

Thermodynamic theory of multiple proton-electron transfer reactions

Marc Koper Leiden University (NL)

Outline

Thermodynamics of multi-electron transfer

- \cdot 1 e⁻ transfer
- $\cdot 2 e^{-}$ transfer
- \cdot > 2 e⁻ transfer

Theory of proton-(de)coupled electron transfer

- \cdot 1 H⁺/e⁻ transfer
- \cdot 2 H⁺/e⁻ transfer
- Comparison to experiment

M.T.M.Koper, H.A.Heering, in "Fuel Cell Science", Eds. A.Wieckowski, J.K.Nørskov, Wiley (2010), p.71-110

Catalysis of multi-step reactions

Practically every (interesting) chemical reaction happens in a series of steps; catalysis is about optimizing that sequence

1 e⁻ / 1 step / 0 intermediate 2 e⁻ / 2 steps / 1 intermediate >2 e⁻ / >2 steps / >1 intermediate

M.T.M.Koper, J.Electroanal.Chem. 660 (2011) 254

Single electron transfer

- Marcus Theory
- Activation energy determined by solvent reorganization energy λ (a difficult quantity to calculate accurately)
- Marcus Theory does not account for bond breaking, proton transfer, or catalysis.

C.Hartnig, M.T.M.Koper, J.Am.Chem.Soc. 125 (2003) 9840

Multiple electron transfer

• Electrons transfer one-by-one, implying storage of charge and the existence of intermediates.

· Electrocatalysts optimize the energy of intermediates

Two electron transfer

 $2 H^+ + 2 e^- \leftrightarrows H_2$

Thermodynamics

 $2 H^{+} + 2 e^{-} \leftrightarrows H_{2}$ $E^{0} = 0 V$ $H^{+} + e^{-} \leftrightarrows H_{ads}$ $E_{1}^{0} = -\Delta G_{ads}(H)/e_{0}$ $H_{ads} + H^{+} + e^{-} \leftrightarrows H_{2}$ $E_{2}^{0} = \Delta G_{ads}(H)/e_{0}$

Thermodynamic restriction: $(E_1^0 + E_2^0)/2 = E^0$

Potential-determining step

The potential-determining step is the step with the least favorable equilibrium potential

The difference in the equilibrium potential of the potential-determining step and the overall equilibrium potential is the *thermodynamic overpotential* η_T

Thermodynamic volcano plot

R.Parsons,Trans.Faraday Soc. (1958); H.Gerischer (1958) J.K.Nørskov et al., J.Electrochem.Soc. (2004) M.T.M.Koper, H.A.Heering, In Fuel Science Science M.T.M.Koper, E.Bouwman, Angew.Chem.Int.Ed. (2010)

Side notes

- · Can be generalized to other mechanisms
- The optimal electrocatalyst is achieved if each step is thermodynamically neutral: the H intermediate must bind to the catalyst with a bond strength equal to ½ E(H-H)
- Barriers are not included but if one believes in a relation between reaction energies and barriers (Bronsted-Evans-Polanyi) they are included implicity
- Analysis works equally well for metal surfaces, molecular catalysts, and enzymes
- · $\Delta G_{ads}(H)$ can be calculated from DFT

Experimental volcano for H₂ evolution

J.Greeley, J.K.Nørskov, L.A.Kibler, A.M.El-Aziz, D.M.Kolb, ChemPhysChem 7 (2006) 1032

More than 2 electron transfers

 $O_2 + 4 H^+ + 4 e^- \leftrightarrows 2 H_2 O$ $E^0 = 1.23 V$

 $O_2 + H^+ + e^- \leftrightarrows OOH_{ads}$ E_1^0 $OOH_{ads} \leftrightarrows O_{ads} + OH_{ads}$ ΔG $O_{ads} + H^+ + e^- \leftrightarrows OH_{ads}$ E_2^0 $OH_{ads} + H^+ + e^- \leftrightarrows H_2O$ E_3^0

The optimal catalyst

 $\Delta G(OH_{ads}) = C_0 = 1.23 \text{ eV}$ $\Delta G(O_{ads}) = 2 \times C_0 = 2.46 \text{ eV}$ $\Delta G(OOH_{ads}) = 3 \times C_0 = 3.69 \text{ eV}$ $\Delta G(O_2) = 4 \times C_0 = 4.92 \text{ eV}$

