Transition Path Theory

Winterschool on Theoretical Chemistry and Spectroscopy 9-13 December 2013, Han-sur-Lesse, Belgium

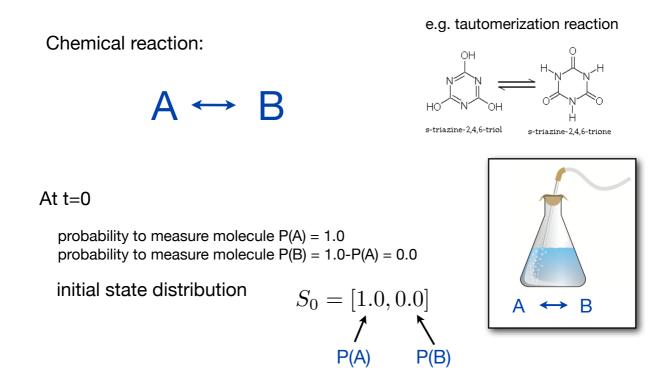
Bernd Ensing Computation Chemistry University of Amsterdam

Friday, 13 December, 13

Content

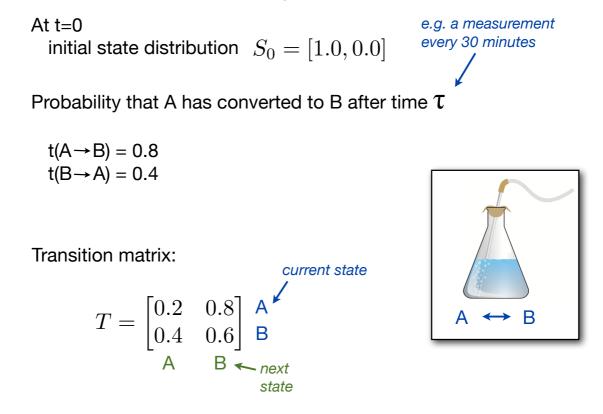
- Lecture 1: Markov processes
- Lecture 2: State clustering
- Lecture 3: Transition Path Theory
- Lecture 4: Sampling Reactive Events

Stochastic processes

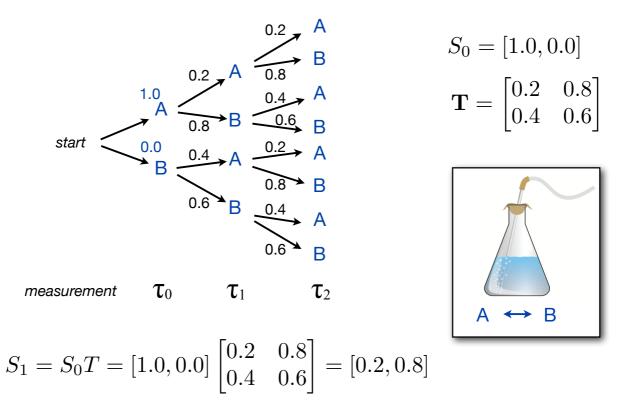


Friday, 13 December, 13

Stochastic processes



Stochastic processes



Friday, 13 December, 13

Stochastic processes

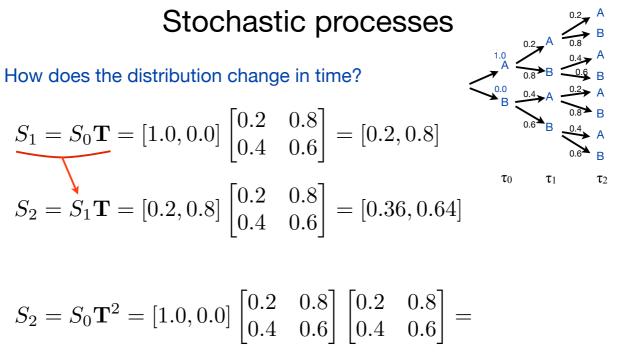
initial state distribution transition matrix $S_0 = [1]$

