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•  Introduction on fluorescence microscopy 
  

•  Blinking 

•  Low-temperature spectroscopy 

 

Outline (Part I) 



1. Introduction 

•  Optical detection of single molecules by 
fluorescence 

•  High signal/background ratio thanks to 
resonance 

•  Made possible by advances in sources, 
detectors, optics   



Molecular Photophysics 

•  Electronic levels are 
split in a series of 
harmonic oscillator 
levels 

•  Transitions between 
levels are related to 
overlaps between 
oscillator wavefunctions 



Mirror Image 

Absorption and 
fluorescence 
spectra are related 
by a mirror 
symmetry around 
the 0-0 transition 



Absorption & Emission of Cy3 
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 Transition dipole moment 
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characterizes the strength of the optical transition 
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 Kasha’s Rule 

•  Radiative and non-radiative relaxation 
between electronic levels 

•  Fluorescence can only arise from the 
lowest excited singlet state S1; 

•  higher excited states relax to S1 faster than 
they can emit; 

•  triplet states emit weak phosphorescence.  



Fluorescence quantum yield 
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Jablonski diagram: relaxation between 
electronic states 
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K. Brejc et.al., PNAS 94 (1997) 2306 

1 nm 

green-fluorescent protein 
(GFP) 



Optical microscope 

about 109 molecules 
in focal spot 
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M. Orrit and J. Bernard, PRL 65 (1990) 2716 

Fluorescence (T=2K)  

pentacene  

in p-terphenyl 



 

 

mµ10

Room Temperature 

DiI 

in Zeonex® 

6
( .)

( .) 10
abs

abs
Low
R T

T
oom

σ
σ −≈  





Fluorescence and fluorescence 
excitation spectroscopy at cryogenic 

temperatures 
 



- power-laws for many different systems 
 
-  broad time dynamics (up to 9 decades) 

-  temperature dependence absent or weak 

-  effects of environment and disorder 

 

Fluorescence blinking 

Rogier Verberk 



from: Issac et al., PRB 71 (2005) 161302 
 

Blinking of CdSe nanocrystals 
 



Wide distribution of 
 blinking times 

 
Sher et al., APL 

92 (2008) 101111 
 

Verberk et al., PRB 66 (2002) 233202 
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Marcus theory 



-  tunneling from excited emitter to trap 
-  self-trapping 
-  recovery to ground state of emitter 
-  continuous distribution of distances 
 

Tunneling Distance 



-  distribution of off-times follows 

Power Laws 

-  exponent µ verifies 
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-  trap model explains exponents, robustness, broad                                                                                                           
dynamic range 
-  nature of long-lived charged state (self-trapped?) 
-  mechanism for long on-times, disorder 

F. Cichos et al., Curr. Opin. Coll. Interf. Sci. 12 (2007) 272. 

Open questions 





Low-temperature Fluorescence 
Excitation Spectroscopy 
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•  Zero-Phonon Line: transition without 
creation or destruction of phonons 

•  Phonon Wing: at T = 0 K, creation of 
one or more phonons  

Optical Spectroscopy at 
Cryogenic Temperatures 



Intensity and Width of ZPL 

•  Intensity decreases steeply with T (DBT in Ac) 

•  Width limited by excited-state lifetime and dephasing 
 



Spectral selection of single molecules 

Decrease the number of 
molecules in the focal spot, 
until single molecules are 
resolved from each other. 
 
Advantages: more 
molecules in the focal spot, 
possibility of spectral 
probing. 
 



Field-Effect Transistor Geometry 

Drain:
Au

conducting layer

Gate: highly doped Si

Insulator: SiO2

nanoprobes

Vs

Vg

Source:
Au

7.8,15.16-dibenzoterrylene, DBT Anthracene, Ac 
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DBT in Anthracene : Photophysics 



Molecular mechanics simulations 
P. Bordat and R. Brown, Pau (France) 

main site red site 



Stark effect with charge injection 
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Slow relaxation after voltage changes 
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Strongly non-exponential relaxation 



Relaxation from an applied bias voltage 

Vg= - 50 V 

switching off Vsd from 10,… 50 to 0 V 

0( ) lnt tν ν β= +



Relaxation after applying a bias voltage 

Vg= - 50 V 

switching 
on Vsd 
 
 
from 0 V to 
10, 20, 50 V 

0 0( ) ( )t B t t αν ν −= + − 0.4α ≈



AC-Stark Effect 
 

Linear shift of molecular line 

Variable voltage amplitude 

M. A. Kol’chenko et al., New J. Phys. 2009 



Stark shift resonances under ac-Vsd 

Variable voltage frequency 



Spatial correlation of resonance frequencies 



Strong temperature dependence 



Nature of oscillators? 
 
-  Low frequency: kHz-MHz 
-  Found in hexadecane and anthracene 
-  Spatial distribution (microcrystals) 
-  Frequency indep. of voltages (intensity dep.) 
-  Temperature dependence 
- Anharmonicity and overtones 
-  Effect of deformation 
 

Conclusion: 
  
Acoustic modes localized around soft links in crystal 
(tuning fork) 
Coupling between oscillators (fine structure) 
Relation with boson peak and QLM’s 




