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Stochastic processes

Chemical reaction:

A B

At t=0

initial state distribution   

e.g. tautomerization reaction

probability to measure molecule P(A) = 1.0
probability to measure molecule P(B) = 1.0-P(A) = 0.0

P(A) P(B)

S0 = [1.0, 0.0] A B
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Stochastic processes

A B

S0 = [1.0, 0.0]
At t=0

initial state distribution 

Probability that A has converted to B after time τ
t(A    B) = 0.8
t(B    A) = 0.4

Transition matrix:

A

A

B
B

current state

next 
state

T =


0.2 0.8
0.4 0.6

�

e.g. a measurement 
every 30 minutes
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Stochastic processes

A B

S0 = [1.0, 0.0]

A

B

A

B

A

B

τ0 τ1

1.0

0.0

0.2

0.8

0.4

0.6

0.2

0.8
0.4

0.6
0.2

0.8
0.4

0.6

A
B
A
B
A
B
A
B

τ2measurement

start

S1 = S0T = [1.0, 0.0]


0.2 0.8
0.4 0.6

�
= [0.2, 0.8]

T =


0.2 0.8
0.4 0.6

�
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Stochastic processes

S0 = [1.0, 0.0]

S2 = S1T = [0.2, 0.8]


0.2 0.8
0.4 0.6

�
= [0.36, 0.64]

S1 = S0T = [1.0, 0.0]


0.2 0.8
0.4 0.6

�
= [0.2, 0.8]

S3 = S2T = [0.36, 0.64]


0.2 0.8
0.4 0.6

�
= [0.328, 0.672]

How does the distribution change in time?

transition matrixinitial state distribution A

B

A

B

A

B

τ0 τ1

1.0

0.0

0.2  

0.8

0.4

0.6

0.6

0.2

0.8
0.4

0.2

0.8
0.4

0.6

A
B

A

B
A
B

A

B

τ2

T =


0.2 0.8
0.4 0.6

�
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Stochastic processes
A

B

A

B

A

B

τ0 τ1

1.0

0.0

0.2  

0.8

0.4

0.6

0.6

0.2

0.8
0.4

0.2

0.8
0.4

0.6

A
B

A

B
A
B

A

B

τ2

S2 = S1T = [0.2, 0.8]


0.2 0.8
0.4 0.6

�
= [0.36, 0.64]

S1 = S0T = [1.0, 0.0]


0.2 0.8
0.4 0.6

�
= [0.2, 0.8]

How does the distribution change in time?

S2 = S0T
2 = [1.0, 0.0]


0.2 0.8
0.4 0.6

� 
0.2 0.8
0.4 0.6

�
=

= [1.0, 0.0]


0.36 0.64
0.32 0.68

�
= [0.36, 0.64]
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Stochastic processes

S0 = [1.0, 0.0]

S2 = S1T = [0.2, 0.8]


0.2 0.8
0.4 0.6

�
= [0.36, 0.64]

S1 = S0T = [1.0, 0.0]


0.2 0.8
0.4 0.6

�
= [0.2, 0.8]

S3 = S2T = [0.36, 0.64]


0.2 0.8
0.4 0.6

�
= [0.328, 0.672]

Does the distribution converge to a stable state?

A

B

A

B

A

B

τ0 τ1

1.0

0.0

0.2  

0.8

0.4

0.6

0.6

0.2

0.8
0.4

0.2

0.8
0.4

0.6

A
B

A

B
A
B

A

B

τ2
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Stochastic processes

S0 = [1.0, 0.0]

S1 = [0.2, 0.8]

S2 = [0.36, 0.64]

S3 = [0.328, 0.672]

S4 = [0.3344, 0.6656]

S5 = [0.33312, 0.66688]

ST =


1

3
,
2

3

� 
0.2 0.8
0.4 0.6

�
=


1

3
,
2

3

�
= S

S =


1

3
,
2

3

�
stationary matrix, steady state 

A

B

A

B

A

B

τ0 τ1

1.0

0.0

0.2  

0.8

0.4

0.6

0.6

0.2

0.8
0.4

0.2

0.8
0.4

0.6

A
B

A

B
A
B

A

B

τ2
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Markov process
Stochastic processes

• Poisson process: 
• number of events per time
• no dependence between events
• exponential decay 
• radioactive decay, earthquakes, jobs in printer queue

• Markov process:
• stochastic process with simple relation between states X1, X2, X3, X4,... 
• probability to move to state Xt+1 depends only on Xt (not on the past!)