1.0, 0.0]
$$\mathbf{T} = \begin{bmatrix} 0.2 & 0.8\\ 0.4 & 0.6 \end{bmatrix}$$

 $\begin{array}{c} 1.0 \\ A \\ 0.8 \\ 0.6 \end{array}$ 0.8 B τ_0 τ_1 τ_2

How does the distribution change in time?

$$S_{1} = S_{0}\mathbf{T} = \begin{bmatrix} 1.0, 0.0 \end{bmatrix} \begin{bmatrix} 0.2 & 0.8 \\ 0.4 & 0.6 \end{bmatrix} = \begin{bmatrix} 0.2, 0.8 \end{bmatrix}$$
$$S_{2} = S_{1}\mathbf{T} = \begin{bmatrix} 0.2, 0.8 \end{bmatrix} \begin{bmatrix} 0.2 & 0.8 \\ 0.4 & 0.6 \end{bmatrix} = \begin{bmatrix} 0.36, 0.64 \end{bmatrix}$$
$$S_{3} = S_{2}\mathbf{T} = \begin{bmatrix} 0.36, 0.64 \end{bmatrix} \begin{bmatrix} 0.2 & 0.8 \\ 0.4 & 0.6 \end{bmatrix} = \begin{bmatrix} 0.328, 0.672 \end{bmatrix}$$



$$= \begin{bmatrix} 1.0, 0.0 \end{bmatrix} \begin{bmatrix} 0.36 & 0.64 \\ 0.32 & 0.68 \end{bmatrix} = \begin{bmatrix} 0.36, 0.64 \end{bmatrix}$$

Stochastic processes

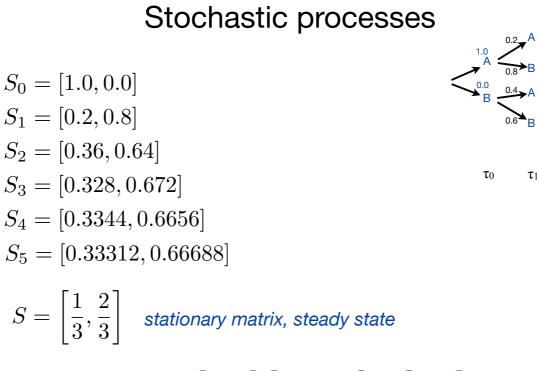
$$S_{0} = [1.0, 0.0]$$

$$S_{1} = S_{0}\mathbf{T} = [1.0, 0.0] \begin{bmatrix} 0.2 & 0.8 \\ 0.4 & 0.6 \end{bmatrix} = [0.2, 0.8]$$

$$S_{2} = S_{1}\mathbf{T} = [0.2, 0.8] \begin{bmatrix} 0.2 & 0.8 \\ 0.4 & 0.6 \end{bmatrix} = [0.36, 0.64]$$

$$S_{3} = S_{2}\mathbf{T} = [0.36, 0.64] \begin{bmatrix} 0.2 & 0.8 \\ 0.4 & 0.6 \end{bmatrix} = [0.328, 0.672]$$

Does the distribution converge to a stable state?



$$S\mathbf{T} = \begin{bmatrix} \frac{1}{3}, \frac{2}{3} \end{bmatrix} \begin{bmatrix} 0.2 & 0.8\\ 0.4 & 0.6 \end{bmatrix} = \begin{bmatrix} \frac{1}{3}, \frac{2}{3} \end{bmatrix} = S$$

Markov process

Stochastic processes

- Poisson process:
 - number of events per time
 - · no dependence between events
 - exponential decay
 - · radioactive decay, earthquakes, jobs in printer queue

Markov process:

- stochastic process with simple relation between states X₁, X₂, X₃, X₄,...
- probability to move to state X_{t+1} depends only on X_t (not on the past!)

formally: $P(X_{n+1=x}|X_1 = x_1, X_2 = x_2, \dots, X_n = x_n) = P(X_{n+1=x}|X_n = x_n)$

