (France)



#### main site

red site



#### Slow relaxation after voltage changes



#### Strongly non-exponential relaxation



#### Relaxation from an applied bias voltage



switching off  $V_{sd}$  from 10,... 50 to 0 V

#### Relaxation after applying a bias voltage



#### **AC-Stark Effect**

Linear shift of molecular line



Variable voltage amplitude

M. A. Kol'chenko et al., New J. Phys. 2009

#### Stark shift resonances under ac-V<sub>sd</sub>



Variable voltage frequency

#### Spatial correlation of resonance frequencies



#### Strong temperature dependence



#### Nature of oscillators?

- Low frequency: kHz-MHz
- Found in hexadecane and anthracene
- Spatial distribution (microcrystals)
- Frequency indep. of voltages (intensity dep.)
- Temperature dependence
- Anharmonicity and overtones
- Effect of deformation

#### **Conclusion:**

Acoustic modes localized around soft links in crystal (tuning fork) Coupling between oscillators (fine structure) Relation with boson peak and QLM's