Independent of the mechanism

The optimal scaling relations

$$\Delta G(OH_{ads}) (\approx 0.50 \times \Delta G(O_{ads}) + 0.05 \text{ eV})$$

= 0.5 × \Delta G(O_{ads}) + K_{OH}
\Delta G(OOH_{ads}) (\approx 0.53 × \Delta G(O_{ads}) + 3.18 \text{ eV})
= 0.5 × \Delta G(O_{ads}) + K_{OOH}

Scaling relationships

Figure 3.7 (a) Adsorption energy of HO^{*} as function of the adsorption energy of O^{*}, both on the terrace. The best linear fit is $E_{\text{HO}^*} = 0.50E_{\text{O}^*} + 0.05 \text{ eV}$. (b) Adsorption energy of HOO^{*} as function of the adsorption energy of O^{*}, both on the terrace. The best linear fit is $E_{\text{HOO}^*} = 0.53E_{\text{O}^*} + 3.18 \text{ eV}$.

For (111) metal surfaces

F.Abild-Petersen, J.Greeley, F.Studt, P.G.Moses, J.Rossmeisl, T.Munter, T.Bligaard, J.K. Nørskov, Phys.Rev.Lett. 99 (2007) 016105

Scaling relations = valence bond?

F.Calle-Vallejo, J.I.Martinez, J.M.Garcia-Lastra, J.Rossmeisl, M.T.M.Koper, Phys.Rev.Lett. 108 (2012) 116103 F.Calle-Vallejo, N.G.Inoglu, H.Su, J.I.Martinez, I.C.Man, M.T.M.Koper, J.R.Kitchin, J.Rossmeisl, Chem.Sci. 4 (2013) 1245

Does optimal scaling exist?

Metals:

$$\triangle G(OH_{ads}) \approx 0.50 \times \triangle G(O_{ads}) + 0.05 eV$$

 $\triangle G(OOH_{ads}) \approx 0.53 \times \triangle G(O_{ads}) + 3.18 eV$

Oxides:

$$\triangle G(OH_{ads}) \approx 0.61 \times \triangle G(O_{ads}) - 0.90 eV$$

 $\triangle G(OOH_{ads}) \approx 0.64 \times \triangle G(O_{ads}) + 2.03 eV$

$$K_{OOH} - K_{OH} = 3.13 \text{ eV}, 2.93 \text{ eV}; \text{ Optimal} = 2.46 \text{ eV}$$

M.T.M.Koper, J.Electroanal.Chem. 660 (2011) 254

"Fundamental" overpotential?

$$\eta_T$$
(ORR,OER) = $\frac{K_{OOH} - K_{OH}}{2} = \sim 0.35 \text{ V}$
2 e

One does not even need to know the catalyst-oxygen interaction...

 $\Delta G[HO_2(aq)] - \Delta G[OH(aq)] = 3.4 \text{ eV}$

I.Man et al. ChemCatChem 3 (2011) 1159 M.T.M.Koper, J.Electroanal.Chem. 660 (2011) 254 M.T.M.Koper, Chem.Sci. 4 (2013) 2710

Proton-coupled electron transfer

$2 H^+ + 2 e^- \leftrightarrows H_2$

$O_2 + 4 H^+ + 4 e^- \leftrightarrows 2 H_2O$

$CO_2 + 6 H^+ + 6 e^-$ $\Box CH_3OH + H_2O$

- Are proton and electron transfer always coupled?
- How does (de-)coupled proton-electron transfer manifest?

Proton-coupled electron transfer

S. Hammes-Schiffer, A.A.Stuchebrukhov, Chem.Rev.110 (2010) 6939 M.T.M.Koper, Phys.Chem.Chem.Phys. 15 (2013) 1399

Proton-coupled electron transfer

M.T.M.Koper, Phys.Chem.Chem.Phys. 15 (2013) 1399 M.T.M.Koper, Chem.Sci. 4 (2013) 2710