- probability that it rains in your garden (X discrete, time continue)
- brain activity (X continue, time continue)
- game of goose, DNA base at position t (X discrete, "time" discrete)
- daily solar activity (X continue, time discrete)

 τ_2

Andrej Markov

Andrej Andrejevitsj Markov (<u>Russisch</u>: Андрей Андреевич Марков, <u>Rjazan</u>, <u>14 juni</u> <u>1856</u> - <u>Petrograd</u>, <u>20 juli</u> <u>1922</u>) was een <u>Russisch wiskundige</u>, naar wie de <u>Markovketens</u>, de <u>Markovprocessen</u> en de <u>Markovongelijkheid</u> zijn vernoemd. Zijn zoon (<u>1903-1979</u>) draagt dezelfde naam en is op het gebied van de <u>algebra, topologie, mechanica</u> en <u>logica</u> eveneens een bekend Russisch wiskundige.

Friday, 13 December, 13

Markov chain

A Markov chain is a discrete time Markov process

A regular Markov chain has a regular transition matrix

A transition matrix, \mathbf{T} , is regular if some power of it, \mathbf{T}^n , has only positive (non-zero) entries

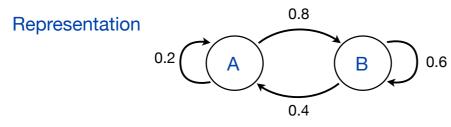
$$\mathbf{T} = \begin{bmatrix} 0.2 & 0.8 \\ 0.4 & 0.6 \end{bmatrix} \qquad \mathbf{T} = \begin{bmatrix} 0.0 & 1.0 \\ 1.0 & 0.0 \end{bmatrix} \qquad \mathbf{T} = \begin{bmatrix} 0.3 & 0.7 \\ 1.0 & 0.0 \end{bmatrix}$$
regular
regular
regular
regular

A regular Markov chain has a unique stationary state

Markov chain

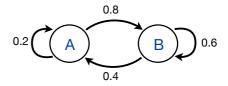
Properties

- 1. A regular Markov chain has a unique stationary state
- 2. The stationary state is found by solving: $S \mathbf{T} = S$
- 3. From any starting distribution S_0 the Markov chain will reach the stationary state
- 4. The matrices **T**ⁿ approach a stationary matrix in which each row is the stationary state



Friday, 13 December, 13

Example, find the stationary state



$$S \mathbf{T} = S$$

$$S \mathbf{T} = [S_1, S_2] \begin{bmatrix} 0.2 & 0.8 \\ 0.4 & 0.6 \end{bmatrix} = [S_1, S_2] = S$$

$$0.2S_1 + 0.4S_2 = S_1$$
1) and 2) are linear dependent

 $0.2S_1 + 0.4S_2 = S_1$ $0.8S_1 + 0.6S_2 = S_2$ $S_1 + S_2 = 1$ 1) and 2) are linear dependent 3) extra rule: probabilities add up to 1

$$S_1 = 1/3$$
$$S_2 = 2/3$$

Markov chain

Other properties:

Time homogeneous Markov chain: transition matrix is time independent (otherwise time inhomogeneous).

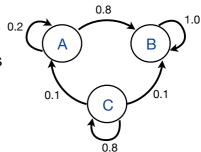
Absorbing Markov chain: there is an absorbing state from which you cannot escape once you reach it.

nth order Markov chain does not only depend on knowledge of the current state (=1st order) but also previous n-1 states.

A Markov chain is ergodic if there is a number of steps N in which each state can be reached from every other state (no loops, periodicity, absorbing state).

A Markov chain is reversible if it obeys detailed balance.