• probability that it rains in your garden (X discrete, time continue)
• brain activity (X continue, time continue)
• game of goose, DNA base at position t (X discrete, “time” discrete)
• daily solar activity (X continue, time discrete)

P (X
n+1=x

|X1 = x1, X2 = x2, . . . , Xn

= x

n

) = P (X
n+1=x

|X
n

= x

n

)formally:
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Andrej Markov

Andrej Andrejevitsj Markov (Russisch: Андрей 
Андреевич Марков, Rjazan, 14 juni 1856 - Petrograd, 
20 juli 1922) was een Russisch wiskundige, naar wie de 
Markovketens, de Markovprocessen en de Markov-
ongelijkheid zijn vernoemd. Zijn zoon (1903-1979) 
draagt dezelfde naam en is op het gebied van de 
algebra, topologie, mechanica en logica eveneens een 
bekend Russisch wiskundige.
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Markov chain

A Markov chain is a discrete time Markov process

A regular Markov chain has a regular transition matrix

A transition matrix, T, is regular if some power of it, Tn, has only 
positive (non-zero) entries

A regular Markov chain has a unique stationary state

T =


0.0 1.0
1.0 0.0

�
T =


0.2 0.8
0.4 0.6

�
T =


0.3 0.7
1.0 0.0

�

regular not regular regular
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1. A regular Markov chain has a unique stationary state

2. The stationary state is found by solving:

3. From any starting distribution S0 the Markov chain will reach 
the stationary state

4. The matrices Tn approach a stationary matrix in which each 
row is the stationary state

Markov chain

ST = S

Properties

Representation

A B0.2 0.6

0.8

0.4
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Markov chain

ST = S

Example, find the stationary state A B0.2 0.6

0.8

0.4

ST = [S1, S2]


0.2 0.8
0.4 0.6

�
= [S1, S2] = S

1) and 2) are linear dependent
0.2S1 + 0.4S2 = S1

0.8S1 + 0.6S2 = S2

S2 = 2/3

S1 + S2 = 1

S1 = 1/3

3) extra rule: probabilities add up to 1
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Markov chain
Other properties:

Time homogeneous Markov chain: transition matrix is 
time independent (otherwise time inhomogeneous).

Absorbing Markov chain: there is an absorbing state 
from which you cannot escape once you reach it.

nth order Markov chain does not only depend on 
knowledge of the current state (=1st order) but also 
previous n-1 states.

A Markov chain is ergodic if there is a number of steps 
N in which each state can be reached from every 
other state (no loops, periodicity, absorbing state).

A Markov chain is reversible if it obeys detailed 
balance.

T =

2

4
0.2 0.8 0.0
0.0 1.0 0.0
0.1 0.1 0.8

3

5

A B
0.2 1.0

0.8

0.8

C
0.10.1

absorbing state: 
check diagonal for 1.0
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Reversible Markov chains
Detailed balance

⇢i P (Xn+1 = j|Xn = i) = ⇢j P (Xn+1 = i|Xn = j)

The probability be in state i times the probability to go to 
state j from state i is equal to be in state j times the 
probability to move from j to i.

The probability to be in state i,     , is an element of the 
equilibrium (stationary) state distribution S.

⇢i

A B0.2 0.6

0.8

0.4

1/3 2/3
1

3
⇤ 0.8 =

2

3
⇤ 0.4Example

Reversible MC
Detailed balance holds!

⇢i tij = ⇢j tji
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Reversible Markov chains
Detailed balanceExample

T =

2

664

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

3

775 transition matrix

S = [0.25, 0.25, 0.25, 0.25] stationary state solution

Detailed balance does not hold! See also a chain sample: ...ABCDABCDABCD...
Reverse B–>C transitions do not occur.

⇢i tij = ⇢j tji

Mind you, if the stationary state solution is uniform so that

then the transition matrix should be symmetric for a reversible MC

⇢i = ⇢j 8 i 6= j tij = tji

For a reversible Markov chain it is not possible to determine the 
direction of the process from the observed state sequence alone.
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The Chapman–Kolmogorov equation says that for
any m such that 0 < m < k,

with the sum over all intermediate states r in the state space Z.

Transition matrix T
An element of T gives the transition probality:

The probability of going from state i to state j in 
k time steps is:

Chapman-Kolmogorov

A

B

A

B

A

B

τ0 τ1

1.0

0.0

0.2  

0.8

0.4

0.6

0.6

0.2

0.8
0.4

0.2

0.8
0.4

0.6

A
B

A

B
A
B

A

B

τ2

T =


0.2 0.8
0.4 0.6

�

tij = P (Xn+1 = j|Xn = i)

t(k)ij = P (Xn+k = j|Xn = i)

p(k)ij =
X

r2Z

p(m)
ir p(k�m)

rj

T(k) = Tk
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Spectral decomposition
Transition matrix T of dimension d
has d solutions of the linear equation:
each with an eigenvalues λ with eigenvector V

Factorizing T in: 

in which Λ is the diagonal matrix of 
eigenvalues, which can be ordered: 

TV = �V

T = V⇤V�1

1 = �1 > |�2| � |�3| � · · · � |�N | > 0

• Spectral decomposition allows to analyze how the system 
relaxes to equilibrium

• Eigenvalues close to 1 and significantly larger than the other 
eigenvalues indicate one or more slow relaxation times and 
metastability (rare events) between states.