When PT and ET decouple

- PT and ET are concerted if off-diagonal states are energetically unfavorable. Reaction rate is independent of pH on the <u>RHE</u> potential scale.
- For a reduction reaction, ET happens first if the intermediate has a high electron affinity.
- For an oxidation reaction, PT happens first if the intermediate has a low proton affinity.
- If PT and ET decouple, the reaction rate becomes pH dependent on the <u>RHE</u> potential scale. Optimal activity is at pH=pK_a

Formic acid oxidation on Pt

Formic acid oxidation prefers intermediate pH

J.Joo, T.Uchida, A.Cuesta, M.T.M.Koper, M.Osawa, J.Am.Chem.Soc. 135 (2013) 9991

Oxidation of poly-ols

 $H_{\beta}R-OH_{\alpha} \leftrightarrows H_{\beta}R-O^{-} + H_{\alpha}^{+}$

Y.Kwon, S.C.S.Lai, P.Rodriguez, M.T.M.Koper, J.Am.Chem.Soc. 133 (2011) 6914

Hammond relationship

Y.Kwon, S.C.S.Lai, P.Rodriguez, M.T.M.Koper, J.Am.Chem.Soc. 133 (2011) 6914

More detailed mechanism

Overall: R-CHH_{β}-OH_{α} \rightarrow R-CH=O + H_{α}⁺ + H_{β}⁺ + 2 e⁻

1. First proton: $R-CHH_{\beta}-OH_{\alpha} + OH^{-} \rightarrow R-CHH_{\beta}-O^{-} + H_{2}O$

"base catalyzed"

```
2. OH adsorption on gold:

OH^{-} + * = OH^{\delta^{-}}_{ads} + (1-\delta) e^{-}

CO<sub>ads</sub> favors OH<sub>ads</sub> formation

3. Second proton:

R-CHH_{\beta}-O^{-} + OH_{ads} \rightarrow R-CH=O + H_{\alpha}OH_{\beta} + e^{-}
```

gold catalyzed

P.Rodriguez, Y.Kwon, M.T.M.Koper, Nature Chem. 4 (2012) 177

CPET in oxygen reduction on Pt

The ORR rate on Pt is independent of pH on the RHE scale.

Concerted proton-electron transfer.

M.F.Li, L.W.Liao, D.F.Yuan, D.Mei, Y.-X.Chen, Electrochim.Acta (2013), in press

Decoupled PCET in ORR on Au

The ORR rate on Au is dependent of pH on the RHE scale.

Decoupled proton-electron transfer.

Q.J.Chen, Y.L.Zheng, L.W.Liao, J.Kang, Y.-X.Chen, Scientia Sinica Chimica 41 (2011) 1777

Mechanism of ORR

M.T.M.Koper, Chem.Sci. 4 (2013) 2710

Electrocatalytic CO₂ reduction

CO and **CO**₂ reduction on copper

Y.Hori, Mod.Asp.Electrochem (2008) K.J.P.Schouten, Y.Kwon,

K.J.P.Schouten, Y.Kwon, C.J.M.van der Ham, Z.Qin, M.T.M.Koper, Chem.Sci. (2011)

CO reduction on Cu(111) and Cu(100)

K.J.P.Schouten, Z.Qin, E..Perez Gallent, M.T.M.Koper, J.Am.Chem.Soc. 134 (2012) 9864

(100) terraces - not (100) steps

K.J.P.Schouten, E.Perez Gallent, M.T.M.Koper, ACS Catal. 3 (2013) 1292

A consistent mechanism

WILEY-VCH

K.J.P.Schouten, Y.Kwon, C.J.M.van der Ham, Z.Qin, M.T.M.Koper, Chem.Sci. 2 (2011) 1902 F.Calle Vallejo, M.T.M.Koper, Angew.Chem.Int.Ed 52 (2013) 7282

CO₂ reduction to formic acid

R.Kortlever, C.Balemans, Y.Kwon, M.T.M.Koper, to be submitted

Conclusions

- Try to transfer 2 electrons at a time
- If you insist on transferring more than 2 electrons with 1 catalyst, be prepared to deal with scaling relationships...
- Unfavorable scaling between OOH and OH leads to irreversible kinetics of the oxygen electrode
- Proton-decoupled electron transfer leads to strong pH dependence of catalysis
- Each PCET reaction has an optimal pH, and an optimal catalyst at the optimal pH
- CO_2/CO electro-reduction is pH dependent