Friday, 13 December, 13



 $\mathbf{T} = \begin{bmatrix} 0.2 & 0.8 & 0.0 \\ 0.0 & 1.0 & 0.0 \\ 0.1 & 0.1 & 0.8 \end{bmatrix}$

absorbing state: check diagonal for 1.0

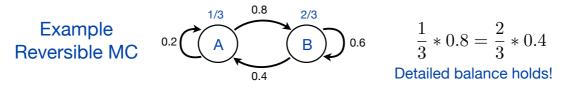
Reversible Markov chains

Detailed balance

$$\rho_i P(X_{n+1} = j | X_n = i) = \rho_j P(X_{n+1} = i | X_n = j)$$
$$\rho_i t_{ij} = \rho_j t_{ji}$$

The probability be in state *i* times the probability to go to state *j* from state *i* is equal to be in state j times the probability to move from *j* to *i*.

The probability to be in state i, ρ_i , is an element of the equilibrium (stationary) state distribution S.



Reversible Markov chains

Example

$$\mathbf{T} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

transition matrix

stationary state solution

Detailed balance

 $\rho_i t_{ij} = \rho_j t_{ji}$

S = [0.25, 0.25, 0.25, 0.25]

Detailed balance does not hold!

See also a chain sample: ...ABCDABCDABCD... Reverse B->C transitions do not occur.

Mind you, if the stationary state solution is uniform so that

$$\rho_i = \rho_j \,\forall \, i \neq j \quad \longrightarrow \quad t_{ij} = t_{ji}$$

then the transition matrix should be symmetric for a reversible MC

For a reversible Markov chain it is not possible to determine the direction of the process from the observed state sequence alone.

Friday, 13 December, 13

Chapman-Kolmogorov

Transition matrix **T** An element of **T** gives the transition probality:

$$t_{ij} = P(X_{n+1} = j | X_n = i)$$

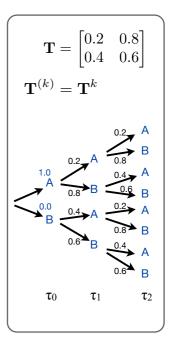
The probability of going from state i to state j in k time steps is:

$$t_{ij}^{(k)} = P(X_{n+k} = j | X_n = i)$$

The Chapman–Kolmogorov equation says that for any *m* such that 0 < m < k,

$$p_{ij}^{(k)} = \sum_{r \in Z} p_{ir}^{(m)} p_{rj}^{(k-m)}$$

with the sum over all intermediate states r in the state space Z.

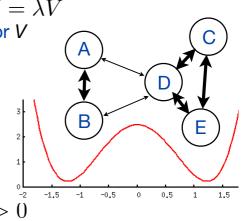


Spectral decomposition

Transition matrix **T** of dimension *d* has *d* solutions of the linear equation: $\mathbf{T} V = \lambda V$ each with an eigenvalues λ with eigenvector *V*

Factorizing **T** in: $\mathbf{T} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{-1}$

in which Λ is the diagonal matrix of eigenvalues, which can be ordered:



 $1 = \lambda_1 > |\lambda_2| \ge |\lambda_3| \ge \cdots \ge |\lambda_N| > 0$

- Spectral decomposition allows to analyze how the system relaxes to equilibrium
- Eigenvalues close to 1 and significantly larger than the other eigenvalues indicate one or more slow relaxation times and metastability (rare events) between states.

Friday, 13 December, 13

Summary

A stochastic hopping between states is Markovian if the probability to reach the next state does not depend on the past (no memory)

- reversible Markov chains (detailed balance)
- ergodicity
 - spectral decomposition (convergence to equilibrium)

Content

- Lecture 1: Markov processes
- Lecture 2: State clustering
- Lecture 3: Transition Path Theory
- Lecture 4: Sampling Reactive Events

Friday, 13 December, 13

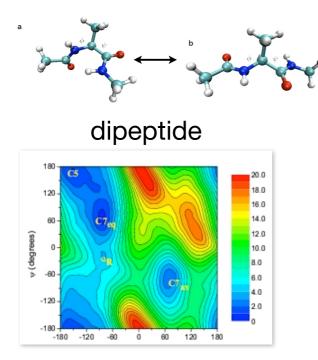
MSM of peptide dynamics

Markov State Modeling applied as analysis tool of the dynamics of a small peptide

- Analysis of molecular dynamics simulation
- Clustering based on structures
- Relation to free energy landscape
- Transition probability between clusters (states)

Is peptide dynamics Markovian?