A

B

C

D

E
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Summary

A stochastic hopping between states is Markovian if the 
probability to reach the next state does not depend on the 
past (no memory)

- reversible Markov chains (detailed balance)
- ergodicity
- spectral decomposition (convergence to equilibrium)pa

rt 
1
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Content

• Lecture 1: Markov processes

• Lecture 2: State clustering

• Lecture 3: Transition Path Theory

• Lecture 4: Sampling Reactive Events
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MSM of peptide dynamics

Markov State Modeling applied as analysis tool of the 
dynamics of a small peptide

- Analysis of molecular dynamics simulation
- Clustering based on structures
- Relation to free energy landscape
- Transition probability between clusters (states)
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Is peptide dynamics Markovian?
How does a peptide (or protein) dynamically behave?

dipeptide hexamer

FES of 12 torsions? 

- can I distinguish characteristic structures/states?
- does it visit all states equally often?
- is there an order in visiting states?
- how do I know if it visited all possible states?
- can I compute the probability to visit a state?
- can I compute the probability to go from 1 state 
to any other state?
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Molecular Dynamics

r(t + �t) = r(t) + v(t + �t/2)�t

v(t + �t/2) = v(t��t/2) + �t
f(t)
m

atom positions and velocities

V (r) =
X

bonds

k

r

(r � r

eq

)2 +
X

angles

k

✓

(✓ � ✓

eq

)2 +
X

dihedrals

1
2
⌫

n

(1 + cos(n�� �0)) +
X

i<j

 
a

ij

r

12
ij

� b

ij

r

6
ij

+
q

i

q

j

✏r

ij

!

bonds bends torsions non-bonded

forcefield

�t � 1 fs = 0.000000000000001 sec

Newtonian dynamics

f = m · a

f = �⇤V (r)
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Cluster analysis

• 3x 10-20 ns simulations at T= 300, 400, and 500 K

• take a frame every 10 ps and quench in to zero Kelvin

• cluster quenched frames based on torsion angles

Clustering of structures based on resemblance between 
observed geometries in the trajectory, 

e.g. RMSD(Ri,Rj) < TOLL

many flavors of clustering methods exist
typically involves an iterative procedure over the trajectory
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T=300K

Cluster analysis

time / ns

cl
us

te
r
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T=400K

Cluster analysis

time / ns

cl
us

te
r
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T=500K

Cluster analysis

time / ns

cl
us

te
r
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cluster populations
or 

histogram of the number of cluster members
can be related to the probability

and thus to a free energy
Fi=kBT ln[Pi]

Cluster analysis

cluster
Friday, 13 December, 13

relative population

Cluster analysis

cluster
Friday, 13 December, 13



Cluster free energy

Cluster analysis

cluster
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Potential Energy

Do clusters with most members 
have the lowest potential energy? T=300K

time / ns

time / ns

cl
us

te
r
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Potential Energy

There is a correlation (cluster 1 has lowest E, but 
cluster 2 not second lowest).
Correlation not perfect, total energy not full story...

T=300K

cluster
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300 K

400 K

500 K

Potential Energy

cluster

cluster

cluster
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Cluster structures

cluster 0

cluster 1 cluster 2 cluster 3 cluster 4

cluster 5 cluster 6 cluster 7 cluster 8
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Cluster Dynamics

Transition matrix

time / ns

cl
us

te
r
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Network diagram

circle size: free energy 
of cluster

line thickness: 
transition probability 

We can think of the peptide 
dynamics as a Markov 
chain at different levels:

- 14 small states
- 4 combined states
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A Markov model
Are we allowed to apply a Markov model for 
analysis?
(mind you, the molecular dynamics was 
deterministic (not stochastic)).

We assume that the system jumps from 
state to state in a stochastic manner

- i.e. there is a separation of timescales 
such that the system stays long enough 
in metastable state to loose memory of 
the previous state (τij >> τrelax)

If the cluster analysis is not converged, we may find that the 
Markov chain is not reversible...

The Markov model can be stochastically sampled using Langevin 
dynamics, kinetic Monte Carlo, Fokker-Planck,....
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Summary

Markov State Modeling applied as analysis tool of the 
dynamics of a small peptide

- Analysis of molecular dynamics simulation
- Clustering based on structures
- Relation to free energy landscape based on cluster size
- Transition probability between clusters (states)
- Using the MSM the dynamics can be sampled in a 
coarse-grain manner, e.g. using kinetic Monte-Carlo

A stochastic hopping between states is Markovian if the 
probability to reach the next state does not depend on the 
past (no memory)

- reversible Markov chains (detailed balance)
- ergodicity
- spectral decomposition (convergence to equilibrium)pa

rt 
1

pa
rt 

2
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