How does a peptide (or protein) dynamically behave?

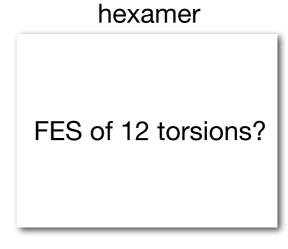


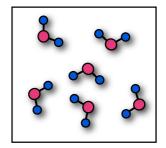
Friday, 13 December, 13

- can I distinguish characteristic structures/states?

- does it visit all states equally often?
- is there an order in visiting states?
- how do I know if it visited all possible states?

- can I compute the probability to visit a state?
- can I compute the probability to go from 1 state to any other state?





atom positions and velocities

$$r(t + \Delta t) = r(t) + v(t + \Delta t/2)\Delta t$$
$$v(t + \Delta t/2) = v(t - \Delta t/2) + \Delta t \frac{f(t)}{m}$$

Newtonian dynamics

Molecular Dynamics

$$\begin{array}{rcl} f &=& m \cdot a \\ f &=& -\nabla V(r) \end{array}$$

$$\Delta t \approx 1 \, \text{fs} = 0.00000000000001 \, \text{sec}$$

forcefield

$$V(\mathbf{r}) = \sum_{bonds} k_r (r - r_{eq})^2 + \sum_{angles} k_{\theta} (\theta - \theta_{eq})^2 + \sum_{dihedrals} \frac{1}{2} \nu_n (1 + \cos(n\phi - \phi_0)) + \sum_{i < j} \left(\frac{a_{ij}}{r_{ij}^{12}} - \frac{b_{ij}}{r_{ij}^6} + \frac{q_i q_j}{\epsilon r_{ij}} \right)$$

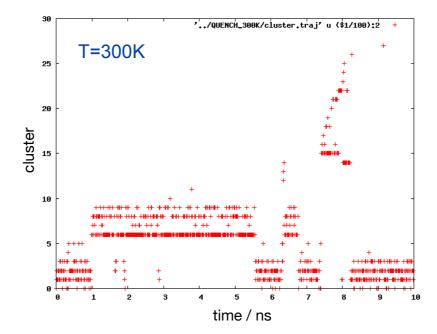
bonds bends torsions non-bonded

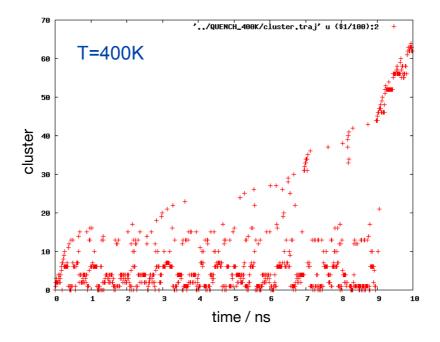
- 3x 10-20 ns simulations at T= 300, 400, and 500 K
- take a frame every 10 ps and quench in to zero Kelvin
- cluster quenched frames based on torsion angles

Clustering of structures based on resemblance between observed geometries in the trajectory, e.g. $RMSD(R_i, R_j) < TOLL$

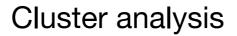
many flavors of clustering methods exist typically involves an iterative procedure over the trajectory

Friday, 13 December, 13

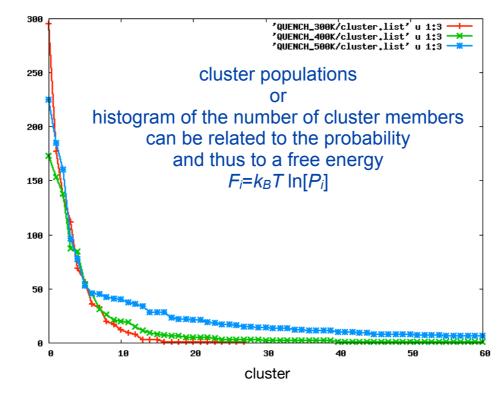




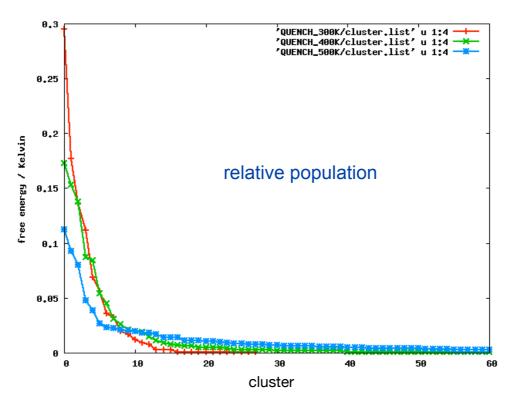
Friday, 13 December, 13

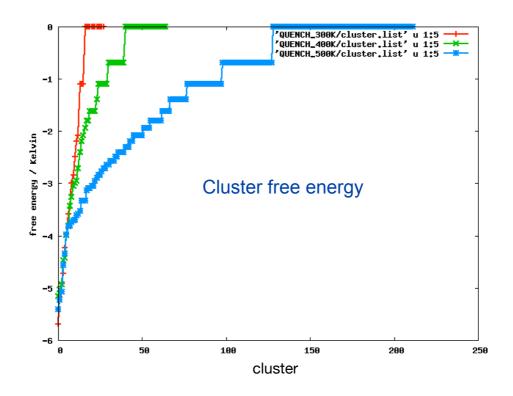




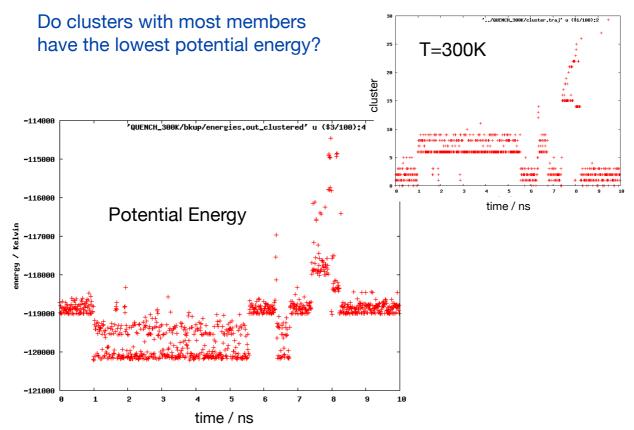


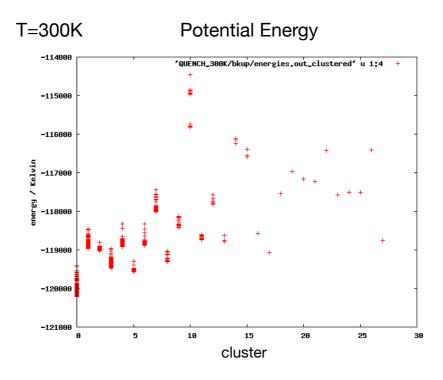
Friday, 13 December, 13

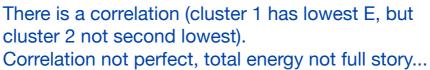


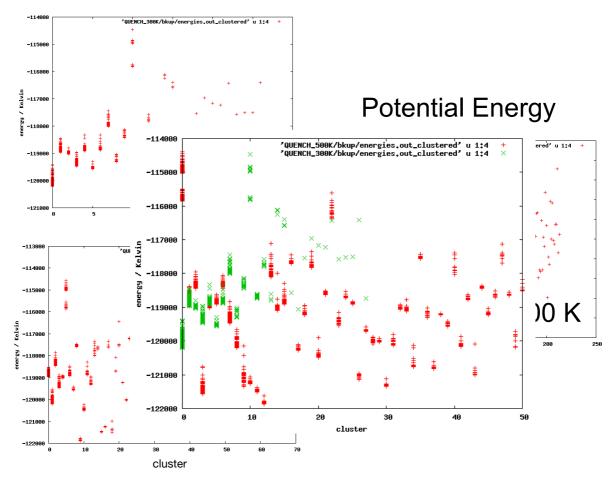


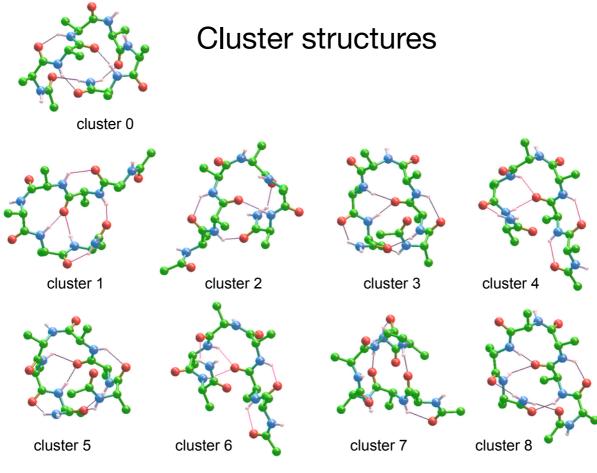
Friday, 13 December, 13



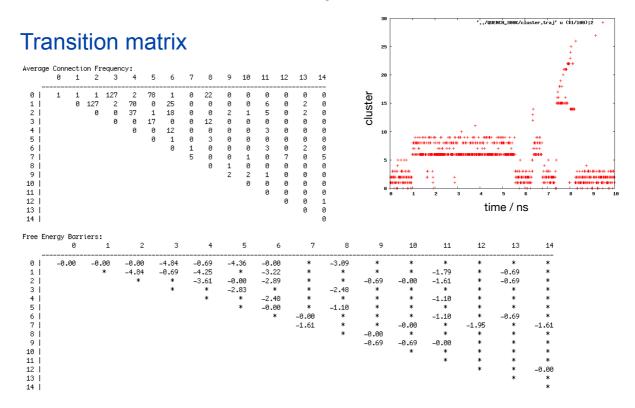




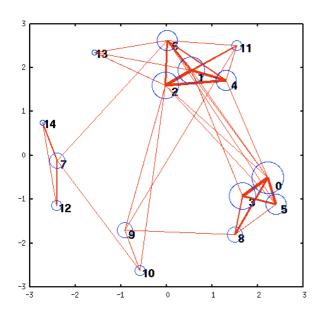




Cluster Dynamics



Network diagram



circle size: free energy of cluster

line thickness: transition probability

We can think of the peptide dynamics as a Markov chain at different levels: - 14 small states - 4 combined states

Friday, 13 December, 13

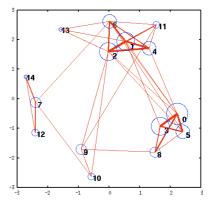
A Markov model

Are we allowed to apply a Markov model for analysis?

(mind you, the molecular dynamics was deterministic (not stochastic)).

We assume that the system jumps from state to state in a stochastic manner

- i.e. there is a separation of timescales such that the system stays long enough in metastable state to loose memory of the previous state ($\tau_{ij} >> \tau_{relax}$)



If the cluster analysis is not converged, we may find that the Markov chain is not reversible...

The Markov model can be stochastically sampled using Langevin dynamics, kinetic Monte Carlo, Fokker-Planck,....

Summary

part 1

A stochastic hopping between states is Markovian if the probability to reach the next state does not depend on the past (no memory)

- reversible Markov chains (detailed balance)
- ergodicity
 - spectral decomposition (convergence to equilibrium)

Markov State Modeling applied as analysis tool of the dynamics of a small peptide

- part 2
- Analysis of molecular dynamics simulation
- Clustering based on structures
- Relation to free energy landscape based on cluster size
- Transition probability between clusters (states)
- Using the MSM the dynamics can be sampled in a coarse-grain manner, e.g. using kinetic Monte-Carlo